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BORDISM AND GEOMETRIC DIMENSION

HANS ANTON SALOMONSEN
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0. Introduction.

In sections 1-5 we define and establish some elementary properties of the
bordism groups of a space with “coefficients’” in a virtual bundle. These
groups are, except for slight notational differences, identical with those
defined by Wall in [4]. In sections 6, 7 we set up an exact sequence, which
through a range of dimensions generalizes the Gysin sequence for a sphere
bundle. Using this sequence we define in section 8 an obstruction
Ye(w)([M™]), which for n < 2k —1 is shown to vanish iff the virtual bundle
y over the manifold M” is of geometric dimension = k. In section 9 this
result is specialized to define an obstruction for existence of immersions
in the metastable range. We show in section 10 that the order of y,,(y)([M*])
is a power of 2, and a bound for the order is given. This result together
with a result of R. Brown [1] is used in section 11 to show that immer-
sions

G

< R2nm—a(nm)
n,m =

exist in a large number of cases, where &, ,, is the real Grassmannian
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88 HANS ANTON SALOMONSEN

manifold of n-planes in R*+™ and «(nm) is the number of 1’s in the dyadic
expansion of nm.

The results in this paper extends some of the results in the authors
thesis [3] written under the supervision of F. P. Peterson.

We shall in a later paper carry out a similar program for smooth
embeddings of manifolds in Euclidean space.

1. Virtual bundles.

Let X be a topological space. We define a virtual bundle ¢ over
X to be an ordered pair of vector bundles &,* and £_* over X, written

=8 -&_.

The vector bundles shall always be of the same dimension.
We define
—p =& -&,.

If y=¢,—¢_ is a virtual bundle over X we define

p+y = E-}-@C-}-_f—@C— .
If y={, —{_1is a virtual bundle over a space Y we define a virtual bundle

pxy =& x{—E x{
over X x Y.
If f:Y - X is a continuous mapping we define the pull-back

fro = e —f*
over Y. If f is an inclusion or a bundle projection we shall frequently

denote f*p by ¢.
If & is a vector bundle over X we define a virtual bundle

&0 = é‘k—sk ’

where & is the trivial bundle. The virtual bundle & —¢f is denoted by 0%
We denote the total space of & by E&, and the complement of the zero-
section in E¢ is denoted by Ey&. We identify X with its image under the
zero-section.
Finally if £ and ¢ are isomorphic vector bundles and the isomorphism
is g:& - £, we shall write

§x,¢.
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2. @-manifolds.

By a manifold, M we shall mean a smooth manifold with or without
boundary. The tangent bundle is denoted by 7.

Let (X,4) be a pair of topological spaces, and let p=£.%¥—& ¥ be a
virtual bundle over X. Then we define a ¢ — manifold over (X, A4) to be
a triple

M = (Mn,f B )>

where M™ is a compact n-dimensional manifold with boundary oM,
[:(M,0M) - (X,A)
is a mapping of pairs, and
F:oy@f*é- = e"@f*é.

is a stable bundle isomorphism, i.e. F' is an equivalence class of bundle
isomorphisms
F' v Of*6_PeV ~ en@f*E,Pel ,
where the equivalence relation is generated by the relations
1) F'~F'x1,
2) F'~F" if F'is homotopic to F'’ through
bundle isomorphisms.

We define the dimension of .# by
dims = dimM = n.
We note that for k=2 the set of stable bundle isomorphisms
tMn(_Df*S_k ~ 8n®f*§+k
are in one—one correspondence with the set of homotopy classes of
isomorphisms.

Let M" be a manifold with boundary éM. Then the inward normal of
OM in M defines a homotopy class of isomorphisms

Ty 0M X Ty Pel .

Using this isomorphism we define the boundary of the ¢ — manifold
A over (X,4) by
oM = (0M,f|oM,oF) ,
where

OF : Ty ®f*6_ = e"1Of*E,

is a stable isomorphism such that the composition
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SDTS - = T @SB ¥ Ty OM@F % e @FE, =
- SO Df*E)

is equivalent to (—1)*x é¢F. Then o.# is a p-manifold over 4 =(4,9).
We define a gp-manifold

—M = (M,f,—-F),
where
—F = Fx(—=1):1,®f *é_@e! = e"@Pf*E . Det .
Let g:(Y,B) -~ (X, A4) be a mapping of pairs, and let 4 =(M,f,F) be a
g*p-manifold over (Y,B). Then we define a @-manifold over (X,4) by

g*# = (M,gof,F).
Let
M = (M,f,F) and A = (N,q,R)

be @-manifolds of the same dimension over (X,4) Then we define a
g@-manifold

M+N = (MUN,fug, FUG)
by disjoint union. We write
M—-N =M+ (—N).
The empty manifold defines a @-manifold
0= (9,0,0).
If o4 = —oA4 we can by identification of boundaries form
MUN = (MUN,fug,Fu@G) ,

which is a g-manifold with o(# uA")=0.

