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FINITE GROUPS WITH SYLOW 2-INTERSECTIONS
OF RANK <=1

PETER LANDROCK

In this paper we are going to classify all finite groups satisfying:
(I) Every intersection of two distinct Sylow 2-subgroups is of rank =1.

This classification is, therefore, a generalization of a theorem by M. Suzuki
[15], who in 1964 classified all finite groups in which a Sylow 2-inter-
section is trivial.

Recently W. D. Mazurov [12] classified all finite simple groups satisfy-
ing:

(C) Every intersection of two distinet Sylow 2-subgroups is cyclic.

Independently, M. Herzog ([8] and [9]) classified all finite simple groups
satisfying:
(C*) Every central Sylow 2-intersection is cyclic.

M. Herzog and E. Shult ([8] and [10]) have just completed the classifi-
cation by determining all finite simple groups satisfying:

(I*) Every central Sylow 2-intersection is of rank =<1.

Here an involution is called central if it belongs to the center of some
Sylow 2-subgroup and an intersection of two distinct Sylow 2-subgroups
is called a central Sylow 2-intersection if it contains a central involution
or is trivial. It turned out that the simple groups satisfying (C) were
the same as those satisfying (I*). In particular, all groups with a quater-
nion Sylow 2-subgroup (by quaternion, we mean generalized or ordi-
nary quaternion) satisfy (I). These groups were already classified partly
by Brauer-Suzuki [2] in 1959 and completely in 1965 as a consequence
of [6], by using a result of Schur ([13] and [14]).
We are going to prove:

THEOREM. Let G be a finite group satisfying (I). Then G is of one of the
Sfollowing forms:
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1. G is solvable. G|O(@) is either 2-closed or equals GL(2,3) or T,, the
representation groups of Sy.

II. A Sylow 2-subgroup is quaternion. G contains a normal subgroup
G, 2 O(@) such that G|G, is odd, and either G,/O(G)~SL(2,q), ¢ odd, ¢>3
or G|O(Q) is the perfect extension of a group of order 2 by A,, or an exten-
ston of one of these groups by a group of order 2.

III. G contains normal subgroups Gy and G, such that

G20,20,21
where G|Q, is odd, and

a) Gy=0,(Q) x O(@) and G4/G, is one of the following groups:
(i) PSL(2,q9), ¢g=2">2,
(ii) Sz(g), g=2"28, n odd,
(iii) PSU(3,q), ¢=27>2.

Moreover if O,(@) is cyclic and G, =0'(R), the minimal normal subgroup of
odd index, then Gy=Z(G,),

b) G,=0(Q) and G,/Q, is one of the following
(iv) PSL(2,9), ¢=3 or 5 (mod8) ¢>5,
(v) J(11), the Janko group.

In all 5 cases RARO(G), B € Syl,(G).
IV. G contains a normal subgroup G, = O(Q), such that
G,/0(G@) ~ SL(2,5) YSL(2,5) ,

the central product with common center (notation of Huppert [11]), and G/G,
18 odd or the direct product of a group of odd order and a group of order 2
permuting the two coptes of SL(2,5).

In [8], [9] and [10] it is proved that if G satisfying (I*) is simple, then
@G is of type (i)—(v), and as mentioned above, the same groups appear
in [12]. Groups of type (i)—(iii) are called simple (TI)-groups.

The proof will consist of three sections. Section 1 contains general
results some of which may be found in papers dealing with related
problems. In Section 2 all finite groups satisfying condition (C) are
classified, and Section 3 deals with finite groups satisfying condition (I),
but with at least one Sylow 2-intersection quaternion, thereby complet-
ing the classification.

The problem was proposed by Professor Marcel Herzog to whom the
author is very grateful for pointing out weak proofs and for encouraging
with useful suggestions.
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Shortly before finishing this paper the author learnt that Professor
M. Aschbacher has classified the same groups using quite a different
method. The classification in the present paper is a little stronger and
proofs are independent. The author wants to thank Professor M. Asch-
bacher for receiving a copy of his manuseript [1].

1. Prerequisites.

NotraTioN. Let G be a finite group, @=G/0(G). Let R e Syl,(G) and
S(G) denote the maximal normal solvable subgroup of @. Concerning
other symbols, see [5].

