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LATTICES AND MODELS OF FIELDS OF GENUS 0

J. BRZEZINSKI

0. Introduction.

Let A be a Dedekind ring of characteristic =2, F the field of fractions
of A4 and ¥ a finitely generated regular extension of F' of transcendence
degree 1 and of genus 0. We say that an S-scheme «: M — 8 where
S=Spec(4), is a model of E/F if x is proper and dominant, the ring
R(M) of rational functions on M is E and the homomorphism «*: R(S) —
R(M) induced by « is an inclusion of F(=R(S)) into E(=R(M)). We say
that a model M of E/F is relatively minimal if M is regular and for every
regular model M’ of E[F every S-morphism M — M’ is an isomorphism.

A. Bialynicki-Birula has proved ([1],[2]) that if 4 is a discrete valuation
ring and the residue field of A is perfect then for every regular extension
E[F of genus 0 there is a quadratic form ¢(X,,X;,X,) in A[X,, X;,X,]
such that the S-scheme Proj(A[X (, X;,X,]/(g)) is a relatively minimal
model of E/[F. As a global equivalent of this theorem we shall prove that
if 4 is a Dedekind ring with perfect residue fields then for every regular
extension E/F of genus 0 there is a regular quadratic space (V,Q) over F
and a lattice L on V (over A4) such that L defines a relatitively minimal
model of E/F (Theorem 2). Locally the model which corresponds to L
is described by a quadratic form as above. Moreover we shall prove that
the elements of the set of the isomorphism classes of relatively minimal
models of E/F are in one to correspondence with the classes of lattices
contained in the proper genus of L (Theorem 3). Thus the paper presents
global equivalents of some local results contained in [1], [2], [3]. These
local results play a very essential role here. On the other hand the paper
clarify and generalize somewhat unnatural results of [5] and [6].

1. Schemes associated with lattices.

Let 4 be a Dedekind ring of characteristic + 2, F the field of fractions
of 4, (V,Q) a regular quadratic space over F (see[9, § 42 B]) and L a
lattice on ¥V (see[9, § 81 A]). We shall denote by A4 the structure sheaf
on Spec(4) and by M or M~ the A-Module defined by an A-module M.
If V is a linear space over F (in particular V =F) and M is an A-module
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contained in V, then we shall assume that all localizations of M with
respect to all prime ideals in 4 are contained in V. Hence, if U is an open
subset in Spec(4), then the sheaves A, L, & (a an arbitrary fractional
ideal in F) can be defined as follows:

‘ZI(U) = nerAa:’ -E(U) = nerLw’ al) = nmeUaa:

with evident restrictions for U’'< U, U’ open in Spec(A4).

For every xeSpec(4) we can choose an open neighbourhood U such
that L(U) and (8L)"(U) are free A(U)-modules, where 3L denotes the
scale of L (see [9, § 82 K]).

Let (3L)"(U) = (syy) and let ¢ be a quadratic form which corresponds
to the quadratic mapping (1/s;;)@ in some base of L(U) over A(U) (see
[9, § 41 C]). The form ¢, belongs to a polynomial ring

AU)[Xy Xy, ..., X, ] = AU)X] (n=dimV-1)

and the ideal (g;) does not depend on a choice of s;;. Let

(1) My(L) = Proj(4(U)[X]/(qv))
and let ogy:My(L)— Spec(A(U)) be defined by a natural injection
AU) - A X)/(q)-

The open sets U form a covering of Spec(4) and for every two sets
U,, U, there is an A(U,nU,)-isomorphism Pv,v, of A(U,n U,)[X]/(qu,)
onto A(U;n U,)[X]/(qy,) induced by an equivalence of forms gy, and
qy, over A(U,nU,). Since gy =id and Pr,U,°PU,U, = Pu U, WE Can
patch together all maps

oy : My(L) — Spec(4A(U))
(see [7, § 3]). The Spec(4)-scheme obtained in this way we shall denote by
or, 2 M(L) - Spec(4)

Remark. M(aL)=M(L) for an arbitrary fractional ideal q in F and
M(L*)=M(L) (see [9, § 82J]) for an arbitrary element aeF*. Since
8(aL)=a23L (see [9, § 82 F]) and 8L*=o3L (see [9, § 82 J]) we can always
choose L' such that M(L')=M(L) and 8L’ is a given fractional ideal with
the image in Cl(4)/Cl(4)? equal to the image of 3L (Cl(4) denotes the
ideal class group of 4).

