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ON THE IRREDUCIBILITY OF POLYNOMIALS
TAKING SMALL VALUES

HELGE TVERBERG
Dedicated to the memory of W. Ljunggren.

1. Introduction.

In 1919 G. Polya [3] proved that a polynomial f(z) of degree n, with
integral coefficients, is irreducible over the rationals if it satisfies the
following condition:

There are n integers a; so that 0<|f(a;)| < 2-+V21[(n 4 1)/2]!.

A simple example of such a polynomial is given by

fx)=(x—1)(x—2)...(x—n)+1.

Polya’s result has been improved upon later, by (in chronological
order) T. Tatuzawa [4], A. Brauer and G. Ehrlich [1], H. Tverberg [5],
R. J. Levit [2], and H. Tverberg [6] again. The list (1.1) gives the various
results (slightly falsified, for easy comparison). Note that m means, for
the rest of the paper, [(n+ 1)/2].

(1.1) 2-mm ), m~tm!, m~tm!, m!, 1.30mm!, 1.68™m! .

It is natural to ask for the ¢“‘exact’ version of the theorem, i.e. to find
the number P(n) defined by : There exists a reducible polynomial f(z) and
integers a,,a,,. . .,a, so that
(1.2) 0< |f(a)) = Pm), +=12,...,n.

There exists no reducible polynomial f’(x) for which there are n integers
a,’,ay,...,a,’ so that
0< |f(a))] < Pn), 1=12,...,n.

n

The reducible polynomial

folx) = (&-1)(x—3)...(x-2m+1)+ 1)((x—2)(x—4) e
(x—2(n—m))+1)
shows that

(1.3) P(n) £ max{|fo(1)],..., |fo(m)l} = fo(n) < 2™m!
which lends perspective to the sequence (1.1).
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In this paper we prove (more or less completely)
THEOREM 1. P(n)=(i+o0(1))™m!, where A is a fixed number.

THEOREM 2. The number A ts effectively computable and satisfies the
inequality 1.734 <1< (4/3)3V4=1.754. .. .

THEOREM 3. P(n) is asymptotically equal to Q(n).

Here Q(n) is that upper estimate of P(n) which is furnished by consider-
ation of reducible polynomials of the form

(1.4) ((®=0y)(@®—by)....(®—=by)+1)((x—c))(x—¢y) ...
(x—cn_p)+1)

with {b;,...,b,,¢5,...,¢,p}={1,2,...,n}. We shall call such polynomials
special polynomials. Note that the estimate (1.3) of P(n) was furnished by
a special polynomial, so that we have

(1.5) Qn) < 2mm! .

2. Polya’s lemma.

This is

Lemma 1. If g(x) is a polynomial of degree k, with integral coefficients,
and dy<d, < ...<d, are integers, then, for some i, |g(d;)| = k!2-%.

Proor (Polya). Consider Lagrange’s formula

d 1
mw=w—M~4W”ﬁ2ﬂﬂﬁqLiw~®'
i +i\%4

The leading coefficient of g(x) is given by
2“;0 g9(a;) TTj4e(@i—d)".

As the absolute value of this coefficient is 1 or more, we find that
|9(@)l;- - -,19(d:)| can not all be less than

2.1 (2‘20 HJ'=|=1’ d;—d;| 7)1,

and hence (because |d;—d,| = |¢ —j|) not less than

(k. (6! (k—i)!) 1)1 = kel2k
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Polya applies his lemma as follows. If f(x) is reducible, it factorizes over
the integers as g(x)h(x). Then g(z), say, has degree k where m<k<n.
Assume now that f(x) satisfies the condition stated at the beginning of
the paper. For every integer a, g(a) divides f(a) and so

lg(a)] < 2-™m!, +=1,2,...,n.

On the other hand lemma 1 (with d;=a,,,,7=0,1,...,k) implies that
for some ¢
lg(a;)] = 2%k =2 2-mm! .

REMARK 1. Note that the argument just given shows that one may
obtain irreducibility even with a higher bound on the values of f, provided
one has a suitable bound on the degrees of possible factors. For instance,
if one knows that f has a factor of degree k with k>m+ 3m/logm one
deduces that for some ¢

Ifd)| = k2% 2 mi2m,

This shows that the reducible polynomials which are of interest for the
determination of P(n) never have factors of degree exceeding m + 3m/logm.

