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MARTIN’S AXIOM APPLIED
TO EXISTENTIALLY CLOSED GROUPS

ANGUS MACINTYRE

0. Introduction.

In [7], we proved that every countable existentially closed group has
an L, ,-elementary extension of cardinality X,. In particular, there are
generic groups of cardinality X;. (In this paper, generic structures will
be structures generic for finite forcing. We shall also consider filters
generic for a certain partially ordered set ¢ different from the customary
sets of finite conditions [1]. We do not think any confusion can arise.)
We raised the question of whether there are generic groups of all infinite
cardinalities. We are optimistic that this question has an affirmative
answer in ZFC, but so far a suitable combinatorial method has eluded us.

At the start of our work on this question we had the idea of bringing
Martin’s Axiom [10] into use, but we didn’t get far. Recently John
Derrick showed us some very interesting notes [17] on forcing by J.Stern,
and by using an idea from these notes we have proved the theorem below,
which is the main result of this paper.

THEOREM. Assume Martin’s Axiom. Let G be a countable existentially
closed group, and » an infinite cardinal <2%. Then @ has an L, ,-ele-
mentary extension H of cardinality x.

By [15], H is existentially closed. From [8, Lemma 3] and [10, Theorem
2] it follows that it is consistent with ZFC that there are generic groups of
cardinalities X,, X, X, , etc.

We are indebted to Derrick for putting Stern’s notes our way, and to
Stern for the many valuable ideas in the notes.

1. Preliminaries.

Since we sincerely hope that the present paper is not the last word on
the subject, we have suppressed routine details. We refer to [7] for all
required information about existentially closed groups and finite forcing
in group theory.
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1.1. Let L be the usual logic for group theory, with the extralogical
symbols -, -1, e. L, , is the standard infinitary extension of L. L is the
extension of L with the quantifier ¢ whose interpretation is ‘“there are
uncountably many’’. See [4].

1.2. For each infinite cardinal », MA, is the following statement:

If & is a partial ordering satisfying the countable chain condition, and ¥
is a set of dense open subsets of 2 of cardinality <, then there is an
#-generic filter on £.

For definitions and background, see [10].
Martin’s Axiom, is the statement that MA, holds for each x < 2%.

2. Existentially closed groups.

Recall that a group @ is existentially closed if for all groups H such
that G< H we have G <, H. See [7,15].

From [15] we know that the class of existentially closed groups is
axiomatizable by a sentence of L, ,. Further, generic groups are existen-
tially closed, and the class of generic groups is axiomatizable by a sentence
of L, . (see [8]).

The following lemma is implicit in [7], and will be useful here. We omit
the easy proof.

Levmma 1. Suppose G is an existentially closed group, and H is a group
containing G, such that the following condition is satisfied:

For each x,,...,x, in H there is a tin H and y,,. . .,y, in G such that
tlwt=y, for 1si<n.

Then G<, ,H.

(Note that in Lemma 1, H will be existentially closed, and will be
generic if G is generic.)

In [7] we proved that every countable existentially closed group G
has an L, ,-elementary extension H of cardinality X,. In fact, H can be
chosen to have an additional property which will be useful later.

DEerFiNITION. A group H has the large centralizer property if for each
finitely generated subgroup I' of H the centralizer of I" has the same
cardinality as H.
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It is very easily seen, by the methods of [7] or [13], that every countable
existentially closed group has the large centralizer property.

LemMmA 2. Every countable existentially closed group G has an L, ,-ele-
mentary extension H, of cardinality X,, such that H has the large cen-
tralizer property.

Proor. In [7] we constructed an L, ,-elementary chain of countable
groups
G=G,<c0,...<G,<Gy..., A< o,

such that G, x Z, <G, ,, for each i. H is the union of this chain. At each
stage u > A, the centralizer of each finitely generated subgroup of G gets
increased, because G, x Z,=@,,;. It follows that H has the large cen-
tralizer property.

ProBrLEM. The following may well be trivial, but we haven’t found the
answer.

Does every existentially closed group have the large centralizer pro-
perty ?

3. The forcing construction.

The construction used here is a modification of one used in [16]. See
also [6]. We develop only as much of the theory as is needed for our main
theorem.

3.1. We fix, for the remainder of this section, a countable existentially
closed group (. Fix also (as allowed by Lemma 2) an L, ,-elementary
extension H of G, such that H has cardinality X, and has the large
centralizer property. Finally, fix an infinite cardinal x.

Adjoin to L individual constants § for each g in G. This gives a logic L, .
Lg and L, , extend naturally to (L;)g and (L), .-

H has a natural enrichment to an L,-structure, by making the ele-
ments g of G correspond to the constants g. It is convenient to drop the
distinction between H and this enrichment.