DeriniTiON. If L,L' are lattices on quadratic spaces (V,Q), (V',Q")
respectively, then a linear mapping f: ¥V — V' is a similarity of L onto L’
if f| L maps L onto L' and Q'(f(v)) =a,Q(v) where a,c A*. Two similarities
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f.f’ of L onto L' are equivalent if there is ac A* such that f’=af. The set
of equivalence classes of this relation we shall denote by Bir (L, L’) (“Bir”
means birational or biregular; see Proposition 1 and Theorem 1). If
V'=V,Q =@Q and L'=L then we shall write Bir(L). Bir(L) is a group.

We shall apply this definition also in the special case A=F, L=V,
L'=Vv.

From now on we shall consider only the quadratic spaces of dimension 3
(except Propositions 2 and 3).

ProrositioN 1. If L, L' are lattices on regular quadratic spaces (V,Q),
(V',Q’) respectively, then there is a one to one correspondence between the
birational S-maps of M(L) into M(L') and the elements of Bir(V,V’). If
V'=V,Q =Q and L' =L then this correspondence is an isomorphism of
growps.

Proor. There is a one to one correspondence between the birational
S-maps of M(L)into M(L') and the F-isomorphisms of the ring of rational
functions R(M(L')) onto the ring R(M(L)). This is an isomorphisms of
groups if M(L')=M(L).

If ¢,q’ are quadratic forms corresponding to (V,Q), (V',Q’) respectively,
then

R(M(L)) = (F[Xo, X3, X,)/(0))o°

(the field of fractions of degree 0 in the field of fractions of F[X,, X;, X,]/
(9)) and analogously for R(M(L')). If f:V — V' is a similarity then f
induces a linear automorphism ¢ of F[X,, X,;,X,] such that ¢(q')=a.q,
hence an isomorphism of R(M(L')) onto R(M(L)). It is easy to see that
two similarities give the same isomorphism of fields if and only if they are
equivalent. Hence we have an injection of Bir(V,V’) in the set of F-
isomorphisms of R(M(L’)) onto R(M(L)). This is also a surjection since
every F-isomorphism of (F[X,,X;,X,]/(q')),® onto (F[ X, X,,X,]1/(q))o°
is induced by a linear automorphism ¢ of F[X,, X, X,] such that ¢(g’) =agq.

THEOREM 1. Let L,L' be lattices on a regular quadratic space (V,Q),
such that the S-schemes M(L), M(L') are regular. Then

(a) if M(L), M(L') are S-isomorphic then the scales 3L, 8L' define the
same element in C1(A)/C1(4)3,

(b) if BL=3L' then there is a one to one correspondence between the S-iso-
morphisms of M(L) onto M(L') and the elements of Bir(L,L’). If L' = L then
this correspondence 1s an tsomorphism of groups.
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REMARK. The assumption that M(L), M(L’) are regular puts some re-
strictions on L, L’. These restrictions can be obtained e.g. from Theorem 2
in [3].

Proor. We shall prove (a) and (b) at the same time.

Let f:L - L’ be a similarity. Then of course the scales of L and L’
are equal. The open sets U such that L(U), L'(U) and (8L)™(U) = (8L')"(U)
are free over A(U) form a covering of Spec(4) and for every such set
there is an A(U)-isomorphism M, (f) of M (L) onto M, (L’) induced by
an equivalence of asq;; and ¢'y; over A(U). Since

My, (NHUnU, = My (H)|Un U,
we can patch together all M, (f) and we get an S-isomorphism
M(f): M(L) - M(L").