DEFINITION. An involution is called concealed if it is contained in a
unique Sylow 2-subgroup.

The following theorem is a corollary of Shult’s theorem on fusion,
proved in [7]:

THEOREM 1.1. Let G be a finite group and suppose that G contains a
central concealed involution z. Let N ={2%). Then
N[Z(N) ¥ Nyx...xN,xM

where M has an elementary abelian Sylow 2-subgroup and a normal 2-com-
plement and each N, s a simple (TT)-group.

Lemma 1.2. Let @ satisfy (I), H=@G. Then
(i) H satisfies (I).
(ii) If HAG and |G[H|,=|Gly, then G[H satisfies (I).

Proor. See Lemma 1 of [8]. In the following we will use this lemma
without mentioning it explicitly. In Section 2 we will see how it may
be strengthened if G satisfies (C).

LemMma 1.3. Let @ satisfy (I) and R, € Syly(G). Let z€ Z(R,) be an
involution and 29 € R, for some R, € Syl,(G) and g € G. Then 29 € Z(R,).

Proor. See Lemma 3 of [8].

Lremma 1.4. Let S satisfy (1), T € Syly(S). Suppose S=0(S)T and
|2:(Z(T))| > 2. Then either T is normal in S or 2-rank(S)=2.

Proor. See Lemma 5 of [8].

Math. Scand. 32 — 3



34 PETER LANDROCK

Lemma 1.5. Suppose H satisfies (1), Z(H|S(H))=1 and H>S(H)=
VO(H), where 1<V =T € Syly(H). Then |2,(Z(T))|=2 or T is normal in
TO(H).

Proor. By the Frattini argument, H = N(V)S(H). Since H is non-
solvable, Ny (V) is not 2-closed. Hence by assumption rank(V)=1. If T
is not normal in TO(H) then by Lemma 1.4 either |2,(Z(T))|=2 or
rank (7') =2 and |2,(Z(T'))| =4, as every involution belongs to the center.
Consider the last case and let j be the involution of V and e T\ V
another involution in the center. Then ¢S(H) is an involution in
TO(H)/S(H) which is a member of Syl,(H/S(H)). Let h~%hS(H) be a
conjugate that also belongs to T'O(H)[S(H), h € H. Then h~1ih=tvs for
someteT,ve V and s € O(H). But (tvs)2=1=(tv)%s’s for some s’ € O(H).
Hence (tv)2=(s's)1e TnO(H)=1 and tv € T\ V is an involution. Since
¢ and ¢j are the only involutions in 7'\ V, we have h-%hS(H)=14S(H)
and #S(H) is isolated. By Glauberman [4], 4S(H) € Z(H[S(H)) in contra-
diction to the assumption.

The next two theorems deal with extensions of certain groups that
satisfy (I) and are just weak generalizations of results proved in [9] and
[10].

THEOREM 1.6. Suppose G satisfying (I) contains a unique minimal
normal subgroup H which is simple. Then G[H s odd and G satisfies (C).

Proor. By [8], [9] and [10] H is of type (i)—(v). The proof of Lemma
4 in [9] may then be applied.

THEOREM 1.7. Suppose G satisfying (1) is of 2-rank > 1 and contains
a normal subgroup Gy=VO(G), V a cyclic 2-group and that G|Gy contains
a unique minimal normal subgroup H|G, which is a simple (TI)-group.
Then G[H 1is odd, and G satisfies (C).

Proor. By Theorem 1.6 we may assume V =+ 1. Suppose |G/H| is even.
In order to reach a contradiction, we may assume that |G:H|=2 by
Lemma 1.2. By Theorem 1.6, it will be enough to prove that G/G, satis-
fies (C). Let

R,/G, 1 Ry[G, = D|G,
and
Qi/G; = B;/Gyn H|G,,
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where R;/G, € Syl,(G/G,) i=1,2. If |D|GynH|G, =1, then |D[G,| <2
and D/@, is cyclic. If not, then since H/G, is a (TTI)-group,

@Q1/Gy = @,/Gy = D|Gyn H|G,

and hence a Sylow 2-subgroup of H is quaternion. Thus H/O(Q)=SL(2,5),
since H /@, is a simple (TI)-group. Now we may assume that 2-rank (G) > 1.
Hence G/H={zH), z an involution. We will be done by proving the
following (for L=G[0(G)):

LrmMma 1.8. Suppose L contains SL(2,5) as a mormal subgroup of
index 2. Then L does not satisfy condition (I) (or (C)).