Let y={,—{_ be a virtual bundle over a space ¥ and let B< Y be a
subspace. Furthermore let .# =(M™,f,F) be a @-manifold over (X,A4),
and let /" =(N™,g,3) be a p-manifold over (Y, B). Then we can form the

cross product
MxN = (MUxN,fxg, FxG@)

to be a @ x y-manifold over
(X,A)x(Y,B) = (XxY,XxBUAxY).

Here M x N will have corners on the boundary. We can either remove
them by some standard technique or just allow them to be there. It is
unimportant which choice we make.
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3. Bordism groups.

Let (X, A) be a pair of topological spaces, and let ¢ be a virtual bundle
over X. Then we shall introduce an equivalence relation among ¢-mani-
folds over (X, 4) as follows.

We say that

M~ O

if there exists a p-manifold % over (4,A4) with 0% = —o.# and a p-mani-
fold #” over (X, X) such that

N = MUU
The pair (¥, %) is called a bordism. Now we define
M~N A M- ~0.

It is easy to show that ~ is an equivalence relation. The set of equiva-
lence classes of gp-manifolds over (X, A4) of dimension = is denoted by

2,(X,4;9).

The class defined by .# is denoted by [.#].
An Abelian group structure on 2, (X, 4; ¢) is defined by
[A]+[A] = [A+AH],
—[A] =[-A],
0=1[0].

and

Let g:(Y,B)—~(X,A) be a mapping of pairs. Then there is an induced
homomorphism
g*: 2,(Y,B; g*) > 2,(X,4; ¢)
given by
9x[A] = [9:-#] .

We define a boundary homomorphism

0:2,(X,4; )~ 2,(4;9)

by
M) = [0H4].

The bordism groups have a number of properties similar to the Eilen-
berg-Steenrod axioms.

Ezactnes. Let A < B< X be spaces and ¢ a virtual bundle over X.
Then there is a long exact sequence
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o QB A ) > 2,(X,A;9) > 2,(X,B; 9) —> 2, (B, A; ¢) > ...

where the unnamed maps are induced by inclusions and @ is the composi-
tion
2
Q,(X,B; ¢) — 2,(B; ¢) > 2,(B,4; ¢) .

Homotopy invariance.
I. Let ¢ be a virtual bundle over X, let 4 = X be a subspace, let
fi : (Y’B) - (X9A)’ T = 0,1

be maps, and let F' be a homotopy from f, to f;. Then there is a commuta-
tive diagram

2., B; fo*p)

fo:
~ | oF 2,.(X, 4; )

'Q'n( Y: B; fl*‘P) fae

where the isomorphism 0 is defined by the isomorphism
Jo*o = fi*e
determined by F.
II. If f: (¥, B) - (X, 4) induces isomorphisms.
JeimyY) > my(X), ¢ <m,
S :17wy(B) > m(4), ¢<sn-1,

and epimorphisms

Ja: (YY) = 7y (X))
S 1 70y (B) —> 7, (4)

with respect to all base points, then
Je 1 (Y, B; f*p) > (X, 4; )
is an isomorphism for 2 <n and an epimorphism for i=n+1.

Excision. Let U <« A < X be spaces and let ¢ be a virtual bundle
over X. Assume that there exists a continuous function

h:X —>[0,1]

such that
RU=0 and R|(X-4)=1.
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Then the inclusion induces an isomorphism

QX -U,A-U; ¢)—=>2,X, 4; 9).

Let ¢ be a vector bundle over X. We put
0, =¢-¢.

Then for any subspace 4 = X and virtual bundle ¢ over X we get
isomorphisms

'Qn(X, A; (P) jad 'Qn(X, A; O§+¢)

'Qn(Xs 4; @) 'Qn(X: 4; (P+0¢)
given by

(M, f, F]i> [M™, f, F x 1,.,] .

This shows that 2,(X, 4; ¢) only depends on the class of ¢ in I’{T)(X )
We define cross products

x: 2,(X,4; 9)@2,(Y,B; y) > 2,,u((X,4) x (Y, B); p x )

by
(A% [M] = [ A xANT].