REMARK 2. The results listed in (1.1), except the last one, are all based
on Polya’s idea of considering the factor g(x) of degree =m. The improve-
ments have consisted in raising the lower estimate of how well g(z) can
approximate 0 on {a,,as,...,a,}. This method reached its limit in [2],
where it was proved (Theorem 1) that the error must be at least

(2.2)  2kin—k)(3n—k)+1)(3n—k)+2)...(R(n—k)+k—1).

In the domain which interests us most, i.e. for |k—m|< 3m/logm this
expression equals

(2.3) (3V/3+o(1))¥k! .

This result, which is useful for the estimation of A from below, may also
be deduced by putting d;=a,,, 1=0,1,.. .,k in the expression (2.1). Here
the p’s are constructed as follows: In section 4, put

@(f) = 1—2n-1 Arctan (Re (3 —4(2tn-1 — 1)), ¢ = mY(k+1—m) logm.

Then p;_,=b;, as given by (4.5).

We shall not effect this deduction, which is, however, quite easy for one
who has mastered the contents of sections 4 and 7. It is probably easy
to obtain Levit’s more general result (2.2) in a similar way.
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It is a well known fact from approximation theory that (2.1) is capable
of yielding the best possible result (concerning approximation by monic
real (or complex) polynomials), but the problem is to find the optimal
choice of the d;’s.

3. Proof of Theorem 3.

By definition P(n) is a minimum, taken over the set of all reducible
polynomials of degree n. Q(n) is the minimum of the same quantity, taken
over the subset of special polynomials. Thus

(3.1) P(n) = Q(n) .
We now want to prove the inequality
(3.2) Q(n) £ P(n)(1+40(1))

which, together with (3.1) yields Theorem 3. For this purpose it is
necessary to locate the zeros of f(x).

Consider an extremal polynomial, i.e. a reducible polynomial f(z)
satisfying (1.2). Let ¢ be any zero of f and put g(x) =f(2)/(x — ). Then g(x)
has a leading coefficient whose absolute value is at least 1, and the proof
of Lemma 1 shows that, for some i,

l9(a,)] = (n—1)!21-n,
Thus
[t—a; = (2" Y (n—-1)!)|f(a;)] < (2 (n—1)!)P(n)

so that, by (1.3),
(3.3) E—a; £ 2m-1ml/(n—1)! = m-md+oD),

Thus for large n, every zero of f(z) is real and very near one of the integers
a;.
Moreover, different zeros are near different integers. Because, if {; and
¢,, say, satisfy (3.3) for the same ¢, we may consider the polynomial
g(@)/(x—Cy) (x—L,) on the set {a,,. ..,a,}\ {a;} and deduce that for some
JrJ*1,
61—, |Ca—a;] < m-ma+ow)

which contradicts |a;—a;|=1.

Having located the zeros of f(x) we are ready for the proof of (3.2).

Let the zeros be {; <{,<...<{,. Thus

(3.4) |£s— @] < m-m+o,
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Let f(x) factorize over the integers as g(x)h(x). With f(x) we associate
the special polynomial

s(x) = (HbeB (w'—b) + 1)(].—.[660(33_0) + 1)

B = {i;9(5) =0}, C = {i; ()= 0}.
For any b € B we have
|s(0)-1] = Hceclb”‘c] = Hcegfab—ac|

= |Hc50(ab_cc)| Hcec|l+(5c_ac)(ab—cc)_1[
= |ho| 7 |A(@p)| TTcec!l + (Co—ac)(ap — o) ,

where k, is the leading coefficient of A(x). If we note that |b—c|=1 for
all ¢ € C, and use (3.4), we get

(3.8)  [s(d) = 1] = [ho| ™ [h(ap)] (L+0(1)) = |Re7 || (as)] (1+0(1)).

Thus

(3.6) [s(0) = 1] = |hy~!|P(n)(1+0(1)) = P(n)(1+0(1)),

where

and similarly for any ce C,
(3.7) ls(c)—1| £ P(n)(1+o(1)).

Now, since s(x) is a special polynomial, the definition of @(n) shows
that

Q(n) = max{[s(1)], [s(2)],. .., [s(n)},
and so (3.6) and (3.7) yield (3.2), and hence theorem 3.