Proor. Let R € Syly(L). From the known structure of L, rank (R) > 1.
Let R, € Syl,(SL(2,5)), say R, <R. Then R/R,=(xR,) for some involu-
tion z € R, and z acts on SL(2,5). If « acts trivial we are done, since
then « and z, the involution of SL(2,5), belong to every Sylow 2-inter-
section. Hence we may assume that = acts non-trivial on SL(2,5) and
L=8L*(2,5) then with the notation of [16]. Also by [16], |CL(x)|=
2(¢+1)=12, and R is semi-dihedral. But then R contains a characteristic
subgroup of index 2, which is cyclic. Hence N (R)= R, since no element
of odd order centralizes the cyclic subgroup by the fact that a Sylow 2-
subgroup of PSL(2,5) is self-centralizing. Thus there exists an element
that centralizes # and z but does not normalize R and again {(z,z) is
contained in a Sylow 2-intersection.

2. Finite groups satisfying (C)
TaEOREM A. If G satisfies (C), then G is of one of the following forms:

I. @ solvable. Then G|O(G) is 2-closed.
I1. A Sylow 2-subgroup is ordinary quaternion, and G contains a normal
subgroup G, = 8(G) such that GG, is odd and

G,/O(@) = SL(2,9), ¢q = 3 or 5 (mod8), ¢>3.

III. @ contains a normal subgroup G,=S(G) such that G|G, s odd,
RARO(Q), R € Syly(@), and

a) 8(Q)=04(Q) x O(G) and G,/S(G) is tsomorphic to
(i) PSL(2,q), g¢=2">2,
(i1) Sz(q), qg=2"28, n odd,
(iii) PSU(3,9), g¢g=2">2,
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b) 8(@)=0(Q) and G4/S(G) s isomorphic to
(iv) PSL(2,q), ¢=3 or 5 (mod8) ¢>5
(v) J(11), the Janko group.

To prove the above theorem, assume in this section that @ satisfies
(C). Let @=G/O(G@) and R € Syl,(G).

LeMma 2.1. If G is solvable, then G is 2-closed.

Proo¥. Since @ is solvable, C=Cq5(0,(G)) <0,(@)+1 (see [5, Theorem
6.3.2, p. 228]). If @ is not 2-closed, then O,(@) is cyclic by assumption.
But then G/C and hence also G/Oy(@) is a 2-group, a contradiction.
(See also Lemma 1.4.)

We will in the following assume that @ is non-solvable.

TarOREM 2.2. S(G)=VO(QR), V a cyclic 2-group and G contains a mor-
mal subgroup G, such that Q|G is of odd order. G,[S(Q) is simple of type
(A)~(v).

To prove this, we need the following two lemmas.

Lemma 2.3. If HZG then:
(i) H satisfies (C).
(ii) If HAG, G/H satisfies (C).

Proor. See also Lemma 3 of [12]. (i) is trivial.

(ii) Let S,/H,Sy/H € Syly(G/H) such that D/H=8,/HnS,/H is non-
cyclic and maximal. Clearly N/H =Ng g(D[H) is not 2-closed. Now let
T € Syly,(D). Then D=TH and D/Hx~T[HnT showing that 7 is non-
cyclic. 7<= N and by (i), Ny(T) is 2-closed. But N =DNn(T), and there-
fore N/H=DN y(T)/H which clearly is 2-closed, a contradiction.

Lemma 2.4. S(G)=VO(G), where V is a cyclic 2-group.

Proor. Let V € Syl,(S(®)). By the Frattini argument G'=N4(V)S(G).
Since G is non-solvable, Ny(V) is not 2-closed. So V is cyclic and by
Burnside, V has a normal complement in S(G). By maximality this has
to be O(@G).

Now to complete the proof of Theorem 2.2, define G,/S(G)AG/S(G)
to be the product of all minimal normal subgroups of G/S(@®).
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Lemma 2.5. G1/8(Q) is simple of type (i)—(v).

