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INVARIANT WEIGHTS ON SEMI-FINITE
VON NEUMANN ALGEBRAS

NILS H. PETERSEN

1. Introduction.

In [10] Stermer proves, that if ¢ is a faithful normal state on a semi-
finite von Neumann algebra invariant with respect to a group of *-auto-
morphisms of the algebra acting ergodically on the center, then there
exists an invariant faithful normal semi-finite trace, and ¢ is a Radon-
Nikodym derived of this trace. Hence if the group acts ergodically on
the algebra, ¢ itself becomes a trace (and the algebra is finite). The
purpose of this paper is to examine the situation where ¢ no longer is
assumed to be a state but a semi-finite weight. I refer to [1] and [7] for
the general theory of weights (also contained in [12]) and to [2] and [12]
for the theory of weights on von Neumann algebras and the connection
between weights and Hilbert algebras. For the general theory of Hilbert
algebras I refer to [11] and [12], as well as to [5] for general von Neumann
algebra theory.

Basically the result is negative. The paper closes with an example of
a IT factor on a separable Hilbert space and an ergodically acting
group of *-automorphisms leaving a faithful normal semi-finite weight
invariant, but not the trace.

Before this it is proved that if a normal weight, invariant with respect
to an ergodic group on a semi-finite factor satisfies a condition, called
L-continuity, then it is the trace and is the unique invariant normal
semi-finite weight. The question whether the uniqueness always holds
(without the assumption of L-continuity) is left open.

I use the notation from [5] and [12]. For a Hilbert algebra 4 is always
the modular operator, J the isometric (unitary) involution, * the
involution of the Hilbertalgebra etc. For a weight ¢, 4, denotes the
linear span of the defining order ideal # *. AlsoA = {x|p(x*x) < + oo},
etc. I take normal weights in the sense of [12] (¢ is normal if it is the
pointwise supremum of the normal linear positive functionals it majorizes).

I want to thank Erling Stermer both for his hospitality at the University
of Oslo, and for guiding my work. Apart from general, helpful suggestions
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he formulated and proved Theorem 3.3. Also I thank Alfons Van Daele
for helpful corrections and both him and Alan Hopenwasser for stimulat-
ing discussions as well as Francois Combes for fruitful conversations
during his visit to the University of Oslo in December 71.

2. Automorphisms and Hilbert algebrés.2

Levma 2.1. Let o/ be a Hilbert algebra, the Hilbert space S its comple-
tion, and M =L (/) the left von Newmann algebra. Let u be o unitary
operator on , so that un(&)u='=mn(u&) for all & o (especially w maps
o onto o), then

i) u 8 a ¥-automorphism of </,

ii) w is an isometry of the Hilbert space 2*,

iii) u maps &' onto &',

iv) u 8 a b-cmti-a/u,tomorQohie;m of o' and n'(un)=uxn'(n)u=' for all
e,

V) u 18 an 1sometry of the Hilbert space 2P,

vi) wdutl=A4 and uJu1l=J,

vil) of & € o is left-(right-) bounded, then so is ué and un(&)u="=m(ué)
(respectively un'(E)u-1=n'(uf)).

Proor. i) Clearly
(u(y- &) = um(éy-Eut = um(§)utum(Elut = n(ué)n(ué,)
= 7((uéy)" (uéy))

for all &, & € o, s0 u(&;- &) =(uéy)- (uéy).
Similarly u&¥ = (ué)* for all £e .

ii) For e &
gl = llwél2+ |2 = 1812+ me®|2 = (&1 +1IE%2 = (1812 .

Since & is dense in the Hilbert space 9%, u|o/ has a unique isometric
extension to 2%, but as this will be isometric in the norm from ¢, this
extension must coincide with u itself.

vii) Let 5 € 5 be right bounded. Then for all £ € &/
w(Eyun = wutm(Elun = un(u-1E)n = un'(n)u-1é,

so that wy is right bounded and ='(un)=ux'(n)u1-
Let & € 5 be left bounded. Then for all 5 € &’

7' (n)ué = wuln'(npué = un'(w ) = un(é)uly,
ag 7 is right bounded, so that vii) is proved.
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vi) Let £ € &/, then we have from i)
JAYE = B = uYwE)f = wlJ A uE = (utJu) (wrAatw)é .
As &/ is dense in the Hilbert space 9%,
JAt = the closure of (u~tJu)(u-t4tu) | .

As w is isometric in 2%, the norm defined by (4! Ju)(u~14*u) is the same
as || ||y, so that
JAt = (uJu)(u-t4u) .

