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DIRECT INTEGRALS
OF LOCALLY MEASURABLE OPERATORS

M. J.J. LENNON

Let # be a von Neumann algebra. In the reference [7], I. E. Segal
introduced the concept of a measurable operator with respect to %. In
a later work ([6]), S. Sankaran generalised this idea by defining a locally
measurable operator (with respect to &), and gave a simple example to
show that it was a generalisation. Both of these sets of unbounded oper-
ators are interesting, because they form *-algebras, while in general
there is no domain common to all the operators.

In this paper we study the behaviour of these *-algebras under direct
integration (and direct integral decomposition) of separable Hilbert
spaces. We prove the theorem that the direct integral of measurable or
locally measurable operators is locally measurable (with respect to the
direct integral of the von Neumann algebras involved), and its converse.
Using this result, we are able to completely characterise all measurable
and locally measurable operators in an interesting case. We intend to
make a deeper use of the main theorem in a forthcoming paper on non-
unitary group representations.

The main results of this paper were obtained while the author was an
amanuensis at Aarhus University. The author would like to thank
S. Bundgaard and the staff of the Matematisk Institut for the hospitality
extended to him and he would also like to acknowledge his indebtedness
to J. Vesterstram for several fruitful suggestions.

1. Preliminaries.

Throughout this paper, s# will represent a separable Hilbert space,
Z# an arbitrary von Neumann algebra on 5, #’ its commutant. The
symbol 1 will represent the identity operator; the space in which it acts
may be deduced from the context.

Let A4 be a linear operator with domain 2(A4) <. We say A is clos-
able if the closure of the graph of 4,%(A), is the graph of a closed linear
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operator, which we denote by 4-. If 9(4) is dense, and A4 is closed, we
denote (4*4)} by |4|, so
A = U|A|

is the canonical factorisation of 4. If A and B are linear operators and
A+ B, AB are closable, we define the strong sum, 4+ B, and strong
product, 4.B, to be (4+B)- and (4B)- respectively.

If (Z,v) is a standard Borel space, we define a direct integral decompo-
gition of 7,

®
> = S H(t) du(t)
Z

as in J. Dixmier’s book [1], and we denote the algebra of diagonalisable
operators by . If the centre of #, Z(#)> ./, then # (and #’) can be
written as a direct integral,

(&)
B = S B(t) d(t) .
zZ

We call ¢ > #(t) a measurable field of von Neumann algebras.

If A is a closed linear operator and 4 n &/’ (that is AB>BA ¥YB € )
then %(A) is a decomposable subspace of S£PH#, and ¥(A)(t) is the
graph of a closed linear operator A(¢) in S#(¢) (see [5] or [4]); we write

l

e

f

We call ¢t — A(t) a measurable field of closed linear operators. If 4 is
bounded, almost every A(t) is bounded, and this definition of direct
integral reduces to the usual one. If A4 is self-adjoint, then almost every
A(t) is self-adjoint, and we have the following lemma:

A(t) dv(t) .

Ne——PD

Lemma 1.1. Let A={® A(t)dw(t) be self-adjoint,
A= SAdE(l), A@t) = SldE,(l)

the spectral decompositions of A and A(t) (when A(t) 4s self-adjoint). Then
for any Borel set, B,

E(B)(t) = E(B) for ae.t.



DIRECT INTEGRALS OF LOCALLY MEASURABLE OPERATORS 125

Proor. It is clear that, for each Borel set B, E(B) is decomposable. If
A is bounded, the result follows from [8, § 14]. In the general case, let
D be a bounded Borel set, and let £ = E(D)3#. Then & is a decompos-
able subspace and

@

A\ = S A(t)| H°(8) doie) .

The A(t)| A (t) are bounded self-adjoint operators for a.e. ¢, with spectral
measure E,(.)| X (). Let B be any Borel set; by the result in the bounded
case,
EBnD)t)| A (t) = B(BnD)| A (t) a.e.t,
that is
E(BnD)®)E(D)(t) = E(BnD)E(D)(t) a.e.t.

Taking D, =[-—n,n] and letting n — oo we have

ED,)@) —~1 a.e.t,
E(BnD,)(t) - E(B)t) ae.t,
E(BnD,) ~ E(B),

which completes the proof of the lemma.
If P and @ are two projections in %, we write P ~ @ if there is an oper-
ator V € #, such that

VV*=P, V*¥ =¢@.
A projection P is infinite if
iQ< P, QP Q~P,
otherwise P is finite. The set of all finite projections in & will be denoted
by F(%).

We need the following result, which is corollaire 1 of théoréme 5 in
[1, chapitre II, § 5].

Levma 1.2. Let =D A(t)dv(t), and let E (respectively F) be the great-
est central finite (respectively properly infinite) projection in %B. Then for
a.e. t, H(t) (respectively F(t)) is the greatest central finite (respectively
properly infinite) projection in ZB(t).