Finally, adjoin to L, individual constants (‘forcing constants”) c,
(A<x) to get a logic L,. (L,)g and (L), , extend naturally to (L,), and

(L 2)00, *
3.2. Conditions. We define a condition to be a finite set

p(cio" . ‘ci,-:go" . gn)
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of basic sentences of L, such that 7;<i;... <¢; and

Hi: (Qvo) LA (Q”j)?("’o: e vj: go, LR gn)
Let € be the set of conditions. ¥ is partially ordered by inclusion.

Lremma 3. (%, <) has the countable chain condition.

Proor. Suppose not. Then an easy counting argument gives the
existence of a finite set p(vy,...v;, Jo,- - - J,) Of basic sentences of L,
and a map f: w; % (j+1) - w,, such that, for x <w,,

i) x b f(x, x) is an increasing map from j+1 into w,;

i) P(Cxu00r+ -+ > Criw,f)» Jos - - -» Tn) 18 & condition p,;
iii) the conditions p, are pairwise incompatible.

By a standard combinatorial lemma [3, Lemma 91], there is an un-
countable subset I of w,, and a finite subset S of w,, such that if « and
are distinct elements of I then

{flo, 2):xej+1}n{f(B,x):xecj+1} = 8.

Moreover, there must be an uncountable subset I, of I, and some kej+1
such that, for « € I,

S ={f(x,2): zek].
For if not, the map

o > the least element of {f(x, z): # €j+ 1} not in
S but bounded above by an element of S

would be defined and one to one on a cocountable subset of I, whereas
it is clear that the range of the map is bounded by the greatest element
of 8. This proves our claim about S and I,.

Now select o, 8 in I; with x & . We will show that p,Up; is a condition.
This will contradict the assumed incompatibility of p, and p,;, and
prove the lemma.

Pu = P(Cf(a,o): ce s Cita s v e Cfay i) Joo - - gn)
and

Do = P(Csto, 005 - - =5 Cpig, 1 + -+ Cig, > Jos - -« Tn)

so that p, and p; share their first k forcing constants, and no others.
Since 7, is a condition, we have

(1) HE (Quo) - - - (Qug) . .- (@Q0))p(0, - - - V) Fos - - - ) -

Math. Scand. 32 — 4
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The proof that p,Up; is a condition breaks into various subcases according
to the ordering relations between the f(«,k),...,f(«,j) and f(x,k),.. .,
f(B,5). The argument is essentially the same in all cases. We consider
just the simplest case, namely when f(x,7) <f(B,%). From (1) we easily get

HE (Qvy) ... (Qug) ... (Q”j)(Q”jn) e (Q”j+1+j—lc)
[P(Wgs e Vpy o eV, o5 - - - Tp) A
A Py Byars - Opsrsgote Gor - - - G)] »

whence p,Up; is a condition.
This proves the lemma.

3.3. Forcing. We now define the forcing relation, p H @, between
conditions p and sentences @ of L,. The definition follows the format
of [1]. Once we have defined the notion for atomic @, the rest is automatic,
following the inductive clauses of [1].

For conditions p, and atomic @, we define p H @ to mean simply that
D e p.

Note that this requirement is precisely the same as for the finite forcing
of [1]. Where the present notion of forcing differs from that of [1] is
that our set € of conditions is a proper subset of the set of conditions in
[1], so that we get a different notion of forcing for more complex sentences
involving —.

Lemma 4. Suppose x,8<x, and «+f. Let p be a condition. Then not
phc,=c4.

Proor. Let p=p(c;y.. CiJo- - -n), Where ig<iy<...<i;. Suppose
p H ¢, =c;. Then the sentence c,=c, is a member of p. Since

H F (Q”o) L (Q"’j)?(vm e .. /Uj’ g07 e gn) ’
it follows (using the symmetry of =) that

H E (Quo)(@Qu1)(vg = v1)

which is clearly absurd.
3.5. Dense subsets.

LeMMA 5. For each sentence @, the set

F,={pec¥: ph- D or pt — @}
is dense in €.
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Proor. Trivial.

Now we come to the specifically group-theoretic aspect of the construc-
tion. First we introduce some notation. For each n < w, let

I, (v - - - Vpe1y Uy - - - Vapy)
be the formula

(avzn)[mi<nvzn—lviv2n =Vpyq] -
LeMMA 6. Let o be the ordered (n+m)-tuple

<cio7 v 'cin_l’ go’ e gm~1>’
where 14<1, < ...<t, , and each g;€ G. Let J, be the set
Pe?: o Ymin1€G)
[p H In+m(cio’ .. 'cin_l:go’ <o Im-1> '}709 . '7m+n—1)]} .
Then J, is dense in €.