The proof just carried through gives some information on g(x) and h(x)
for large n, namely

COROLLARY 1. At least one of the polynomials + g(x) and + h(x) is monic.

COROLLARY 2. At least one of the values taken by g(x) and h(x) on
{a,,a,. . .,a,} equals +1.

Proor. If neither +g(x) nor +A(x) were monic, the inequality (3.6)
would become
ls(6)— 1| < $P(m)(1+0(1)),

and similarly for (3.7), so that we would get
Q(n) < $P(n)(1+0(1)),

in contradiction to (3.1).
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If Corollary 2 were false, (3.5) would become
ls(®)— 1] = koIS (@)|(1+0(1)),

which together with a similar inequality for s(c) would give the same
contradiction as above.

4. Smoothing of the problem of determining Q(n).

It is easy to see that Q(n)/Q(n + 1) = O(n), so that the restriction to the
case n=2m, which we now make, is relatively harmless, considering our
main project, which is to prove Theorem 1 and 2, using the already
established Theorem 3.

Let ¢ be a continuous function on [0,%] and ¢ a real number, satisfying
the conditions

(4.1) 0<¢p=1 Gotdt=m, |o<3.
Let G and H be defined by

(4.2) G(x) = om+§ o(t)log|x —t|dt

(4.3) H(x) = —om+3(1—o(t)log|z—t|dt .

We shall construct a special polynomial s(z) such that the values taken
by it on {1,2,...,n} are given, up to error terms, by the values of exp @
and exp H. The factors of this special polynomial will have degrees
m + [pm[logm]. Our construction may easily be reversed so that, starting
with a special polynomial (s(x) whose factors have degrees m + gm/[logm,
lo] <3, one arrives at a pair ¢, for which the corresponding special
polynomial is exactly s(x). The problem of estimating @(n) is thus carried
over to a smoother problem about pairs (g, o).

Now the construction of s(x). We first construct a continuous function
v, defined on [0,7], which satisfies

§cy(t)dt = m+[gmflogm], 0=y =1 (p-9glez0.
x € supp (-) = dist(x, supp(--)) < 3m[logm .

(4.4) (*5*0) = (@v), (v, ), 1—@,1-9), (1—y,1-9)

Here supp(g)=the support of g=the closure of the set {x;p(x)=0}.
The relevance to us of this concept will become clear later on.

The existence of such a y is trivial if ¢ > 0 and the set ¢~2({0}) contains
an interval of length > 3m/logm. If 9> 0, but there is no such interval,
we put

y(t) = max(ep(t), a)

where a € (0,1) is chosen so that {y(t)dt=m + [em/logm].
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If o < 0 we apply the preceding construction to 1 — ¢, — g, obtain a func-
tion y, and put y=1—y,.
We now define B={b,,b,,...}<{1,2,...,n} by

(4.5) Ship)dt = 4, (i tp)dt <4, i=1,2,..., m+[gm/logm],
put C={1,2,...,2}\ B, and then define s(x) by
(4.6) 8@) = ([Tres(@—0)+1) (ITecc(®—c)+1).

The values of s(x) on {1,2,...,n} may easily be compared with those
of @ and H on [0,n]. Consider, say, log|s(c)|,c € C. As |B|~|C|~m we
have
(4.7) log|s(c)| +0(1) = 3;loglc—b, .

By (4.5) there is a y € supp (1 —y), with c—1 <y <c and by (4.4) there is
an z € supp (1 —¢), with |z —y| < 3m/logm.
Now, firstly,

(4.8) Silogle—b,| -G (c) = 3;(logle—b;| — i w(t)log|c—¢|dt)
where we have put

B; = inf{x; Gy(t)dt =i}, i=0,1,...,
and

(4.9) G (x) = \Gy(t)log|x—¢|dt .
Hence, by (4.5), b;_;<8,=b;. If b;<c, then, with b_; =b,=0,
0 < sﬁ'_lzp(t)log(c—t)dt—log(c— b;) < log(c—b;_,)—log(c—b,)
and if b;_,>c, then
0 < log(b;,—c)— S:ﬁ_lw(t)log(t— c)di < log(b;—c)—log(b;_s—c) .