4. The fundamental class of a manifold.
Let M™ be a compact manifold with boundary éM. Then we define
the fundamental class of M by

[M] = [Mm’ lM’tM] € ‘Qm(M’ oM, IMO)
where
Iy ¢ Ty™DE™ X EmDTY™
is the isomorphism which interchange factors. It is then clear that
o[M] = [0M] € 2, _,(0M; 75p,") ,
and if N* is also a compact manifold then
[V x M] = [N]x [M] € Qo x M, 8N x M); ty20) -

We note that the fundamental classes are universal in the following
sense:

Let (X,A) be a pair of topological spaces and let p=&.%—& % be a
virtual bundle over X. We consider a g-manifold (M™,f, F) over (X, 4).
We can then choose an isomorphism

0 : f*E_HDLP & ehtp
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where { is a bundle over M of dimension p>m. Now the composition
(Fx1) o (Lx06-1):

TP = Ty Bf*E D = mDf*¥EL DL
determines a homotopy class of isomorphisms
W f*E,D = Ty Pektrm
such that the composition (1 x w) o (Fx1;) o (1x071):
Ty@eHP 2 mPf*E, DL X DTy Dek P
equals ¢3; X 1,14p-m. We may now consider the composition f* o (w=1,0-1),:

Q,.(M,0M ; 1% = Q,(M,0M; 75,0+ 0k+p-m) ~ Q (M ,0M ; f*¢+0,)
= ‘Qm(-M,aM;.f*(p) - .Qm(X,A, <P) .

It is clear that under this composition [M] is mapped into [M,f, F].
Also we note that the isomorphism

Qm(Ma aM’ TMO) = 'Qm(MaaM,f*¢)
depends on F, but not on 6.

5. The Thom isomorphism.

Let A < X < Y be topological spaces. Let +? be a vector-bundle over
X. We assume given a homeomorphism %:Evw” — Y with 2| X =1x onto
an open neighbourhood of X in Y.

Now for p=¢, —&_ a virtual bundle over Y we define a homomorphism

Dy, : 2,(X,4; - +¢) > 02, (Y, (Y-X)Ud; ¢)

as follows. Let
[M™f,Fle 2,(X,4;,-""+¢).

Let f : Ef*»—Ev be the mapping covering f, and let Df*» and Sf*» be
the disc- and sphere bundles with respect to some Riemannian metric
on f*».

Then we form the composition g=hof | Df*,

g:Df*y < Ef*y > Ev—> Y.
We make the obvious identification
Tppe = (T Df*) ,

where z: Ef*y— M is the bundle projection.
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We now observe that the stable isomorphism

F: vy @f 'v@f *6_ = e"DePDf *E
extends in a unique way to a stable isomorphism

G: Tng,,®g*§_ = £n+p@g*§+ .
So we define

Dy([M™.f,F]) = [Df*,9,G] € 2,,,(Y, (Y - X)U4; 9) .
We shall show
THEOREM 5.1. @, is an isomorphism.

Proor. We shall first show that @, is onto. Therefore let
z = [Wm2,9,G] € 2,,,(Y, (Y —X)U4; )
be given. Let U=g-! (im 4). We may assume that
“lo(g|U): U — Er
is transversal to X. Then
Mr = g Y(X) « Wntp

is a submanifold of codimension p, and there is a commutative diagram

w—A.Y
hII [;.
Ef*y - By,

where f is the bundle mapping covering f=g|M : M — X, and where &,
is a diffeomorphism onto a tubular neighbourhood of M. Now it is easy
to see that

z = [h(Df*v), g| Df *v,G| Df*v],

but then it is clear that
X = ®h([M af: IM]

where we identify 7, | M and 7,,@®f*» via db,.
A similar construction applied to a bordism shows that @, is also
injective.
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When Y = Ev? and A is the identity we write
D) = By, (X, A;— "+ 9)—— 2, (Bv,EpUA; 9) .

From the Thom isomorphism we can now produce Gysin sequences.
Let 4 <« X < Y and let 2: Evw?—Y be a homeomorphism as above.
Then for any virtual bundle ¢ over ¥ we get

THEOREM 5.2. There is a long exact sequence
> 2,((Y-X)UA,B; ¢) > 2,(Y,B; ¢) > 2, (X,4;—"+¢)
-2, ((Y-X)U4,B;p)— ....
for any subspace B < (Y —X)uA.

Proor. In the long exact sequence for the triple (Y, (Y —X)u4,B)
we substitute 2, _,(X,4; - +¢) for Q,(Y,(Y -X)u4d; ¢) via D,

In particular we get for Y =E»’ and 4=0:

CoROLLARY 5.3. Let v? be a vectorbundle over a space X. Then for any
virtual bundle ¢ over X there is an exact sequence

o> 2 (Ey; p) > 2,(X; @) o Qn_p(X;__,,o_{_(p)

w®)
— 2, By @)~ ...

We shall call e(v) the Euler mapping.

6. Geometric dimension.

Let y=(,7—(_P be a virtual bundle over a space X. We define a
k-reduction of y to be a pair (u*,G), where u* is a k-dimensional vector-
bundle over X, and

G: @ = DL,

is a stable bundle isomorphism.

We note that the geometric dimension gdim(y)=<Fk iff a k-reduction
exists.