Proor. ¢,/S(Q) is the direct product of simple groups since a minimal
normal subgroup is characteristically simple. The Sylow 2-subgroups of
the simple groups are non-cyclic. Since G,/S(G) satisfies condition (C)
by Lemma 2.2, G,/S(Q) itself has to be simple. By [9] or [12], G,/S(G)
is of type (i) -(v).

Now it follows immediately by Theorem 1.6, that G/@G, is odd, and
Theorem 2.2 is proved.

Assume in the following that V <R € Syl,(G). Clearly VAR. Also we
let @ still be non-solvable and G=G/0(G)

LemMA 2.6. VO(Q)/O(Q) £ Z(G). In particular V < Z(R).

Proor. VO(@)/O(Q)AG. Let C=Cg(VO(G)[O(G)). If V1, then since
V is a cyclic 2-group, G/ﬁ is an abelian 2-group. By the known structure
of @ (Theorem 2.2), G=C then. As VAR and R centralizes ¥ modO(®),
V<Z(R).

THEOREM 2.7. If R is quaternion then R is ordinary quaternion, V ts
of order 2 and

I

3 or 5(mod8), ¢>3.

Proor. By Brauer—Suzuki [2], Z(@) is of order 2 and thus by Lemma
2.6, Z(G)=7V0(@)/O(@). By Theorem 2.2, G /S(G) is simple of type
(i)-(v). But since R/V is dihedral, the only possibility among these
groups is a group satisfying: R/V is elementary abelian of order 4 and
G,/8(@)=PSL(2,9), ¢=3 or 5 (mod8), ¢>3, and hence R is ordinary
quaternion. By Schur [13, p. 120], @,/0(Q)=SL(2,q).

So assume in the following that @ is non-solvable satisfying (C) and
that G has 2-rank > 1.

THEOREM 2.8. V 4s normal in G. Moreover, if G4/S(G) is of type (iv)
or (v), then V=1,

The proof will consist of a series of lemmas.

LemMMA 2.9. Suppose 1 <V £ R. Then either |2,(Z(R))| =2 or V =0,(G).
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ProoF. By Lemma 1.5, either EA RO(G) or R has only one involution
in the center. In the first case, we get that VAV O(@), since VAR.
Hence V =0,(®).

Lemma 2.10. If V£1, then G{/S(Q) is not of type (iv) nor (v).

Proor. In both cases a non-trivial Sylow 2-intersection consists of
the group generated by one involution. Moreover, it is known that
every involution generates a Sylow 2-intersection, since they are con-
jugate. Let ¢ ¢ V be an involution of B. Hence ¢8(@) is an involution of
RO(G)/S(@) and we may assume

{8(6),i8(6)} = RO(G)/S(G) n g~1RgO(&)/S(G)

for some g € G. Now (i) V < R and (s)V = T for some 7' € Syl, (9-Rg 0(®)).
But T+ R since RO(GQ)+¢g- RgO(R). Therefore (¢)V is contained in a
proper Sylow 2-intersection.

So to complete the proof of Theorem 2.8 we only have to consider the
cases where (,/S(@) is a simple (TI)-group. By Lemma 2.9 we are done,
if B has more than one involution in the center or RARO(@). So as-
sume j€ V1 is the central involution of R, R not normal in RO(G)
and rank (R) > 1.

We need the following general fact on p-groups (Huppert [11, Satz
13.7, p. 353]).

LeMMA 2.11. Let P be a non-abelian p-group such that P|Z(P) is ele-
mentary abelian and Z(P) is cyclic. Then the following hold:

i) |P'|=p.

(ii) |P[Z(P)| is a square.

(iii) If |P|Z(P)|=p*m, then every maximal abelian normal subgroup A
of P is of order p™|Z(P)|.

Now define
R,[V = QZ(R[V)) = Z(R[V) = Q(R[V)

by the known structure of the Sylow 2-subgroup of a simple (TI)-group.
Consider R,0(G)/VO(Q)=R,|V. Let < ¢ V be an involution of R. Then
t€ R,. In a simple (TI)-group all involutions are conjugate. Also if
two involutions belong to the same Sylow 2-subgroup, they are con-
jugate in the normalizer of the Sylow 2-subgroup.
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LemMma 2.12. Z(R,)=V. In particular R, satisfies the conditions of
Lemma 2.11.