If f,f' are equivalent then of course M(f)=2M(f’), hence we have an
injection of Bir(L,L’') into the set of S-isomorphisms of M(L) onto
M(L’). We shall show (a) and that this mapping is surjective.

Let @: M(L) -~ M(L') be an S-isomorphism. Let f:V — V satisfying

Q(f(v))=a,Q(v) be a similarity such that @ as a birational map is defined
by f (f exists by Proposition 1).

Let x € Spec(A4), (8L),=(s,), (8L'),=(s',) and a,=(a,) where

a=ay(f)={aeF: (afIL):L -~ L"}.

This is a fractional ideal of F.
We shall prove that

(2) det(a,f) € A,* and as.a.2s, € A,*
This proves (a) and the remaining part of (b). In fact, (2) is equivalent to:
a’(detf) = A and (a7)8La® = 8L".

Hence 3L and 3L’ define the same element in C1(4)/C1(4)? and if 8L =3L’
then a%(a;)=A which gives a=a,/detf. Now if a=(a,/detf) then

af:L - L', det(af) e A*; Q(af(v)) = a%a,Q(v), a’a e A*.
This proves that af is a similarity of L onto L'.
The statement (2) is in fact contained in the proof of Theorem 4 in [3]

but for the completeness we shall give an account of the proof.
Since @ is an S-isomorphism we have an 4 -isomorphism

¢x:M(L) X Speo(A)SPec (45) ~ M(L’)x Spec(A)SPec (Az)
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that is
@, Proj(A,[X,, Xy, X,]/(9,)) - Proj(A4[Xo, X;, X5]/(9'2))

where ¢,,q’, are quadratic forms corresponding to quadratic mappings
(1/s,)Q and (1/s',)Q respectively. Let ¢, be a linear homomorphism of
A,[Xy,X,,X,] corresponding to a,f such that ¢, (¢',)=x,9,. Since

Q(azf(v)) = afa'z2 Qv)

we get o« =a,a,%s,/s’, and ¢, induces a homomorphism ¢,* of rings

Ax[xol’ x1'> le] = Ax[Xoa Xl: Xz]/(q,x) - A:::[XO’ Xl’ X2]/(Qx) =
= A, [x,, x,, z5] .

This homomorphism and @, define the same birational morphism of
M(L)x A, on M(L')x A,. Hence they are equal on U=U D(¢ *(,)).
In order to simplify notations we shall omit all indexes x.
Let
o(X,) = Da;X;, ayed, det(a;) 0,

where at least one a;;e 4* and ¢(q') =xq. We have to show that detpe4*
and xeAd*.

Let 7 be a generator of a maximal ideal in 4, let k= A /() and for every
a€ A let G be its image in k. If Ge A[X,, X,,X,] then by G we shall denote
the image of ¢ in k[X,, X, X,].

We shall prove that the rank of the matrix [a,,] is at least 2. This rank
is of course = 1 since there is a pair (4,j) with a;;€ A*. Let us suppose that
this rank is 1. Then the forms ¢(X,), #(X;), $(X,) are linearly dependent
over k. Let ¢(X,)=a,¢(X,), p(X,) =a,5(X,). Hence

(3) (7)) 2 (7, X;—a, Xy, Xy—a,X,)

We shall consider two cases:

(i) g is irreducible that is () is a prime ideal in A[zy,z,,2,], * must be
defined in the point (x) since (z)e U and by (3) this image is a closed point
of M(L') x A. This is impossible since @ is an isomorphism and (z) is not
closed in M(L)x A.

(ii) g is reducible that is §=g, g, and @, =+ g, since M (L) x A is regular
(to check this see e.g. Theorem 2 in [3]). The ideals (z,q,) and (m,q,) are
prime and their intersection is (). Hence only one of them can contain
(7, 9(Xo), p(X;), 9(X,)) and @* is defined in at least one of these points,
say (7,q,). By (3) the image of this point is closed. This is a contradiction
since (7,q,) is not closed.