ProoF. Let ¢ be a condition, and let
Cig» Cips- - +Cjp»  Where Jo<jy<... <jg,
be a list of the forcing constants that occur either in ¢ or in 0. We write
q= q(c]'o’ Ciyo+ - 'cfk)

even though some of the ¢; may not occur in ¢g. However, it is easily seen,
since ¢ is a condition, and H is uncountable, that

(1) HE (Quo)(@vy) - - . (Qui)q(vg, ¥4, - - - v)

Fix hy,...h; in H. Since @ is existentially closed, and G<, ,H, it
follows by [7, Lemma 1 and Theorem 1] that there are z,,...7;,,, in G,
and ¢ € H, such that

HEthet = 19 A ... At Wt =1, A
Atlget =T A oL AL 0 = T,
Moreover, given t,,. . . T;,.,, there are X, suitable choices for ¢. For, select
one such ¢. Let u belong to the centralizer of the group generated by
Tg,- « - Tpam - LThen fu is also a suitable choice. But there are X, choices for «,
since H has the large centralizer property.
We have proved:

(2) HE (Yo, . .. 0) W (Quiyn) [MNi<rVhsa 100800 = T A

~175 —
A Mjem1Vi1 V%1 = Traa4il >
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where W- indicates that the disjunction is taken over all ordered
(k+m — 1)-tuples of elements of G.

From (1) and (2) we get
() HE (Quy) ... (Que) W= (q(vo, - - - vg) A
A (QUpa) WM<k Vi 00 = T3 A
A MjcmaVi1 G0 = Trraag]) -
From (3) and [4, Page 69, Axiom w] we get
(4) HE W-> (Quo) - - - (Qui)(Qurs1)[q(o, - - - V) A Mg ¥pa 00y = Ty A
A M1V TV = Trraeg] -

From (4) it follows that there exist 7,. . . 75, (in &), which we now fix,
such that

(6) HF (Qvo) - . (Qur)(Qurs1)[q(¥ps - - - i) A Mygp Vi 0051y = T A
A MNjgm1Y%+1 7 Tk = Tirras]
Fix 4>3;, and let p be
quiclee, = 70 1 < kYU {c;1gic, = Tpaqeat © < M.
By (5), pe¥. Clearly ¢ < p. Clearly also
P H- Ik+m(c]'o’ cee cjk’ go, “en gm—l’ 'EO, . "Ek’ fk+13 . 'ik+m) .

From this, by discarding some of the 7’s, we get elements y,,.. .y, -1
of G such that

p H I'n+m(cio9 e ci,,,_l’ go, e gm—l’ 770’ e 7m+n—1) .

This proves that p € J,. We have proved that J, is dense.
3.6. The Main Theorem. We can now prove

THEOREM 1. Assume MA,,. Let G be a countable existentially closed group.
Then G has an L, ,-elementary extension H of cardinality x.

Proor. Let # be
{Fy: @ an L, sentence}
U {J,: oanordered (n+m)-tuple {c;;,...¢; ;o -+ Tm-1)
for some n,m < w, where ¢y < 4; < ... < 4, and each g, G} .

# has cardinality <x, and by Lemmas 5 and 6 is a set of dense subsets.
Now % has cardinality », and satisfies the countable chain condition by
Lemma 3. Therefore, by MA,, there is an .#-generic filter 4. We will
construct a model from 4 in the obvious way.
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Let E be the set of L, terms. We may construct - and ~! as operations
on K. We define = on F by:

t, =t <= (Aped)(pht,=t,).

It is easily verified that = is an equivalence relation on %, and is in fact
a congruence with respect to - and -1. Let H be the quotient structure
of (E,-,-1) with respect to = . For t € E, let { be the equivalence class of ¢
with respect to =.

We claim:

(1) H is a group;

(2) The map g I § is a monomorphism of G into H;

(3) H has cardinality x;

(4) Foreachwx,y,...r,_;in H therearey,,...y,_,in G, andte H, suchthat

tlxt =9, fori<mn.

(1) and (2) are trivial.

(3) will be proved if we can show that ¢,+¢, if a4 f. So, suppose
«+f, and let @ be c,=c;. Then 4 meets F,, since 4 is #-generic. But,
by Lemma 4, no condition forces c¢,=c;. Hence ¢,+¢,.

To prove (4), suppose ,,...x,, € H. Clearly there are c,,...c; _,,
with 74< ... <i;_,, and elements g,,...4,.; in @, such that z,,...x,
are in the group generated by

Cio,. . .cik_l, go,. . ‘gl"l°

Let o be <c;y;. - €45 Jos- - -J1—1)- Then A meets J, since 4 is S-generic.
Select p e AnJ,. Then there are z,,...7;,_; in G, and a term § of L,
such that
pH 07l 0 =Ty A ... A Ol 0= Tpy A
AO1gd =T A ... AGIG 410 = Ty,
Thus

H i: (Mr<ks_161ﬁ,5 = %r) A (Msdg_l&sg = %k+s) .