Proor. By the remarks above,
R,O0()[8(Q) = {8(@),i8(G),18(Q),. .., 8(@)}, |RJV|=4q,
where g; € Ng (R). So % € R, and therefore
RV = {V,iV,iBV,...,i%V}.

By assumption none of the igk 8 is central in E. From Lemma 2.6 we
know that V<Z(R,). If G,/S(G)=PSL(2,q), ¢g=2">2, then R,=R. Let
re R\V. Since r ez-‘”‘V for some k we see that r is not central, and
therefore Z(R,)< V. Consider

G/S(G) ~ Bz(g), g=2"28

or
G,/S(@) =~ PSU3,q), q=2"> 2.

Suppose ¢ € Z(R,;). Then by Lemma 1.3, R, is abelian, so |2,(Z(R))|> 2,
in fact |©2,(Z(R))| 28 from the known structure of G,/S(@). Hence by
applying Lemma 1.4 on R,0(G), we get that R,AR,0(G). Since
rank(R,)>1 and RO(G) satisfies condition (C), RARO(G)—a contra-
diction to the assumption—and the lemma follows.

Lemma 2.13. |R,[V| 4.

Proor. Suppose |R,/V|=g>4. By Lemma 2.11 (ii), |R/V| is a square,
say ¢=2%" Let A be a maximal abelian normal subgroup of R. By 2.11
(iii), |4|=2m|V|. Since

R|V = {V,iV,...,i%V},
AV = {V,iV,... %V}, r =g say.

If ¢ >4, then since 4 is abelian, |2,(Z(4))| >4 and again by Lemma 1.4
applied to 40(G) we get A 24 0(G), a contradiction since then R4 RO(@).

CorOLLARY 2.14. G4/S(@) is not isomorphic to
(i) PSL(2,9) gq=2">4,

(ii) Sz(q) g=2"28, n odd,

(iii) PSU(3,q9) g=2">4.

Now consider the case G,/S(@) ~ PSL(2,4) x PSL(2,5). Let H =G,/0(G)
We need the following result of Schur [13].
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LemmA 2.15. Let H be a finite group and U a subgroup satisfying
() 14U<ZH),
(i) H/U=PSL(2,p), p an odd prime,
(iii) U= H'.
Then |U|=2 and H>~SL(2,p).

By this lemma we are done if H is perfect, that is H'=H. So assume
H' < H, and define H™ = (H®-D)’, Hence H™' = H™ for some n. Therefore
either H®™ =PSL(2,5) or if Oy(H™) + 1, we have H®=SL(2,5) by Lemma
2.15 since then H®™ satisfies the conditions of Lemma 2.15 with U=
O,(H™), H™=8L(2,5) is impossible by Lemma 1.8. H™=PSL(2,5) is
impossible since then H =PSL(2,5) x Oy(H), which has an abelian Sylow
2-subgroup. So we have proved

LeMmMmA 2.16. G4/S(Q) is not isomorphic to PSL(2,4).
Lemma 2.17. G4/8(Q) is not isomorphic to PSU(3,4).

ProoF. |R,[V|={V,iV,i%V,i%V}. Since 1 is not central and R’ ={j),
we have r—1ir =4j for some r € R, where j is the involution of V. Hence
R contains exactly 2 conjugacy classes of involutions in &, namely

{j} and {i,ij,i%,49j,49,495} .

Consider the order of (g (¢). Each Sylow 2-subgroup contains 6 con-
jugates of ¢. Suppose ¢ is contained in r Sylow 2-subgroups. Then

G4/Cey(1)] = 6r71|Gy: Ng (R)| ,

that is |R/Cg(t)| £2, hence |R/Cg(i)| =2, since ¢ is non-central. Now 4%
does not centralize ¢ since R, is non-abelian as we saw. By the known
structure of a Sylow 2-subgroup of PSU(3,4), every involution is a
square. Hence y2V =147V for some y € R. It follows that yCg(s) is of
order 4 in R/Cy(i), a contradiction.