Hence the rank of [@;] is at least 2. Now if ¥ is the inverse of @ and y
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with a matrix [b;;] corresponds to ¥ in the same way as ¢ to @, then the
rank of [b;;] is also at least 2. But the product of [a,,] and [b;;] corresponds
to the composition of @ and ¥ that is to the identity. Hence this product
is a diagonal matrix (by Proposition 1). By the well known properties
of the rank we get the rank of the product [a@;;][b;,] is at least 1. Since this
is a diagonal matrix this rank must be equal to 3. Hence detp € A*.
If p(g)=0o'q’ then gy(q)=o0x'q. Since an’ € A and (xx’)3=det(py)2 € 4*
we get that ««’ is invertible in 4.

CoroLLARY 1. Let L be a lattice on the regular quadratic space (V,Q)
over F such that M(L) is a regular S-scheme. Let Aut M(L) be the sheaf of
S-automorphisms of M(L) and let Bir (L) be a presheaf such that for U open
in Spec(4), Bir (L)(U) = Bir(Z(U)). Then Bir (L) is a sheaf isomorphic with
Aut M(L).

2. Relatively minimal models

THEOREM 2. Let A be a Dedekind ring of characteristic =2 with perfect
residue fields. If F is a field of fractions of A and E[F regular extension of
genus 0, then there is a reqular quadratic space (V,Q) over F and a lattice L
on V such that

oy, : M(L) — Spec(A4)

18 a relatively minimal model of E[F.

Proor. Let F=F(x,y) where
g+ a,x2+a,y? = 0, aya,a, + 0,a;,€ 4
(see [8, § 25]) and let (V,Q) be quadratic space over F such that
V = Fey+Fe,+Fe, and Q(rgeq+xieq+aqe,) = Qo + 122 +a2y? .

If L' =Aey+ Ae, + Ae, then for every prime ideal  in 4 which does not
contain 2 and (a,,a,,a,), =4, there is an open neighbourhood U such
that M (L’)is a relatively minimal model of E/F ([1, Theorem on p. 302]).
Let X = Spec(A4) be the set of such prime ideals z; that L’ does not define
a relatively minimal model over some open neighbourhood of x;. Let
X ={x,,...,x,} and let ¢; be a quadratic form in 4, [X, X, X,] such that

M; = Proj (Ax,v[Xo’ Xy, X51/(g4)

is a relatively minimal 4,-model of E/F. The existence of g; follows
from [1] and [2]. Let (V,,Q,) be a quadratic space over F defined by ¢,
that is



28 J. BRZEZINSKI

Vi = Fe"+Fe,2+Fe,®, Qywoen®+ay/?+x557) = qy(wo, 2y, %)

and let
L; = Ayed+ A, 6,0+ 4,0 .

Since the spaces (V,Q) and (V,,Q,) are similar (by Proposition 1) there
is f;:V;— V such that Q(f;(v))=a,Q,(v). Let L/=f;(L;) and let L be a
lattice on (V,Q) (over A) such that L,=L, if x¢ X and L,=L,/ if z=x;
(see [9, § 81 E, 81:14]). M(L) is a relatively minimal model of E/F.

Lemma. If (V,Q) is a regular quadratic space over F of odd dimension
and Q(f(v))=a;Q(v) then a,=b> where b,=detfla;/,2r+1=dimV.

ProrositioN 2. If L, L' are lattices on a reqular quadratic space (V,Q)
over F, dim V is odd and f:L — L’ is a similarity then there is b, € A* such
that (1/b,)f is a rotation.

Proor. Since Q(f(v))=a,Q(v) where a; e A* and A is integrally closed
we get that b, defined in the Lemma belongs to A*. Hence one of the
mappings (1/b,)f or —(1/b,)f is a rotation.

ProprosiTION 3. If L is a lattice on a regular quadratic space (V,Q)
over F and dim V is odd, then Bir (L) ~ O+(L) where O+(L) denotes the group
of rotations of L.