2. Measurable and locally measurable operators.
Following I.E. Segal [7, Definition 2.1], we define an essentially meas-
urable operator to be a closable linear operator 4 n &% such that

3{‘Pn}‘n=1,2,... < f(,ﬂ), Pnio’ (I—Pn)'# < 9(‘4)
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We call {P,} the defining sequence for 4. If 4 is, in fact, closed, we
call it a measurable operator, and we denote the set of all measurable
operators by #(#); clearly .#(%)>%. The following results are proved
in [7].

ProrosrTioN 2.1. (a) Each essentially measurable operator has a dense
domain, and its closure 1s measurable.

(b) A is measurable <> |A| ts measurable.

(c) A(B) is a *-algebra under strong sum, strong product, and operator
adjunction.

It is easy to see that if # is finite (that isle 9'(.%‘)), then (%) is
the set of all closed operators affiliated with &; while if # is purely
infinite (that is % (#)={0}), then .#(#)=2. It is interesting to note
that this is also the case if # is a type I factor (e.g. £(5¢)).

ProposirioN 2.2, If & is a type 1 factor, M(B)=24.

Proor. Let A € #(#), and let {P,} be the defining sequence for A.
Let D be the normalised dimension function on # (see [3]); then D(P,)
is an integer and D(P,)} 0. But a sequence of integers can converge to
zero only if it eventually becomes zero. Thus D(Py) =0 for some N,
hence Py =0, and

D(A) > (1-Py)H# = X,

80 4 is bounded, and hence 4 € #.
We now find another characterisation of measurable operators.

ProposiTION 2.3. Let A be a closed linear operator with dense domain
affiliated with &, and

00

4] = S AdE()

0
the spectral decomposition of |A|. Then A € M (B) if and only if

34 < oo, B((Ay, o)) eF(X).

Proor. Suppose the condition holds. Then defining P, = E((4y + n, )),

we have
{Po} = F(B), Ppi0, (1-P,)# <2(]4)),

80 |A| € M(F), hence A € A (B).
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Conversely, given that 03|4| e #(%), let {P,} be the defining se-
quence for [4]|. Choose N such that
I < 4|1 =Py)+1 = 4,
say. Then if
”.’lf“ = 13 (EG(I—PN)%QE((Z,O,OO))% ’
then x € 9(|4|) and

4]zl = [[[4](1=Py)z|| = =1,
while

llafel? = 22 1B = A2
Ao

Thus no such x can exist, i.e.

(1=Py) A E((Ag,0)) = 0.
Hence
~ (l-—PN)vE((lo,oo))—(l—PN)
£1-(1-Py) = Py .

Thus E((4y,x)) € F(#).

In [6], S. Sankaran introduced the concept of a locally measurable
operator. He defined a closed linear operator 4 n & to be locally meas-
urable if

I{Ontna1,2,..© Z(B), Qutl, A|Q¥ e A(B)|Q,H).

Using proposition 2.3, and elementary arguments, it is easy to see that
this definition is equivalent to the following one:
2(A) is dense and

3 {Pn}n=1,2,... < g('@)’ Pn T 1> E((n’m))Pn Eﬁ_(.@) ’
where

A = S AdE(R)

is the spectral decomposition of |4].
We denote the set of all locally measurable operators by #(%); the
following results are either trivial, or are contained in [6].

ProrosiTioN 2.4. (a) B M(B)< L (B); L(B)=M(B) if B i3 finite
or a factor.
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(b) L(&) is a *-algebra under strong sum, strong product, and adjunc-
tion.

(c) 4 € L (%) is measurable if and only if there exists an n, such that
P, =1 1in the above definition.

3. Main Theorem.
We now state and prove the main result of this paper.

TaEOREM 3.1. Let (Z,v) be a standard Borel space, t — B(t) a measur-
able field of von Neumann algebras, and t —~ A(t) a measurable field of
closed linear operators. Let

® ®
Z = ng(t)dv(t), A= SA(t) (1) .
zZ Z

Then A is locally measurable (with respect to ) if and only if A(t) is
locally measurable (with respect to #(t)) for almost all t. Furthermore, if A
18 measurable, then A(t) is measurable for almost all t.
Proor. We first establish that
AnNZ <= A(t)n #B(t) ae.t.
If An%, then AB>oDBA YBe%#', so ABoB.A YBe %', and hence
(AB)(t) = (B.A)(t) a.e.t,
since AB and B. 4 are closed decomposable operators. From [2] we have
(AB)(t) = A(t)B(t), (B.4)(t) = B(t).A(¢) ae.t.

Now we can choose {B,}<=%’ dense in %', such that {B,(t)} is dense in
A(t)" for a.e. t. Hence, except for ¢ in a null set S<Z,

A@)B,(t) > B,(t).At) VYn.

Now choose any C e #(t)’, t¢ S, and suppose B, (t) - C in the strong
operator topology. Let y € 2(A(¢)). Then

B, (t). A(t)y = By(t)A(t)y ~ CA(t)y ,
so {A(t)B,(t)y} converges. Hence Cy=lim B, (t)y € 2(A(l)) and

A@)Cy = CA(t)y .
Thus
A)nBit) t¢8S.
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Conversely if A(t) n #(t) for a.e.t, then it follows immediately that
AB>B.A for every Be %', 80 An 4.