From this it follows that the right hand side, and hence the left hand side
of (4.8) is O(logm).
Secondly, denoting x—c by 2a, we have

|Gy(c) — Gy(@)] = |§3(t)(log|a—t| —log|c—1|)d¢

= |§[c,z1+ $to, nne, x]l

< {3 (log(a +1t) —log (@ —t))dt + {5 ~2* (log (¢ + 2a) — logt)dt

= 2alogm — 2(m —a)log(1 —a/m) — 2alog (3a)
= O(m (loglogm)/logm) .

The last equality holds because 2a=|x—c|=|x—y+y—c| <4m/[logm.
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Thirdly,

Gy(x)— G(x) = 5 (v(t) — @(t))log |z —t|dt — om
= {0 (¥(t) — @(t))log |m~*(x —1t)|dt + [om[logm]logm — gm .

As 0= (p—¢@)sgnp=1 it is clear, because of (4.1) and (4.4), that the
absolute value of the last integral does not exceed

max (23 [logtm-1|dt, \r_,,logtm-1dt) = O(m(loglogm)/logm) .

(for 2a =[pm/logm]).

Combining the estimates we find that for any ceC there is an
2 € supp (1 —¢) so that log|s(c)|=Q(x)+o(m). The same procedure may
now be followed to show that for any b € B there is an = € suppg so that
log|s(b)| = H(x) +o(m). The definition of B shows namely that there is a
y e suppy so that b—1<y<b. By (4.4) there is an x € suppy so that
|z —y| < 3mflogm and so |[x—b| < 4mflogm. The difference H(x)—log|s(b)]|
can be estimated in steps, as above, with @,_, replacing G,. Only the
estimate of 3;log|c—b|—G,_,(b) causes some trouble because the rela-
tionship of C to 1 —yp is not exactly the same as that of B to y.

Here the identity

S.ilogle,—b| — Gy, (b) = (log((b—1)! (n—b)!)— {7 log |b—¢|dt)
- (zdeB—{b)IOg |b—d|— Gw(b))
carries us back to a well known situation and allows us to conclude that
Deec logle—b]—G,_(b) = O(logm) .

As said before, it is possible, given a special polynomial s(x), with
|deg(s(x)) —m| < 3m[logm to reverse the procedures above and construct
a pair (@, o) satisfying (4.1), so that the following holds. For any xesuppg
there is a b € B so that H(x) =log|s(b)| + o(m), while for any x € supp(1 —¢)
there is a ¢ € C so that G(x)=1log|s(c)| + o(m).

5. Proof of theorem 1.

In the preceding section the problem of estimating @(n) was smoothed.
We now normalize the smooth version so that we obtain a problem which
is independent of n. This is easy. A linear transformation changes [0,7]
to [—1,1] and then the outcome of section 4 may be expressed as follows.

LeMMmA 2. Let ¢ be a continuous function on [—1,1] and let p be a real
number, satisfying
(5.1) 0<gp=1 Lotydt=1 |o<3.
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Let G and H be defined by

(5.2) Gx) = {1 p(t)logle—tidi, H(x) = {.,(1—q())loglz—tdt,

and put

(6.3) Mgy = max{G(x); x esupp(l—¢)}, My = max{H(z); xesuppe¢},

(5.4) M,,=max(Mg+o, Myz—o).
Then
(5.5) logQ(n) = mlogm +m(inf, , M, ,+o0(1))

This lemma has a simpler version, as the parameter ¢ may be elimi-
nated. We have, using the notation of lemma 2,

Lemma 3. Put
(5.8) M, = $(Mg+My) .
Then
log@(n) = mlogm +m(inf, M +o(1)) .
Proor. For any real numbers a,b we have
infj, comax(a+ g, b—p) = max(}(a+b), max(a, b)—3)

Hence it suffices to prove that, say, M;—3< (M +My) that is
My— Mg <6. But it is obvious that

Mg < log(L+8)dt, My = ({t,log|tdt
so that M,—Hy < log8<86.
The proof of theorem 1 is now trivial. Theorem 3 says that P(n)~Q(n)
and lemma 3 then gives

m~Ylog P(n)—logm!) = 1+inf M _+o(1).
Thus
(5.7) P(n) = (exp(l+inf, M )+o(1))"m!,

which is theorem 1. The number 1 is expressed by

(5.8) A = exp(l+inf, M) .