By this Theorem 2.8 is proved. As a matter of fact, we have proved

Lmwma 2.18. If R e Syly(G), then RARO(G).

REMARK. From Lemma 2.6 we know that VO(G)/O(G) £ Z(Q/O(G)).
Hence, since V is normal in @, also VZZ(@). If we define @, to be the
subgroup generated by all 2-elements of G, that is the minimal normal
subgroup of odd index, then it follows from Lemma 2.18 and the defini-
tion of G, that S(G;)=2%4(Q,).



FINITE GROUPS WITH SYLOW 2-INTERSECTIONS OF RANK <1 41

3. Finite groups satisfying (I) but not (C).
TrEOREM B. If @ satisfies condition (I) but not (C), then G is of one of
the following forms:

L. G is solvable. G|O(G) s either 2-closed or equals GL(2,3) or T,, the
representation groups of S,.

II. A Sylow 2-subgroup is generalized quaternion. Then either G|O(Q) is
the perfect extension of a group of order 2 by A, or G contains a normal sub-
group Gy, such that GG, is odd and G,/O(G)=8L(2,q), q odd (¢=£3 or
5 (mod8)), or an extension of one of these groups by a group of order 2.

III. G contains a normal subgroup G,2O0,(G)x O(G), where Oy (G) 1s
quaternion and G4/0,(@) x O(@) is one of the following groups:

(i) PSL(2,q), g=2">2,

(ii) Sz(q), qg=2"=8, n odd,

(iii) PSU(3,q9), g=2">2.

IV. G contains a normal subgroup G, =O(G) such that
G,/0(G) = SL(2,5) Y SL(2,5)

the central product with common center (notation of Huppert) and G[GQ, is
odd or the direct product of a group of odd order and a group of order 2
permuting the two copies of SL(2,5).

So assume in the following that @ satisfies (I) but not (C). Let G=
@|O(G), R e Syl,(G).

THEOREM 3.1. Let G be solvable. Then G|O(G) ts 2-closed or equals
GL(2,3) or T, (¢n the notation of Schur, see [14]).

Proor. Suppose G is not 2-closed. Since G is solvable O,(G)=1 and
cyclic or quaternion by assumption. Since the automorphism group of
a cyclic 2-group or a generalized quaternion group is a 2-group and since
C'=C3(04(@)) S 04(G) (by Theorem 6.3.2 in [5]), we may assume that
0,(@) is ordinary quaternion. The automorphism group of Qg is S,=
PGL(2,3). Hence @/5 =<PGL(2,3), and since it is not 2-closed, the only
possibility is G/C'=PGL(2,3). Hence G is a representation group of S,.
By Schur [14, p. 164], G equals GL(2,3) or T,, where T, is defined by

PB=1 t2=t2=1t2=7 i3 =jls;.

Its Sylow 2-subgroup is quaternion of order 16 and i,t,¢; is an element
of order 8. T, may also be considered as an extension of SL(2,3) by a
group of order 2.
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So assume in the following that G is non-solvable. Let G,=G,/0(G)
be the subgroup of @ generated by all 2-elements and G,=8(G,).

TaeorEM 3.2. If V e Syly(G,) ts quaternion, then GGy satisfies con-
dition (C) and G4/@G, i3 a simple (TI)-group.

Proor. V is quaternion, so rank(R)>1 since @ is non-solvable. By
the Frattini argument, G=N(V)G,. Let

RG,/Gy 1 R7G,]G, = D|G,

be a Sylow 2-intersection in G/Gy. We may assume V<R and g € Ny(V),
that is VSRnRI<S € Syly(D). Since G satisfies (I), S is therefore
quaternion, and |S: V| <2 since VAS. Hence G/@, satisfies condition (C).
So by Theorem A, G,/G, is a simple group of type (i)~(v). If ;e R\ V
is an involution, then i@, is contained in a unique Sylow 2-subgroup
(see Proof of Lemma 2.9). Therefore G,/G, is not of type (iv) nor (v).

LeMMA 3.3. Gy=V O(G), where V is a 2-group of rank =1.