From the uniqueness of the Polar decomposition this gives J=u"1Ju
and A*=u"1A%u, so A=u"14u.

Especially it follows, that for all functions f measurable with respect to
the spectral measures of 4, uf(4 )u—1 =f(4), so that in particular ud-=
A-*w. Therefore u maps 9[7 into 2P (hence also onto).

From vii) and the fact, that

7 € &' <=>n is right bounded and 7 € 2%

iii) now follows.
From vii), iv) follows as in the proof of i), and similarly v) follows as ii).

RemMaRK. The lemma and the proof are basically the same as lemma 2
in [10].

Let now M be a von Neumann algebra, ¢ a faithful normal semi-
finite weight on M+. z, denotes the cyclic representation associated with
@. Since ¢ is faithful it is an isometry of M on xz (M). From [2] and [12]
I have the following:

A ,=M,, with the pre-Hilbert structure of ¢ is a Hilbert algebra, so
that

A =N nAF and L(H,) = n (M),

where £ (/) is the left von Neumann algebra of <7 . # is the completion
of &,. Let y be the canonical weight on £(</,) (see [2], [12]). From
[2] or [12] it is then easy to see, that yom,=¢.

Assume G is a group of *-automorphisms of M, and that ¢ is invariant
with respect to ‘G. As in ([2] and [4]) we use the obvious generalization of
the Gelfand-Naimark-Segal construction, namely representing ¢ on ¢,
in the following way. ¢ is the group of *-automorphisms of £(&.),

Y = {mogom, | geG}.
Each «, € ¢ is implemented by the unitary operator
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ué = g(§), where e/, = H, and &, = mogom,!.
Since for z € n (M ,)=7(A )=n( ), x=n((), we have

ugruytE=um()gTHE) = 9(0)-€ = n(g(0))§ = opmy ())& = ap@)§

as m,=m on J',:.d so that

[ b
uzu, ™ = ay)(x), wen(),

and since (/) is strongly dense in #(s/,) it follows that u, implements
&y

From the above calculation it also follows that w7 (¢)u,t=n(g({))=
n(u,£). So the following proposition is merely a summary of known facts.

ProrosiTioN 2.2. Let M be a von Neumann algebra, ¢ a faithful nor-
mal semi-finite weight on M+, invariant with respect to a group G of *-auto-
morphisms of M. Then G has a faithful unitary representation g u, (for
g € G) on S, the completion of the Hilbert algebra <7, so that

u(E)u, ! = m(u,é) forall ge G and fed,.

Furthermore n (M)= (o4 ,) and ¢=yom,, where x, i3 the representation
of M on 3, induced by p, and v is the canonical weight on £ (sf ).

3. Invariants weights and traces.

DeriniTION 3.1. Let M be a semi-finite von Neumann algebra, = a
faithful normal semi-finite trace. Let ¢ be a normal weight on M+. We
say that ¢ is L!-continuous if for any sequence of elements 4, belonging
to the unitball M+, ||4,|l; - O implies ¢(4,) — 0. (This definition is due
to Stermer).

LeMMA 3.2. In the above situation ¢ is semi-finite. In fact M +> M +.

Proor. Let 4 €.#,+ be in A4 +. Then 4,=n"14 is a sequence with
[mn—24]|; - 0, so that ¢(4,) -~ 0. Hence ¢(4) < + oo, that is 4 € A *.

REMARK. 1) In {3, remarques 4.11 (c)] Combes gives an example show-
ing that there exist normal, semi-finite weights, not strictly semi-finite.
The weights mentioned are all L!-continuous, as they are derivatives of
the trace on #(5#). Hence L!-continuity does not imply strictly semi-
finiteness. The other implication is not true either, which the example in
the next section will show.
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2) As the trace on #(5¢) majorizes the norm, every state on #(#) is
L'-continuous. So L*-continuity does not imply normality.

THEOREM 3.3. Let M be a semi-finite von Neumann algebra with center €,
G a group of *-automorphisms of M leaving € elementwise fixed. Let v be a
Jaithful normal semi-finite trace on M+, and ¢ a faithful L -continuous and
G-tnvariant weight on M+. Let ¥ be a center valued trace on M+, faithful
normal and semi-finite. Then ¥ is G-invariant.

Proor. As in ([5, Chapitre III § 4]) we identify € with L. °(Zy)
where Z is locally compact Hausdorff and » a positive measure on Z.
Let €+ be the positive measurable functions on Z (finite or not).

For all ge G, Yoy is again a faithful normal and semi-finite center
valued trace on M+, so that by [5, Chapitre III §4, Théoréme 2]
there exists a unique @, € €+, with 0< Q,(%) < + oo La.e. (locally almost
everywhere) on Z, so that

P(g(d)) = Q,-¥(4), forall AeM+.