6. Computability of 4. Existence of extremal functions.

Let ¢ be a function satisfying (5.1) and let N be a natural number.
For k=1,2,...,2N there is a minimal integer ¢, for which
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s:iigl-vnuv?’(t)dt < gi/N2.

Let ¢ be a 4N-vector whose first 2N components are the ¢;, while the
componentq,y.;is0, 1 or 2accordingto whethertheinterval[— 1+ (k—1)/N,
—1+k/N] meets only suppg, only supp(l—¢) or both.

Using only the information about ¢ given by ¢ it is easy to give twosided
estimates of G and of M ;. Similarly one finds an estimate of M ;, and hence
of M. Consider now all the possible vectors for a given N. One of them
at least, yields a minimal upper estimate of M . Denote this minimum by
My, and let gy be a function which yields the vector in question.

It is now easy to see that limy_, My=limy , M =inf M . Looking
into the details of the estimation above one finds immediately that
inf, M, and hence 4, is an effectively computable number.

ReMARK. The continuity of ¢ was not used in the considerations above.
This means that, for instance the characteristic function of a finite union
of intervals of total length 1 may be considered. If one defines M as for
a continuous ¢, it is clear from the above that inf, M is the same whether
taken over the continuous ¢’s or over the discontinuous ¢’s just mentioned.
This remark will be useful later on, but ought to be forgotten at the
moment.

It would now be nice if {py}, or at least some subsequence of {py}
converged towards a continuous function ¢, If that happens (and it
probably does) for a suitable choice of the ¢y’s consideration of the
support of ¢, and 1—¢, shows that M <limy , M =inf, M . Hence
inf, M =M, so that an extremal function exists.

Not being able to prove the existence of an extremal function, however,
we shall mention a different (but equivalent) formulation of our problem,
which allows one to speak with certainty of extremal functions.

Let @ be any function defined on [ —1,1], having the properties

O(-1)=0, P1)=1, y=z =02 Dx)—D(y) =z—y.
Let G and H be defined by
G(x) = (L,log|x—t|dD(t), H(x) = \.,loglx—t|d(t—D());

let M4 be the maximum of @ on the set [—1,1]\int{x;®’'(x)=1} and
My the maximum of H on the set [—1,1]\int{z;®'(x)=0}. Finally
put My=3(Mg+ My). Then one can prove rather easily, using Ascoli’s
theorem, that there exists a function @, for which

My, = inf, My, = inf M, .

We shall not go further into this fact, which will not be used in this paper.
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7. Upper bound on A.

From the formula (5.8) it follows that any allowable ¢ yields an upper
estimate of 2. We choose ¢ as follows

p(t) = 2n-1 Arctan(3—482)t;  |t| < 3)/3
(t) = 0; W< <.

This choice, which may seem unmotivated at the moment, has been
made in order to make ¢ satisfy the integral equation

(7.1)

(1.2) §L (1—g(t)loglz—tldt = —1+3log3—log4; |z < /3.

The idea of considering the solutions of this equation originated in the
study of 1065 stepfunctions by means of a computer. For that stepfunc-
tion ¢, which gave the smallest estimate of A, the left hand side of (7.2)
varies very little as # varies over the support of @,. It turns out that if
one requires the left hand side of (7.2) to be constant on the support of ¢
for a continuous function ¢ satisfying (5.1) and having support [—c,c],
then ¢ has to be 3}/3 and @ has to be the function defined by (7.1).

We now check that (7.2) holds. Let F be the function defined on R! by

(7.3) F) = (¢ p)logla—tidt, c=3)3.
Then, as is well known
(7.4) F'(x) = (2 0(t)/(x~t)dt

where the integral means the Cauchy principal value, (that is
lim, ,o(§757+2,)) i el <o

Partial integration gives

F'(g) = —lim,_,qu(|%5+ |5, Je(t)logle —t] +§° ¢/ () logle —t|dt

Vo' (£)loglx—¢|dt ,

]

and so
tdit

—§ (1—12) (3 — 4t2)(z—1)’