Proor. V eSyly(G,). If V is cyclic we are done. If not then again
by using the Frattini argument ¥V is quaternion. By Theorem 3.1,
@,/0(Q) is 2-closed or equals T,. Let G,=G,/O(G). If 0,(G,) < G,, then
since

062(02((72)) = Oz(éz) s

0,(@,) is ordinary quaternion. If V=0,(G,), then G,=@,/0(G) contains
a normal subgroup C such that G,/C=PSL(2,3). So G, contains a nor-
mal subgroup of odd index containing O(@), contrary to the definition
of G;. If @,=T,, then consider @,/O,4(G,), which contains a copy of
T,/Qs as a normal subgroup, the factorgroup being @,/@,. Since T,/Qs~
PSL(2,2) is of order 6, it easily follows that H =@,/0,(@,) satisfies con-
dition (C) by use of Theorem 3.2. By Theorem A, S(H) is 2-closed, con-
trary to the fact that S(H)~PSL(2,2).

REMARK. G, does not have to be S(G). As an example consider
N xSL(2,3), N a simple (TI)-group.

THEOREM 3.4. If V is quaternion, then V =0,(G).

Proor. Let R, eSyl,(C) where C[0(@)=C=Cq(VO(@)[0(®)), say
V<R,. If j is the central involution of ¥, then {jO(@))/O(@)AC, and
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O satisfies Theorem 1.7 by Theorem 3.2. So C satisfies (C) and by
Theorem A, R,AR,0(G). If rank(R,)>1, then RARO(G) and we are
done since VAR. If rank(R,)=1, then C=8SL(2,5). But by definition
of C G/C is not odd and we are done by Lemma 1.8, since then G does
not satisfy (I).

So in the following, we may assume that V is cyclic.

Lemma 3.5. The product of all minimal normal subgroups of G/Gy of
even order is either the product of two simple groups or simple itself.

Proo¥. Define H|/G,=H to be the direct product of all minimal nor-
mal subgroups. Then H is the product of simple groups, say S X ... X% S
Suppose n> 1. Let S € Syl, (1),

I|G,=R,x ... xR, ,, R,eSylL(8,).

Then § is contained in a Sylow 2-intersection. It follows that n < 2.

The following theorem is the main step in this section. As mentioned
we may assume that V is cyclic, and VAR € Syl,(G).

THEOREM 3.6. Suppose H is simple. Then R is generalized quaternion.
The proof will consist of a series of lemmas.

LeMMA 3.7. R is quaternion, dihedral or semi-dihedral, and V =Z(R)=
{4y, where j 18 an involution.

Proor. If V=1 then, by Theorem 1.6, G satisfies (C) contrary to
the assumption on @. Let j be the involution of V. If R contains another
involution, z in the center, then 2G', would be central concealed in G/G,,
and by Theorem 1.1 and Theorem 1.7, G satisfies (C). So j is the only
involution of Z(R). If B contains an elementary abelian normal subgroup
A ={z,j) of order 4, 2G, again is central concealed. This proves the first
part of the lemma.

By assumption V is cyclic, hence VO(G)/O(G)<Z(H), where H=
H[O(G), since H[VO(@) is simple. But VAR,, thus V<Z(R,) and we
are done.

LemMma 3.8. Suppose rank(R)>1. Then R, is quaternion and R s
semi-dihedral.
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Proor. If R, is not quaternion, then H/O(G) contains two conjugacy
classes of involutions and since it is non-solvable, it contains by transfer
a normal subgroup of index 2, contrary to the known structure of R,
and H/O(Q). It follows immediately from the classification of Gorenstein—
Walter [6], that R is not dihedral, again because of the known structure
of G,/O(G).

Let ¢ € R\ R, be an involution. Then :0(®) acts on H/O(G)=S8L(2,q),
and the semi-direct product of H/O(G) and {(10(G))/O(G) is SL*(2.q)
with notation of [16].

To finish the proof of Theorem 3.6 we only have to show:

Lemma 3.9. SL*(2,q), ¢ >3 does not satisfy condition (I) nor condition
(©).

Proor. Let L=SL*(2,q), R € Syl,(L).
1. Let ¢=3 (mod4). Then |C[(¢)]=2(¢g—1) by [16], and

SL*(2,9) = GL(2,9)
of odd index. By [3], N(R)=R in GL(2,q). So C(¢) does not normalize

R implying that {s,5) is contained in a Sylow 2-intersection.
2. ¢=1 (mod4). Then |01 (3)]=2(q+ 1) (by [16]). Let

R, eSylL,(SL(2,q)), R,<R.