It follows easily that there are vy,,...y,_; in G such that 5‘19%6 = Vi
for ¢ <n. This proves (4).

(1), (2) and (4), along with Lemma 1, prove that G <, ,H. With (3),
this proves the theorem.

CoroLLARY 1. Assume Martin’s Axiom. Let G be a countable existentially
closed group, and » an infinite cardinal <2%. Then G has an L, ,-ele-
mentary extension H of cardinality x.
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Proor. Immediate.

COROLLARY 2. It is consistent with ZFC that there are generic groups of
cardinalities Ry, X, R, .

Proor. If ¢ is generic, H is generic, by [8]. Now apply [10, Theorem 2].

REMARK. By choosing a slightly more complex .#, one can arrange for
H to have the large centralizer property.

4. Concluding Remarks.

4.1. We shall sketch an idea which may enable some combinatorial
group theorist to settle the main problem described in the first paragraph
of this paper.

The fact that the class of generic groups is axiomatizable by a sentence
of L,  , enables one to bring the method of indiscernibles to bear on the
problem. The main idea can be found in [5, Theorem 21], but we add some
group-theoretic ingredients.

Suppose H is a generic group of cardinality 1, . By [5, Page 97,
Lemma E] the L, ,-theory of H has models of all cardinalities realizing
only countably many types. It follows easily from [7, Theorem 1] that
there is a countable generic group G such that ¢ <, ,H.

For 1 =n < w we define n-ary functions ¢,(x,,. . .x,_;) so that

H }: (V”m e vn-—l)w@o,...yn—1>eG"Mi<ntn—l(v0" . 'vn—l)vitn(v()" . ‘vn—l) =9;.

This is possible, by [7, Theorem 1] and [7, Lemma 1].

We adjoin to L, (that is L with constants for ) n-ary function symbols
7,. This gives a logic L,".

Let B, be the (L), , sentence

w1, @

(Vo, .. 'v”"l)w<go,...9n—1)50" Mi<ntn_1(v0» e V)Vl (Vs + - Vpq) = G
Let T be the (L;%),,, theory whose axioms are the axioms of group-
theory, the diagram of @, and the sentences B,,, for 1 Sn <w. T is finitely
axiomatizable, and HF 7. Thus 7' has a model of cardinality 3, ,
8o by [5, Theorem 21] 7' has a countable model with an infinite set of

indiscernibles. That is, there is a countable L,*-structure M and a se-
quence {z,: n € w) of elements of M such that if

fg < 8 < ...<tpy and Jo <Jy <...<Jpa

are increasing sequences of integers, then



MARTIN’S AXIOM APPLIED TO EXISTENTIALLY CLOSED GROUPS 55

ME Dy, ... x, ) o Dy, .. .2y )

for all formulas @ of L,*. In particular this is true for all basic formulas ®.

Conversely, suppose there is such an M, with a sequence (x,: n € ®)
of elements indiscernible with respect to all basic @. Then by an easy
variant of the Stretching Theorem [5, Page 71], T has models of all infinite
cardinalities. Let I" be a model of 7', and H the reduct to L of I'. Clearly
H is a group containing @, and, since I'kF B, for each n, Lemma 1
implies that G <, ,H, so H is generic.

We have proved:

A necessary and sufficient condition for the existence of generic groups
of all cardinalities is the existence of a countable generic group G with a
countable extension M endowed with functions ¢, so that the sentences B,
are satisfied and such that the natural enrichment of M to an L,*-struc-
ture has an infinite set of indiscernibles with respect to basic formulas
of L.

The problem for the group-theorist is to construct such indiscernibles.

4.2. Nothing general appears to be know about uncountable generic
structures, except Shelah’s theorem [14] which shows that the Hanf
number situation [8] is essentially the same as for omitting types in first-
order logic. This result, together with [12, Theorem 2.2. (2)], enables one
to give examples of countable theories with generic structures of cardinal-
ity X, but none of cardinality X,. So in this work we did need something
peculiar to group theory, and it is not quite clear what this factor is.

4.3. Is has recently become clear that much of the work on existentially
closed groups extends to existentially closed division rings. See [2], [9],
[17]. Wheeler [17] proved the analogue of [7, Theorem 14] for division
rings, and in fact Lemma 2 is true for division rings of prescribed charac-
teristic. Lemma 1 holds also, and it follows readily that the results of this
paper hold for division rings.

4.4. The very interesting paper [11] suggests to us that it would be
profitable to try to prove in ZFC that if a countable existentially closed
group @ has an L, ,-elementary extension of cardinality (2¥)+ then it
has L, ,-elementary extension of all infinite cardinalities.
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