F'(2) = {2, ¢'()/(@—t)dt =

whence

F'(@) = }(1+2) M~ - (1 —a) e — P+ (1 +2) 1 + (1 —a)
z>c
F'(x) = 2[(1—a%); |z <c.
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From this we obtain
(7.5) F(x) = (1-=)log(2z— 3+ (2*— )} — (1 +x)log(2x + § — (22— )})
—log(x+ (22— §)¥) + 2(1 +x)log(1 + x) + xlog 3
—1+log2—log3; =z >c¢
(7.6) F(z) = (1+x)log(l+=z)+ (1 —z)log(l —z)—1—%log3+log4;
lz| = ¢c.
In order to determine the constants of integration we used the following
facts:
Fx) = F(—z), F'(0)=0, lim, F'(z)=
lim F(x)—logz) = 0, lim, F(x) = F(c),

x——>oo(

which all are easy consequences of our definitions (note that
F(x)—logz = {° p(t)log(1—t/x)dt when x > c).
It now follows from (7.3) and (7.6) that (7.2) is satisfied. Thus

(7.7)  max 1—g(t))log|le—t|dt = —1+}log27—log4 .

supp ¢ Sl—-l(

The other maximum to be computed is that of F on [—1,1]. It turns
out that ' 2 0 on [0,1], and, as F(x) = F(—x) it follows that the maximum
equals F(1),

(7.8) F(1) = log64—log27—1

Thus M = —1+log4—}log27, which yields the estimate
(7.9) Asts3t=1754....

8. Lower bound on 4.

The estimation of P(1) from below will only be sketched as the result
arrived at is not the definitive one. A complete discussion would fill at
least 5 pages

Let f(x) =g(x)h(x) be a special polynomial. We want to prove that for
some ¢ € {1 n} If(@)]>(1.7341)"m!, provided n is large.

Case 1. Degree(g(x)) 2 m+ gym/logm .

Here g,=log(1.73411/3)/3). We know (cf. (2.3)) that for some 4

IF@) 2 19G)| = (/3 +0(1))™+ewm18™ (1 4 0 mlogm)!

(1.73411+o(1))mm! .

(8.1)
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Case 2. Degree(g(x)) £m + gym/[logm.

The discussion in sections 4 and 5 shows that for some ¢,|f(¢)|= the
right hand side of (5.5), where one of the original conditions in connec-
tion with (5.5), namely |o| <3, is replaced by |g| < g,- We thus have to
give a lower estimate of

(8.2) inf, M, ,

under the new condition || < g,, the conditions on ¢ being the same as
before. We now replace the quantity M, , by a smaller (or equal) one
and estimate the latter from below. Let [«,8] (respectively [y,0] be the
interval spanned by suppg (respectively supp(l—¢)) and put

My = max(G(y), 63), M’y = max(H(x), H(p))
M’w.e = ma‘x(M’G"'Qa M'g—o)
(8.3) M = inf, M', ..

Then M’ is clearly a lower estimate of (8.2). It turns out that the in-
fimum in (8.3) is not attained. According to the remark in section 6 we
are, however, entitled to consider, instead of our original ¢’s, ¢’s which
are characteristic functions of finite unions of intervals. Then M’ is at-
tained for the characteristic function of the set

(8.4) (=} Ul=b, —a]U[a, B] U {}

where ¢ = 0.239...,b=a+0.5,c=(0.5+a2+a/2)}.

In case the reader should feel cheated by just having been given the
hints above, we shall prove a weaker result, so as at least to convince him
that the approach in this paper leads somewhere. The weaker result is:

(8.5) Az 2.
In order to prove (8.5) we consider M, defined by (5.6). Assume that

(=1)<1, which is no essential restriction, as M _=M,__. Let [«,8] be
¥ ® P
the interval spanned by suppgp. We have

(8.6) oM, = G(~1)+H(x)
= {Lo(t)(log(t+ 1) —log(t — x))dt + (- , log|t — x|dt
{6 (log(t + 1) —log(t — «))dt + {1, log|t — x|dit

2log2—olog(— o)+ (1 + ) log(l+ ) —2

1\

(8.7)

where the second inequality holds because log(t+ 1)—log(t—«) isza,
decreasing function on [«,1].

Math. Scand. 32 — 2
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The expression (8.7) is seen to take its minimum, log2—-2, at a= —}.
Hence

A = exp(l+inf, M ) 2 exp(l+3(log2—-2)) = Ve.