By the uniqueness we get @, @,=@,.; La.e. for g,h e G.

Assume that ¥ is not invariant, so that for some g € G, @,+1. Then
there exists a § > 0, a measurable set Y (not of measure 0) and possibly
another g so that Q,(()<1—46 for € Y. Let F be the projection corre-
sponding to 1,,F € ¥.

We can choose a non-zero projection £ € M, where E<F so that
0% 7(&) < + <. For all ¢>0 we can find » € N, so that

0<QrOF() <&, (e€Z,

that is Q,*- F <&+ F. By ([5, Chapitre III § 4, Proposition 4]) there exists
a normal trace ¢ on €+, so that v=yo¥. Therefore

tg™(B)) = »(P(9™(E))) = v(Q,"¥(E)) = (@ F¥(E))
< y(eFP(B)) = y(eP(B)) = ex(E) .

So 7(g™(E)) — 0. This implies that ¢(g™(E))=¢(E) - 0. As ¢ is faithful
this implies £ =0, a contradiction. (This proof is due to Stermer.)

Note that the proof is very similar to the proof of lemma 2.1. in [9].

COROLLARY 3.4. In the situation of Theorem 3.3 every normal, faithful,
semi-finite trace on M+ is G-invariant.

ReMARKS: 1) If ¢ is majorized by a trace it is L-continuous.
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2) If ¢ is a normal state then ¢ is L!-continuous. See [8, Lemma 2.1].

3) Francois Combes noted the following generalization:

Define ¢ to be L1-preclosed if .#,<=.#, and the injection from .4
into 7, is preclosed in the 7- respectively g-Hilbert structure, that is,
if for z, e A,

(@, *x,) >0 and (@, —x,)*(x,—x,) >0,

implies ¢(z,*z,) — 0. It is an easy calculation to see that in the above proof
g™(E) is a Cauchy-sequence in #°,, so that the conclusion still holds with
the weaker assumtion that ¢ is L!-preclosed.

Note in the following theorem that when G acts ergodically, then ¢
invariant implies that ¢ is faithful.

THEOREM 3.5. Let M be a semi-finite von Neumann algebra, G an
ergodically acting group of *-automorphisms of M. Let v be a normal, semi-
Jinite, G-invariant trace on M+. Let ¢ be a normal, semi-finite G-invariant
weight on M+. Then ¢ is a trace.

Proor. Consider the standard representation on . Let as in [12,
§ 18] 4" be the set of all left bounded elements & in #, such that #(£)en,,
the defining ideal of 7. From [12, § 13, 13.33] we have the Polar decom-
position of the closure 7 of n/.4”, where n=/A0K',K’' positive selfadjoint
on #,, and A a unitary operator from 5, onto 5, the Hilbert space
corresponding to 7. As 7 is invariant, the operator V, defined on n, by
Vo(®) = uzww,* (by proposition 2.2 we identify M and £(+/,)) extends to
a unitary operator on 5, for all g € G. For all g € G, V,jodou,™ is then
unitary from 5, onto ,. Further w,K'u,~! is positive selfadjoint on
#,and for EeN,ge @G

AE) = mlugu,8) = w18 =V falu,8))
= VGOA(K’ug—lf) = (Vg°/1°u,,'1)°(u,,K'ug-1)§ ,

where we have used that u, maps /" onto /" (by lemma 2.1 and since ©
is invariant).

Since u, maps 4" onto 4" and is unitary, it is easy to see that u K u,™*
and K’ have the same domain (as K’ is the closure of K’|.#") and that
u,K'u,! is the closure of u,K'u,~*|.4". Thus we get

= (V,odou,)o(u,K'u,™?) .
But from the uniqueness of the Polar decomposition it then follows that

u, K'u, = K’ .
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As the uy’s act ergodically on #(#/,)" as well, K’ is a scalar. From ([12,
§ 13, 13.35 and 13.40]) it follows that A =1, so that ¢ is a trace.

Combining theorem 3.3. and 3.5. we get:

THEOREM 3.6. Let M be a semi-finite factor. Let G be an ergodically
acting group of *-automorphisms of M. Suppose ¢ is a normal L -continuous
G-invariant, weight on M+. Then @ 18 the trace and furthermore @ is the
unique normal semi-finite G-invariant weight on M+,

Note that by the note before theorem 3.5. it is also here enough to
assume ¢ Ll-preclosed instead of L!-continuous.