Consider the bundle

Iso(e* (-, &*®L,) > X,
whose fibre at x € X consists of all linear isomorphisms
[ RED(C), = RFD(C,),-
The general linear group Gl, acts freely on the right by
()T = fo(Tx l(c__)z), TeGl,.



BORDISM AND GEOMETRIC DIMENSION 97

So we define

VE(y) = Iso(e*@®C_, &L, )Gl .

Then the induced mapping V¥(p)—X is a fibrebundle projection with the
fibre homotopy equivalent to a Stiefel manifold. There is an inclusion

Vi) — VE(yp+0t)
defined by
fGl, - (fx15)Gl, .
So we can define

Vry) = URoVEp+0) .

The induced projection
7T Vk(y)) - X

is again a fibre bundle projection with (k— 1)-connected fibre.
We define a k-dimensional vector bundle u* over V¥(y) by

E(u¥) = Iso(eF@L_, ¥ @) x g, R* .

The bundles so defined over V¥(y+ 0f) are compatible. Therefore they
induce a bundle, also denoted by u*, over V*(y). Over V*(y) there is a
canonical isomorphism

,uk®5- = 3k®€ +
given by

([fsv], w) b f(v,u) .

If : X — V¥(y) is a cross section we get by ‘“pull-back’ over s an isomor-
phism
S*uk@L_ = DL, .

This procedure establishes a one—one correspondence between homotopy
classes of cross sections in the bundle V¥*(y)—>X and equivalence classes
of pairs (o%,g), where o* is a k-dimensional vector bundle over X and

g:0*@®l_ = @,
is a homotopy class of isomorphisms. The equivalence is given by
(01%,91) ~ (02%,93)

iff there exists a bundle isomorphism 6:0, = 0, such that g, =g,0 (6 x 1, ).
Now in order to study whether k-reductions of y exist we consider

7 : Qu(PH(w); 9) > 2,(X 5 9)
where ¢ is a virtual bundle over X. We note that if ¢ admits k-reductions

Math. Scand. 32 — 7
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over all compact subsets of X then 7, is onto. We have x, embedded in
the long exact sequence

L 2, (PHy); 9) = QX5 ¢) > Qu(X, TH(y); 9)
> 2, o(VEw); 9) > -,
where we define 2,(X,V5(p); @) to be bordism classes of triples (M=, f, F),
where now f is a commutative diagram
oM " ry)
f: nl
N

n

4
M-r.x
and F is a stable bundle isomorphism as usual.
In section 7 we shall define a homomorphism
W2 0,(X, THy); 9) > L ys( X x P —ki0—p@A+9),

where 4 is the Hopf line bundle over the real projective space P* and
YRA={,®1—C_Q4. It will be shown then (theorem 7.4) that ¥ is an
isomorphism for » <2k +1 and an epimorphism for n =2k + 2. Therefore
by substitution via ¥ in the sequence above we get:

THEOREM 6.1. There is an exact sequence
Qe (PH@); 9) —~> Ly a(X; 9) L5 QX x P k10— y@1+0)
O, Qu(THW) 9) > - .-

The mappings y,(y) and w,(y) are defined by the construction of the
sequence. In fact y,(y) is a composition, which is defined for all values
of k2 0. This will be usefull in section 10.

7. A generalization of the Thom isomorphism.

Let p=¢,—&_ and p=¢,—¢_ be virtual bundles over X. We have
an inclusion V¥(y) — V*+l(y) given by

FGL b (I x f)Glyyy -
There is a canonical isomorphism

pE | VE(y) = e'op® .
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The section is defined by
Gl [1rxf, e,

e, € R¥+! being the first coordinate vector.
We shall for p,s = 0 define homomorphisms

W) 1 2, (VEpHi(y), Ve () ; @) —
Q,_pa(X x PPHi-1 X x PP-1; — 10— @A + )

where 1 is the Hopf line bundle, and in this case PP~ is included in PP+i-1
by the last p coordinates. ¥, is defined by the following construction.
Let (Mn,f, F) represent an element

z e ,( V"“’”(y}), V"“’(w); ®) .
We consider the vector bundle projection
E((+P+Df*L,)QA) > P(ePHDf*L_)
where P denotes the projective bundle and A the Hopf line bundle. Let
K : Ao i@l > ekArHigl,

be the canonical isomorphism over Vk+P+i(y). We can then define a non-
vanishing section s over P(f*{_) as follows. We choose a Riemannian
metric on f*¢_. Let [ be a line in P(f*{_), and let v €l be a vector of unit
length. Then we define

s() = K(0,v)®v .
Over Vk+P(yp), the bundle u*+r+i gplits as a direct sum
”k+p+’tl Vk+p(1p) —_ E'i@‘uk‘l'p .