Proor. Of course there is a natural injection O+(L) — Bir(L). If f is
a similarity of L, then f is an automorphism of a free 4 -lattice L,. Hence
detf is invertible in 4, since it is invertible in 4 for every x. If @(f(v)) =
a;/Q(v), a;€ A*, then b,=detfla;" € A* (notations as in Lemma). Hence
(1/b;)f or —(1/b,)f is an element of O+(L) and the image of this element is
the class of f.

ReEMARK. The assumption that 4 is integrally closed is not used in this
proof.

THEOREM 3. Let A be a Dedekind ring of characteristic =2 with perfect
residue fields, F the field of fractions of A, E a regular extension of tran-
scendence degree 1 and of genus 0 of F and L a lattice on a regular quadratic
space (V,Q) over F such that M(L) is a relatively minimal model of E[F.
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Then there is a one to one correspondence between the classes of S-isomorphic
relatively minimal models of E[F and the classes of lattices in the proper
genus of L.

Proor. The classes of S-isomorphic relatively minimal models of E/F

are in one to one correspondence with the elements of ﬁl(Spec 4),
Aut M(L)). This follows from Theorem 1 in [2] (or Corollary in [4]).
Corollary 1 gives Aut M(L)~Bir(L) and from Proposition 3, Bir(L)~
0+(L), where O+(L)(U)=0+L(U)). Hence

H,(Spec(A4), Aut M(L)) ~ H* (Spec(4), 0+(L)) .

The elements of the last set are in one to one correspondence with the
classes of lattices in the proper genus of L, since according to the defini-
tion of proper genus ([9, § 102 4]) a lattice L’ is in the proper genus of L
if for every x € Spec(4) there is an open neighbourhood U and a rotation
fu such that f(L)=L".

CorOLLARY. Let 4 be a Dedekind ring of characteristic + 2 with perfect
residue fields such that for every lattice on a regular quadratic space over the
field of fractions of A the number of classes in the proper genus is finite e.g.
A is a Dedekind ring such that its field of fractions F is a global field
([9, § 103, T'heorem 103:4]). Then for every reqular extension E[F of genus 0
the number of classes of Spec(A4)-isomorphic relatively minimal models of
E|F is finite and in every such class there is a model of the form M(L)
where L 18 a lattice.

Proor. If M(L) is a relatively minimal model of E/F and L., L, are
in proper genus of L, then the scales of these lattices are equal. Hence if
M(L,)~M(L,) then by Theorem 1 and Proposition 2, there is a rotation f
such that f(L,)=L,. Hence L, and L, are in the same (proper) class.

REFERENCES

1. A. Bialynicki-Birula, Remarks on relatively mintmal models of fields of genus 0, I, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 301-307.

2. A. Bialynicki-Birula, Remarks on relatively minimal models of fields of genus 0, II,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 81-85.

3. A. Bialynicki-Birula, Remarks on relatively minimal models of fields of genus 0, III,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 419-424.

4. A. Bialynicki-Birula, 4 note on deformations of Severi-Brauer varieties and relatively
minimal models of fields of genus 0, Bull. Acad. Polon. Sci. Math. Astronom. Phys.
18 (1970), 175-176.

5. J. Brzezinski, On relatively minimal models of fields of genus 0, Bull. Acad. Polon. Seci.
Sér. Sci. Math. Astronom. Phys. 16 (1968), 375-382.



30 J. BRZEZINSKI

6. J. Brzezinski, Models for some fields of genus 0 determined by forms, Bull. Acad. Sci. Sér.
Sci. Math. Astronom. Phys. 17 (1969), 473—475.

7. A. Grothendieck et J. Dieudonné, Eléments de géométrie algébrigue II, Inst. Hautes
Etudes Sci. Publ. Math. 8 (1961), 5-222.

8. H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1963.

9. O.T. O’'Meara, Introduction to quadratic forms (Grundlehren Math. Wissensch. 117),
Springer-Verlag, Berlin - Gottingen - Heidelberg, 1971.

MATHEMATICAL INSTITUTE, UNIVERSITY OF GOTHENBURG
AND

CHALMER'S INSTITUTE OF TECHNOLOGY, GOTHENBURG, SWEDEN