4. An example.

THEOREM 4.1. There exists a II_-factor & on a separable Hilbert space,
a faithful, normal, strictly semi-finite weight v on %+, and ergodic acting
group of *-automorphisms of & leaving p invariant, but which does not leave
the trace on & invariant.

Proor: Throughout the proof we will use the notation from [5, Chapitre
I, § 9]. The factor & is chosen to be the factor of type II constructed in
Théoréme 1 of [5, Chapitre I, § 9]. As the group G used in the construc-
tion, we specify G =Q, the rational numbers.
The trace ¢ on #+ is defined by: For 4 € #+, A has a matrix of the
form
R, =T, Wy, withT, s

(here o = L®(R,») with » the Lebesgue measure), s,f € Q.

T, corresponds to a L*-function f, on R, and

p(4) = Gfo(O)dr(0) .

(This is well-defined, since f,=0.)

Let now a be a positive, non zero rational number = 1. Define £, on
LcA(R,v) by

2,f() = a¥f(al), for (eR,feLR,v).

Then the following is immediate:

£, is unitary, and for s € Q

QAUL, = Uy, and 2,71 = ‘Qa—l‘ .
Further for g € L® and T, being the corresponding operator in 27,
Qa,--]'Ta‘Qa = Tgaa where g,(f) = g(a~*() .
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Now we define 2, on 5 by the matrix:

R .- 2, fs=at
5 710 otherwise.

It is clear, that 2, is unitary and maps 5, on 5, for t € Q. (Note that
£, obviously is not in ).

Cram 1. .Qa tmplements a *-automorphism of &.

Proor. Since & is the weak closure of %, it is enough to show, that
for S € B,, 2,182, is again in %, Let
S =T, geL yeQ.
The matrix of S is then:
T,%, ifs—t=y

Ry, = 0 otherwise.

The matrix of 2,~1&(7,)%,2, is defined by: The matrix element with
indices s,t equals

Js*‘éa—1¢(T g)%véa’] t= J a*‘{ja-l Janas*(p(Tg)@yJalJ at*f)aJl
= 'Qa_lJas*dj(Ty)%yJ af2q

_ QT U, 82, if a(s—t)=y

- 0 otherwise

| 2, T L, w2, i a(s—t) =1y

- 0 otherwise

_ T,y if a(s—t)=y
0 otherwise

| T, %, if s—t=2

- 0 otherwise

(where z=y]/a).
But this is the matrix of &(T,)%,, so
QDTN R2, = DT, )Yy -

As %, consists of sums of operators of this type, #, is left invariant, so
that the claim follows.

CLAM 2. @ is not invariant under this automorphism of &.
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Proor. Let S be as in proof of claim 1, with y=0. R, (=T, for some
g € Lc™. Then .éa—lS.éa =®(T,,), that is the (0,0) matrix element is 7', , so

9(8) = §rg(0)dr(0)

and
@(2,7182,) = \rg(a0)dv() = afrg(l)dr({) .

As a+1, claim 2 follows by choosing a g € L., integrable with respect
to the Lebesgue measure and not a zero-function.
Now we define the weight v on #+. As above for 4 € #+ define

w(Ad) = ffo(0)- 1L 2dv(C) ,

where f, € L™ is derived as in the definition of ¢. Consider the intervals
[#,n+1[, where neZ and n2=1 or = -2, and [1/(n+1), 1/n[,[—1/n,
—1/(n+1)[, n € N. They form a partition of ]— oo, 0[U]0, oc[. Calling them
I, (giving them some ordering) consider the positive linear normal func-
tional on # defined by

va(4) = §, /)11 dv(0) .

Consider the projection &(T', ) € #, where y,, is the characteristic function

for 1,,. Since
1-o(T,) = o(1-T,) = 9(T,_,,),

and y,(9(T-,,)) = 0, we have Suppy, & D(T, ). Therefore the y,’s have
orthogonal support, and 3,y,=w, so by [3, Proposition 4.2 and 4.5]
y is strictly semi-finite. Also it follows, that ¢ is normal.

p is faithful as we shall show next. If for some § € #+, v(§)=0, then
¥,(8)=0. Therefore as y,(4)=¢(4-D(T,)) where g({)=|l|"2x,({), it
follows that f-g=0, so that f is zero a.e. on I,, and therefore on R. The
proof of [5, Proposition 1, Chapitre I, § 9] showing that this implies S=0
for a positive S carries over.

y is invariant with respect to the constructed *-automorphism of #.
To prove this, let S € #+. S has the matrix

R,,=T, AUyy, ToieAd.
Let 7', correspond to the L.®-function f. Then
9(8) = S f )11 2dr(0) .
Now 2,-189, has as its (0,0)-matrix element

Jo*Q2,1J J*STJ* 2,0y = 2,722, ,
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which, as in the beginning of the proof, corresponds to the L. *-function
Ja- Therefore

9(2,7289,) = wfOIE7dn(Q) = Sof(@18) (2] 2dn(C)
= §af(0) (@) tadn(C) = §af(C)ICI2dn(E) = w(S) .