It is well-known that R, is its own normalizer in SL(2,q) unless ¢=3
or 5 (mod8). Moreover, in the last case, 3 is the only divisor of odd
order occuring in the order of the normalizer. Hence we have reached
a contradiction unless 2(g+ 1)=3-2". But then, since ¢=1 (mod4), n=2
and ¢=>5, a case considered in Lemma 1.8.

This completes the proof, since we have shown that G/O(@) contains
SL*(2,q) if rank (R) > 1, and a subgroup of G/O(G) satisfies (I) by Lemma
1.2. By Theorem A, R is generalized quaternion.

THEOREM 3.10. Suppose H|G, is not simple. Then
H|[O(@) = SL(2,5) Y SL(2,5) .
Moreover, Gy=04(G) x O(Q) and G/H is odd or the direct product of a group
of odd order and a group of order 2 permuting the two copies of SL(2,5).

Proor. We have seen that H/VO(G):S’IXS’Z, @i simple. Since a
Sylow 2-subgroup of §; is contained in a Sylow 2-intersection, it has
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to be quaternion. Again we know that ¥V ={3j), j an involution in the
center. Let B;<7T;, T; a maximal Sylow 2-intersection in H and R; €
Syl,(8,;). Then |T;/R; <2, so the only possibility for 8,/VO(Q) is
PSL(2,9), g=3 or 5 (mod8), and R;~Qs. If ¢> 5 then since 8, satisfies
(C) we may apply Theorem A and get that V=1, a contradiction. So
g=>5.

Suppose |G/H| is even. Clearly it is 2-closed, since @ satisfies (I). Let
tH be a 2-element of G/H. Then t0(GQ)[/O(G) acts on H|O(®). If it nor-
malizes the copies of SL(2,5), then H/O(GQ) contains a copy of SL*(2,5)
and again we have a contradiction by Lemma 1.7. Therefore, t0(G)/0(G)
permutes the copies. Since ¢ was arbitrary, tH has to be the only 2-ele-
ment of G/H. Now the structure of G/H follows from Burnsides Theorem.
The structure of Gy=VO(@) follows from Theorem A.

By this the classification is completed.

REFERENCES

1. M. Aschbacher, A class of generalized TI groups. To appear in Illinois J. Math.
2. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow subgroup is a
quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 1757-59.
3. R. W. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Alge-
bra 1 (1964), 139-151.
4. G. Glauberman, Global and local properties of finite groups. In Finite simple groups,
Ed. M. B. Powell and G. Higman, Academic Press, London - New York, 1971.
5. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
6. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow
2-subgroups I, I and III, J. Algebra 2 (1965), 85-151, 218-270 and 354—393.
7. M. Herzog, On 2-Sylow intersections, Israel J. Math. 11 (1972), 326-327.
8. M. Herzog, Central 2-Sylow intersections. To appear.
9. M. Herzog, Stmple groups with cyclic central 2-Sylow intersection. To appear in J. Algebra.
10. M. Herzog and E. Shult, Groups with central 2-Sylow intersections of rank at most one.
To appear.
11. B. Huppert, Endlichen Gruppen I (Grundlehren Math. Wiss. 134), Springer — Verlag,
Berlin - Heidelberg - New York, 1967.
12. V. D. Mazurov, Finite simple groups with cyclic 2-Sylow intersections, Algebra i Logika
10 (1971), 188-198. (In Russian.)
13. I. Schur, Untersuchungen dber die Darstellung der endlichen Qruppen durch gebrochenen
lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.
14. 1. Schur, Darstellung der symmetrischen und alternierenden Gruppen durch Kollinea-
tionen, J. Reine Angew. Math. 139 (1911), 1560-250.
15. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann.
of Math. 80 (1964), 58-77.
16. W. J. Wong, On finite groups with semi-dihedral Sylow 2-subgroups, J. Algebra 4 (1966),
52-63.

UNIVERSITY OF AARHUS, DENMARK