We can therefore extend s over P(e!@f*(_)|0M using the same formula
as above.

We now extend the section s to all of P(eP+@f*{_) in such a way that
it is transversal to the zero-section. Let

N < P(er+@f*.)

be the preimage of the zero-section under s. Then N is a submanifold of
dimension n —k—1, and by the construction of s

(N,0N) < (P(eP+@f*(_)— P(f*.), P(eP+@f*C.)|0M — P(e'®f*( )| 0M)
The fibre derivative of s defines an isomorphism

S: TP(;M‘@ftc__)lN = TN@(8k+p+i@f *)®4. ‘
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Also there is a canonical isomorphism
Q : E'DTpprigpry = TuD(EPHDf* )R

coming from the isomorphism between (eP+@f*¢_)®41 and '@ the fibre
tangent bundle.
Combining @ and S we get an isomorphism

L : ty@ (P HDf ¥ )DA = 1y @(ePHDBf ) ®4

over N. Finally define the composition G = (Fx 1) o (L x 1., ):

TNDED(FHPHPS* ) RIDS*E = Ty D(PHDf*L_)QADS*E

X ED(PHDf*)QIDS*E .
Let
f: P(ep+i@f*L_) — P(eP+@(_)
be the bundle mapping covering the composition zof:
M - Vk+pti(y) > X .
Then (N»-*-1, f|N,Q) defines an element in the group
A =02, 4 (P(PHDL)—P(L), P(eP+®L ) — P(e'DL_);
01— k20 + 01— pRA+9) -
Now we observe that the inclusion
(X x Pr+i-1 X x Pp-1) =
(P(er+9), P(er)) — (P(eP+®C_) — P(L), P(eP+'®L_) — P(e'®L_))

is a homotopy equivalence. Therefore we have a canonical isomorphism

A = Q4 y(X x PpHi-1, X x PP1; 01— k04 0y o — @A+ )
= Q, ; (X xPp+i-1, X x PP-1; — [0 —pQR1A+¢) .
We then define ¥,(x) to be the element corresponding to [N,f|N,G]

under this isomorphism. It is easy to see that ¥, is well-defined. Also
the following lemma follows easily from the construction of ¥,.

Levma 7.1 Let 0 p=q=r. Then the following diagram of triple exact
sequences 18 commutative up to sign

4 }
Q,(VE+(y), VE+2(y); @) —5 2, 4 1(X x P21, X x PP-1; — k30— @A+ )
ik \:

Q,(VE+r(y), VE+2(y); @) —5 2, 1 (X x Pr-1, X x PP-1; — 20— @4+ )
{ I
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Qu(VE¥(), VEH(); 9) — Ry y(X x P, X x P-1; — kA"~ p@4+ 9)
N }

Qo (VEH(y), VE(y); ) —5 2, 4 o(X x Pa-1, X x PP=1; k20— p@A+¢)
{ {

Now we shall show

LeMMA 7.2, Assume that t=dim{_=dim{, 2k+2. Then
P Qu(VE ), Vily)s @) > 2 pa(X5 —p+9)

i8 an isomorphism for n <2k+1 and an epimorphism for n=_2k+2.

Proor. We can lift the inclusion V*(y)—> V¥+i(y) to a mapping

VE(p) — Eopk+t
defined by
fGl > [1rxf, €]

as above. We can extend this mapping over V*(y+ 0') as follows. Let

g : REB(C_) DR = R¥D(L,),BR
represent an element [g] € V¥(y + 0'). Let g’ be the composition

g9': ROR*D(L_), = R¥D((-). DR~ R¥D(L,),BR = ROR*¥D(L ), -
Then we can define the extension V¥(y+ 0')—Eu*+! by

gl [g's el -
Clearly this mapping is a homeomorphism.

It is easy to see that the inclusion V¥(yp) - V¥(p+0') is an (k+¢—1)-
equivalence. Therefore the induced mapping

Qu(VE(y), VE(y); @) > 2u(VE(y), Bou*+; )

is an isomorphism for n<k+t—1 and an epimorphism for n=~k+¢.
Now we observe that the composition

Q. (Ve (y), VE(y); @) > 2, (VEH(y), Bou*+1; @)
o1y Qn—k—l( VEtl(p); —u®+ ‘P)
= 0, 4 1(VE(yp); —p+yp—yp+9)
= Q, 1 (VEH(p); 0%+l —y + g)
= Q, 41(V¥(y); —y+9)

=2, (X5 —y+e)
agrees with ¥}, up to sign.
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Since the fibre of the bundle z:V*+(y)-X is k-connected m, is an
isomorphism for n—k—1<k or n<2k+1 and an epimorphism for
n=2k+ 2. Therefore ¥, is an isomorphism for

n < min(2k+1,k+t—1)
and an epimorphism for

n = min(2k+2, k+1).
We can now show

THEOREM 17.3. Assume that dim{_=dim{, =k+2. Then
¥y 2n(VE+i(y), VE(y); @) > Qpjpr(X x P15 — kA~ 9 @1+ )

18 an isomorphism for n <2k+1 and an epimorphism for n=2k+ 2.