Consider now a unitary operator ¥ € @(f) =7. Its matrix has the form

Q. = T, if s=t¢
&t 710  otherwise,

where T',, is a unitary member of /. Let S be in &, with matrix R, ;. The
(0,0)-element in the matrix of ¥ -1.8¥" is then

JH} A8V T, = T, Ry T, = Ry, ,

gsince R, , € o/, which is abelian. From this it follows that the *-auto:
morphism of M which ¥ implements, leaves y invariant.

Consider now the group of *-automorphisms of M spanned by the
*-gutomorphisms implemented by S}a , @ € Q, and all the unitary members
of 7. It is clear that this group leaves v invariant, but not . Assume
that 8 € # is invariant under the group. Then S commutes with &7, so
that by the proof of Théoréme 1 and by Lemme 2 in [5, Chapitre I, § 91 S
itself belongs to 7. Therefore § has the matrix R, , of the following form

st 1o otherwise,

where fe L.®(R,v). But f)a—l Sf)a has as its (0,0)-element in its matrix
T, Since therefore for all a € Q,, f=f, almost everywhere, f is constant
on R, and R_ a.e. respectively.

For g € L®(R,v) let

(Wg)(x) = g(—1/x), =xeR\{0}.

This defines a *-automorphism of L.®(R,).
For g e Lc™®(R,») let also for y € R

(W,/9) (@) = g((z/(L+yx)), xeR\{-y}.

It is easy to check, that W', defines a one-parameter group of *-auto-
morphisms of L.*(R,»).

Let now W' and W”, be a unitary operator and a one-parameter
group of unitary operators on Lc%(R,») implementing W and W', on
Lc>(R,»). (We know they exist, and moreover they are easy to calculate).

Then define # on 5% by the matrix:
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st"'

U, W" Wt if s=1t
otherwise.

As in the beginning of the proof we have to check that %, which is
obviously a unitary operator on J# implements a *-automorphism on #;
because it is then enough to show that for ge L™ and yeQ,
WAD(T )W is of the same form. Its matrix is defined by the following
element with indices s,¢

JFw 1 ¢(Ta)%yWJ, = (WYY (W" ) 1U1 Tng*oilyJ,”Z/, W, Wt
_ (Wl)—l W”—s%—sTg% %tW”lWI’ if s—t = Yy
- 0 otherwise
4 W"Wl(Wl) 1" H_ U AW W if s—t=y
0 otherwise

_ {(Wl)‘lw'_'s”?/-s o
_ {T,h(Wl)—1 wr_wto it s—t=y

0 otherwise,

where g, € L™, since all the unitary operators on L.%(R,») act on L ™.
Now (W)-1W"_,W! is a unitary operator on Lc? implementing the same
automorphism on L* as %,, as an easy calculation shows. Therefore

(WYL W"’_ W' = T, %, forsome g,e Lc>,

so that the matrix is the matrix of &(T, . ga) y» and therefore #~ acts
on #. When for S € #+, # -1S#  has as its (0,0)-matrix element

T ¥ W AT T * ST JFW Ty = (WO)YJT* ST ,) Wt

so if Jy*SJ, corresponds to fe L.®, then the transformed corresponds
to Wf so that
YA W) = §af (=) 212 du(l)
= WfQLI-C2dv() = §a fQ) LI dm(C) = 9(8) .

Therefore y is invariant. (By the way it is also obvious, that ¢ is not
invariant).

Assume now that the group of *-automorphisms spanned by all the
implementations of .éa, a € Q,, the unitary operators from & and #
leave S € # invariant. Then S € &, 8 =®(T,), where f is constant on R,
and R_ respectively a.e. Now #"-1.8%" will be &(Ty;,,), where Wf has the
same property with the values interchanged. Therefore f must be constant
a.e. so that § is a constant, and the group acts ergodically.

REMaRk. Independently of this work, Gert Kjergird Pedersen and
Masamichi Takesaki have developed a Radon-Nikodym theory for weights.
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Their work contains theorems stronger than the ones given here, and an
example which is the same as the above with the exception, that the
group in this paper is larger, so that it acts ergodically, (see [8]).
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