Now suppose 4 € #(#), and let {P,}<Z be the sequence given in
the definition. Then we know that 9(4(t)) is dense for a.e. ¢ and (see [4])

|4|(t) = |A@t)| a.e.t.
Also we have, for a.e. t,
P.t)e Z(BW), Pat)t1, (B((n,))P,)(t) e F(B().
If |4|={4dE(%) and |A(t)|={AdE(4), then by Lemma 1.1, for each n,
(B((n,0))P,)(t) = E(n,))P,(t) a.e.t.

It follows that A(t) € L(Z#(t)) for a.e. t.

If A € #(#), then there exists n, such that P, =1. Since P, (t)=1,
it follows that A(t) € #(Z(t)) for a.e. t.

Conversely suppose A(f) € £ (#(t)) for a.e. t. Then it follows as above
that An %, D(4) is dense, |A(t)|=|A|(#), a.e. ¢, and if

4l = (2aB@), 140 = (1d8m),

then for each Borel set B,

EB)t) = E(B) a.e.t,
Let E,=E((n,~)). We know that for a.e. ?, there exist {Q,'} < Z(%(t))
satisfying @t 1 1, and E,(1)Q,' € #(#(t)). We must show that such Q!
may be chosen so that ¢ — @,! is measurable.

Let ¢=E,%E,, and let R, be the greatest central finite projection
in €. Let P, € Z(%#) be defined by

P, = sup{F € (%) | F is a projection, FE,<R,}.

We know that P, E,=R,=R.E, € % (#), since if VV*=R,E,, V*V =
@ <R,E, then V €%, which contradicts the definition of R,. By sep-
arability, we have for a.e. ¢,

P,(t) = sup{Fte Z(#()) | F*is a projection, F‘E,(t) < R,(t)} .
Now for a.e. t, Q'K ,(t) is finite in H(t), so
B (t) € F(€(1)) .
Thus by Lemma 1.2, @ 'K, ()< R,(t). We have
P,() = Q,* for ae.t,

Math. Scand. 32 — 9
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hence
P,(t)t1l ae.t.

Thus P, 11, so {P,} satisfies the conditions of the definition, and
A e L (AB).

4. Further results and examples.

Before giving some examples which illustrate the main theorem, we
state a proposition about the *-algebraic operations.

PROPOSITION 4.1. Let t — A(t), t — B(t) be measurable fields of locally
measurable operators. Then

A+ B =\ A(t)+ B(t) dv(t)

A.B

]

A(t). B(t) dv(t) .

Proor. These follow immediately from Theorem 3.1 and [2].

It is interesting to note that the operation of direct integral takes one
outside the collection of measurable operators, that is A(f) measurable
does not imply {® A(t)dy(t) is measurable. This can be seen by the sim-
plest example; if {5#,} is an infinite sequence of identical Hilbert spaces,
and A4, a bounded operator on #,=J5¢,,, then the closed operator
@14, on @ 5, is not, in general, measurable with respect to

°_1%(H#,), but it is locally measurable. We can generalise this example
by defining, as in [4], a boundedly decomposable operator 4 on a direct
integral of Hilbert spaces, 5 = {© 5#(t)d»(¢), to be a decomposable closed
operator of the form

@ .
A= SA(t) d(t), A(t) e B(H) ae.t.

The most general unbounded boundedly decomposable operator is found
by choosing a measurable field of bounded operators, ¢ - A(¢), such that

ess sup |4 (¢)|| = oo .
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We have:
ProrosiTiON 4.2, Let
@
B = S B(H (1)) dr(t) .
z

Then A € L (%) if and only if A is boundedly decomposable. Furthermore,
A € M (B) if and. only if there exists a B € B, such that

®
A—B = S C) d(t)

with, for a.e.t, C(t) an operator living on a finite dimensional subsp(;ce of
H(t) (that is R(C(t)) and N (C(t))* finite-dimensional.)

Proor. The first part follows immediately from Theorem 3.1 and
Proposition 2.2.

If A € #(%), define B=AE([0,4,]), where 4, is the number defined in
Proposition 2.3. Then B is bounded and Bn %, so Be %, and

A—B = AE((A9,)) .
Since E((y,0)) is a finite projection, for a.e. ¢,
E((49,0))(t) € F (B(H (1)) ,

that is, E((Ay,0))(t)5#(¢) is finite-dimensional. Thus for a.e.?,
A(t)E((Ag,))(t) is zero except on a finite-dimensional subspace, and
hence has a finite-dimensional range.

Conversely if A has the above form, then it is clear that C=
(O C(t)dw(t) is in L(%) by the first part, and it is sufficient to prove C
is measurable.

If E(-) is the spectral measure of |C(t)|, then E([0,c0))5#(t) is finite
dimensional, so if E(-) is the spectral measure of |C|,

@
E([0,)) = | B([0,0)) dv(t
z
is a finite projection in #. It follows that A € #(%).
This proposition shows that the result of Nussbaum, that the boundedly

decomposable operators form an algebra under strong sum and product,
follows from the work of Sankaran.
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