Proor. The proof will be by induction on 4. For =1 the theorem is
identical with lemma 7.2. Assume then the theorem for 1=¢ = 1. We shall
consider the diagram from lemma 7.1 with p=0 and r=g¢+ 1.

Assume that

P, 1 Q,(VEretl(y), VE+(p); @) —
Q.4 (X x P4 X x Pa-1; — [0 —p@A+9)

is an isomorphism for n < 2k+1 and an epimorphism for n =2k + 2. Then
the induction step follows by “four lemma’ arguments. Therefore it is
now sufficient to prove the assumption.

We note that P21 = P?is a deformation retract of P?2—[e,]. Therefore
by the Thom isomorphism we have

(X x P, X x P21, — ' — QA+ ¢)
~ QX x PY, X x (Pi—[e,]); — kA0~ p@3 +¢)
22 (X —y+e).

Finally we observe that the diagram

Q (Ve (y), VEra(p); ¢) — 2> 2, (X x P, X x PO — A0 — @A+ )

~

| v

— O kg1 X —v+9)

commutes up to sign. Then the assumption follows from lemma 7.2.
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In view of lemma 7.2, which gives an approximation of the Thom
isomorphism, we consider theorem 7.3 as a generalization of the Thom
isomorphism theorem. We can therefore view the exact sequences

Qo a(VE®) ; @) > Lopa(VEH() 5 @) > (X x Pi-1; — kA0 —p Q@A+ @)
= Qo (VE(p); @) > ...,

obtained from the long exact sequence for the pair (V*+i(y), V*(yp)) by
substitution via ¥, as generalized Gysin sequences where sphere bundles
are replaced by Stiefel bundles.

If we take i large we can replace V*+i(y) by X in theorem 7.3. Further-
more, replacing y by p+ 0f for ¢ large, we get a homomorphism

¥ Q,(X,VEy); @) > 2, 4 a(X x PP —kA0—yR@A+¢),

and we get from theorem 7.3:

THEOREM 7.4. The homomorphism
¥ Q.(X, VHw); @) > Qp_jo(X x PP; —k2—p R4+ @)

18 an tsomorphism for n < 2k+ 1 and an epimorphism for n=2k+2.

8. Geometric dimension and manifolds.

Let X be a closed connected manifold of dimension » and let y be a
virtual bundle over X. We shall then show

TarEOREM 8.1. Assume n<2k—1 and n=5. Then gdim(p)<k

if and only if
e ([X]) = 0€ 2, (X x P®; — kA —p@2+ 7x°).

Proor. We have already noted that if gdim (y) <k then
Mg+ S0 V(y); 7x°) > 2,(X; 7£°)

in Theorem 6.1 is onto. Therefore y,(y) ([X]) = 0 by exactness.
Assume now that y,(p) ([X])=0. Then by Theorem 6.1

[X] = m4(%)
for some element
% € Q,(VE(y); Tx%).
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We now claim : » contains a representative of the form (X*, s, F) where

8: X — Vk(y)
is a section
Since the existence of s implies gdim (y) < k£ we only have to prove the
claim. Let (M, f,, F,) be a representative for ». Then since

apn = [My, mofy, Fo] = [X]

there is a bordism (W"+,g9,G) from (M, 7o fo, Fy) to (X,1x,tx). We can
choose a continuous function

h: W —[0,1]
with
h10) = My, Y1) = X .
Then
gxh:(W; My, X) > (XxI; Xx0,Xx1)

defines a mapping af degree 1. We can now by Wall [4, Theorem 3.3] do
surgery on g x h outside X < W and thereby obtain a simple homotopy
equivalence. By the s-cobordism theorem the resulting triple is diffe-

omorphic to
(XxI; Xx0,Xx1).

Therefore we see that the effect of the surgery on M, is to change it into X.
Furthermore we note that only surgery in or below the middle dimension
is used. Therefore there exists a sequence of triples

My f Fy), ©=0,1,2,...,q
with
fo=mofy, and M,=X
such that (M., i1, Fy41) is obtained from (M, f;, F;) by surgery on a

class
o, €m(fy), 28 = n+2.

We shall show by induction that f;: M,—~X lifts to V*(y).
A lifting f, of f, is already given. Assume then that we have a com-
mutative diagram
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Since the fibre of x is (k—1)-connected the induced map

7l fi) —~ ”t(fi)
is onto for ¢ < k. Therefore assuming
n4+2 < 2k+1 or n =< 2k-1

there is an element «;" € 7,(f;) mapping to «,. Since we can do surgery on
«; we can also do surgery on «;" and as the result get a triple

(M iz, frans Foa)  With  @o fr = fip .
From the induction we now have a lifting
Jo: X = My~ VHy)

of fq. On the other hand f, is homotopic to the identity. Therefore Jqis
homotopic to a section s and the claim follows.

9. Immersions in the metastable range.
Let M™ be a closed manifold, » 2 5, and let @»+* be any smooth mani-
fold, » £ 2k — 1. Furthermore let
f : Mr Qn+k

be a continuous mapping. We know by Hirsch [2, Theorem 5.7] that f is
homotopic to an immersion iff f can be covered by a bundle injection
Ty~ Tq. Clearly this is the case iff

gdim (f*7y —ek@1y) < k.
Therefore we get

THEOREM 9.1. With the notation above let

Y = f*1o—ek@1yy .
Then
fiMr @tk 5 <n < 21,

ts homotopic to an immersion iff

VW) ([(M"]) = 0€ 2y o(M x P®, —kA*—p@21+73°) .

10. The spectral sequence for a double covering.

Let 7u: XX be a double covering, and let 4 be the associated linebundle
over X, that is X =84. Let @ be a virtual bundle over X, and let ¢: XX
be the involution. Then the commutative diagram
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2 —
| |

[

defines by ‘“pull-backs” of ¢ an equivalence
atp = t*n¥p .,

Therefore we can define an involution 7' on Q,(X; ¢) (=9,(X; n*p))
by the composition

e

T:02,X; ) = 2.(X; trn*g) — > 2,(X; ).

The Gysin sequences for k=0
v . T . a0 e(4)
v (X ) —— 2,(X; -k +9) ——

Q, (X —(k+1)04¢) 2 0 (X;9) " ....

fit together into an exact triangle described by the following diagram.

.0 — .Qg -0 — ‘Q?l—l —
I I
- ‘én —>.Q3 -0 "ng——l —
4 |
o, S 2 00, >
¥
_ i ) }
R S Q. 2T -
\

A +1 0! 3
C 2 gy Qﬁ-kq > 1> Q>

Here we write 2, for 2,(X; ¢) and QF for Q,(X; —kA%+¢).
With a suitable indexing we then get a spectral sequence (E7, ;,d")
with
dr: Ern,k - Ern—l,k—r .
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‘We shall show

TeEOREM 10.1. Let XX be a double covering, and let ¢ be a virtual
bundle. Then there is a filtration

X, 9p=Fr>Fr1>5 . .>2F°>F,!=
and a spectral sequence (E7, ;,d") with

dr: Ern,k g Er'n—l,k—r
coverging to By .
Furthermore
Eoon,k = Fnk/Fnk—l
and
E2n,k = Hk(zz5 ‘Qn—k(X; ?)) -

Here Q,_(X; ) has the Z,-module structure defined by T.

Proor. We put
Fk = ker(e(A)k+! : Q,(X; ¢) > 2, 5 1(X; = (k+1)2°+¢)) .

Then the only thing left is to calculate Z2. To this end we must identify
d, which is given by the composition

a1

1 1
E n,k E n—1,k-1

2, 1 X5 @) =2 2, (X K20+ ) 2 0, (X 9)

By a straightforward check of definitions it follows that
dt = 14 (=1)T,

and then the statement follows.
We can now estimate the order of y,(v).

THEOREM 10.2. Let ¢ and y be virtual bundles over a space X. Let

xe,.(X;9)
be an element with

Vien(®) (@) = 0€ 2, 4 o XX P®; —(k+1)A°—9@1+9) .
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Then for 1<k
2y () (@) = 0€ 2, 4y o X X P — (k=)' —p@A+9) .

Proor. We first observe that

Yin(y) = eA)oy(y) .
Now let o;=y,(y) (x). Then

o; = e(A)(o,), 09€ R, (X xP®; —pQi+g).
We consider the spectral sequence above for the double covering
X x8% > X xP*

and the virtual bundle —yp®A+¢. From the definition of the filtration
we see that e(1)? induces an injection

e(A)P s FE_[F27E > Q, (X x P®; —ply—yp@2+9) .

From the assumption oy, =0 we get that gy e F&_,.

Since B?,_; ,=H,(Z,, 2,_,1(X; —yp+¢)) is a vector space over Z,
for p> 0 also

Fﬁ_,/Fﬁ:} =B 1,p
is a vector space over Z, for p> 0. Therefore
2igye FX=4  for i<k.
Then we get for i <k
2i+10,k_i _ e(l)k—i(giﬂoo) =0,
Together with Theorem 9.1 this theorem proves the following conjecture

of Gitler: In the metastable range the odd obstructions for immersions
all vanish.

11. Immersions of Grassmannian manifolds.

We denote the real Grassmannian manifold of n-planes in Rm+m by
G, - In this section let v denote the tangentbundle of @, ,,. Over &, ,,
we have the canonical bundles & and %™, whose fibres at p € @, ,, are p
and its orthogonal complement respectively. We have canonical iso-
morphisms
€n+m

Q™ .

§n@nm

T

e e

Let RN, denote the unoriented bordism ring. Let & denote the universal
bundle over BO,. The Thom construction defines an isomorphism
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2,(BOy; — (6¥)°) = a5, (MOy)

where 7S, denotes stable homotopy.
R. Brown showed in [1] that the canonical mapping for N >n

ns2n—a(n)(M0n—a('n)) - 7":‘SnHV(J'[ON) = §J’a:n

is an epimorphism, where «(n) is the number of 1’s in the dyadic expansion
of n. Therefore we conclude that the canonical mapping

BO,_,m—BOy, N>n
induces an epimorphism
Qn(BOn—a(n); - (En—a(n))o) g 'Qn(BON; - (EN)O) .

If we take N sufficiently large the mapping V*((£V)°) - BO,, classifying
¥ can be made into an arbitrarily high equivalence. So for N large the

mapping
7y 2 (PR ((EN)0); — (EV)) - Q,(BOy; — (£V)°)

is an epimorphism. Therefore

Vn-am ((EV)0) : 2,(BOy; — (§V)°) —
Q,-1(BOy x P®; —(n—x(n))A° — (EN)°@2A — (EN)°)

is 0. Let v:G,, ,,—~BOy classify the stable normal bundle of @, ,,. Then
»*(— (£V)°) is equivalent to 7° Therefore there is an induced mapping

Vi * Qnm(Gn,m;To) = ‘Qnm(BON; - (EN)O)

and a commutative diagram

2

nm

(G i 70) 22D, s (G X P5 — (mim — () )0+ 0@+ 70)

Ve (rx1)e
Qun(BOy; = (E%)0) — 2= Qa2 BO x P — (mm — x(nm))29— (£¥)0@1— (§V)0)
We shall use this diagram to show

THEOREM 1. Let n<m, a(nm)<n, n=m+1 (mod 2). Then there exists
an tmmersion

&)

2nm—a(nm,
n,m cR nm)

Proor. When n<m and n=m+ 1 (mod 2) a calculation of the normal
Stiefel-Whitney classes of @, ,,

W = W(f”@?]"’)‘l
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shows that
Vg ! Hi(Gn,m; Z,) - Hy(BOy; zz)

is an isomorphism for ¢ <n. We now appeal to

Lemma 2. Let f: X —Y be a mapping of CW-complexes with only a finite
number of cells in each dimension. Assume that

o 1 Hy(X; Zy) > H(Y; Z,)

18 an tsomorphism for i <mn and an epimorphism for i=n.
Then for any virtual bundle ¢ over Y

Ja 1 Q24X ) - (Y 9)

18 an 1somorphism modulo odd torsion for i <n and an epimorphism modulo
odd torsion for i=n.

The lemma implies that the kernel of (v x 1)* consists of odd torsion in
dimensions <7 —1. Therefore when «(nm)=<n we get from the diagram
that

ynm—»a(nm)( - To)[Gn,m]
has odd order.

On the other hand Theorem 10.2 tells us that the order is a power of 2.
So

ynm—u(nm)( - To)[Gn,m] =0.
From Theorem 9.1 we then get that an immersion

G c Ran —a(nm)

n,m

exist provided 5=<nm= 2(nm — oc(nm)) —1. This condition is satisfied
except for n=1 and m =2 or 4. But in these cases the result is well-known
from the Whitney immersion theorem.

Proor or LEMMA 2. We may assume that X and Y are finite cell-
complexes since otherwise we could restrict f to the (n+ 1)-skeletons to
get that situation. Now ¢ is equivalent to a virtual bundle of the form
— &0 for some vector bundle £V over Y. By the Thom construction we
then get isomorphisms

QX5 —f*80) > 7Sy, (Tf*EV)
and
QUY; -8 = aSy(TEV),

with 7' denoting the Thom complex.
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Since f, is an n-equivalence on homology with Z,-coefficients we get
from the Thom isomorphism that

(Tf)s : He(Tf*E5 Zy) > Hy(TE5 Z,y)

is an (& +mn)-equivalence. Then from the Whitehead theorem modulo
odd torsion we get that

(Tf)x : 7S (Tf*E) - a5 (T)
is an (N +n)-equivalence modulo odd torsion. But this is the same as
Jie 1 2y (X5 —f*E0) - Q,(Y; = §7)

being an n-equivalence modulo odd torsion as claimed.
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