9. Some simplifications of the unsolved problem.

The unsolved problem is, of course, that of determining 4, using lemma
3. The simplifications are, in the terminology of that lemma.

(A) Only functions ¢ which are identically zero near —1 and +1 need
to be considered.

(B) In (5.6) the quantity M; may be replaced by
(9.1) max(G(—1), G(1)).

(C) In (5.6) the quantity My may be replaced by
(9.2) max,r,, 5H(x)

where [«,8] is the convex hull of the support of ¢.

As to (A), it is clear that the normalization ¢(—1)<1 may be made.
If x=—1, (8.6) gives M 2log2—1=—0.306.... But we have the esti-
mate

(9.3) infM, < —1+log4—1log27 = —0437...,

(cf. (7.9)) and so the case = —1 can be excluded. Using (8.6) we find
that we may even assume
o > —0.93.

There are now two distinct cases to consider. If ¢(1) <1 the argument
just given shows that
B <093, ¢l)=0,

but the other case, p(1)=1, may also occur. If so, we take also g into
consideration. After interchanging (¢(t),0) with (1 —g(—¢), — ) if neces-
sary, we may assume that ¢=0. We then estimate the quantity

(9.4) inf, ;max(G(—1)+¢, H(x)—p)
where @ and g are restricted only by
020, ¢(-1)=0, 0=¢=1=7F ged.

This problem is similar to, but easier than, the one which was discussed
under case 2, section 8. (That discussion would, if written out in full,
include the present one, as the possibility ¢(—1)=0,¢(1)=1, would have
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to be dealt with.) The function which corresponds to the one described
by (8.4) is now the characteristic function of a certain set

{ptulg,q+1], p= —084...,9= —(1—-p)32p.

It turns out that the value of (9.4) is > — 0.42. Compare this to (9.3); the
case ¢(1)=1 is excluded.
We are now ready for the simplification (B). By (A) we may assume

(9.5) suppy < [—0.93, 0.93] .

It turns out that this condition implies

(9.6) max,.4,G(x) = max(G(—-1), G(1))

which clearly justifies (B). In order to prove (9.6) we first note that
Mmax,y y,40(@) = G(—1), Mmax,q, n6@) = G(1)

so that the falsity of (9.6) would imply the existence of a y € («,f) for
which
(9.7) Gly) z G(-1), G(y) 2z ¢(Q1).

If a point in, say, (y,B) is moved to the right, the logarithm of its
distance from y increases more than the logarithm of its distance from
—1, while its distance to +1 goes down. This means that the inequali-
ties (9.7) imply
(9.8) L () logly —t|dt = max{{.,y(t)loglx—t|dt; x = +1}
where p(t) is the characteristic function of the set

[—0.93,—0.93+{¥g(t)dt], [0.93 -’ p(t)dt, 0.93] .
It is now an exercise in calculus to see that (9.8) is impossible.

The final simplification (C) is justified by the fact that

(9‘9) maXger,, ﬁ]H(x) = MaXgzcaupp :pH(x) .

If (9.9) were false, H would take its maximum on [«,f] at a point ¢ for
which, for some £>0,

[x—c| < e = @(x) = 0.
Differentiating (5.2), we get, for |z —c|<e

H'(x) = (\"F+ i) (L—@(t)) (@ —t)-2di+log(x —c+e) (c —x+ )2
H'(c) = —(§53°+ore) (L — (1) (c —2)-2dt + 267 > —2(Pt-2dt+ 2671 = 0,

a contradiction.
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10. Numerical results on P(n) and Q(n).

Computation by hand gave P(2),..., P(7)=1, 2, 1, 3, 5, 16. The extre-
mal polynomials are (after a linear substitution) z? and (2x+1)% for
n=2, 23— (1+1)22— (1 F 1)z, 23— 22—z and 2®— 3z for n=3, (x*+x—1)2
for n=4. For n=>5 one has with f(z)=g(x)k(z),

g(l)"’g(5) = 3: —1’ _3s —3, -1
h(1),...,h(5) = —1,3,1, -1, 3.

For n=6, the corresponding sequences are 5,1, —1, —1,1,5 and —1,
—5,5,5, —5, —1. For n="7 we have

g(x) = (x—2)(x—4)(x—6)+1,
h(z) = (x—1)(x—38)(x=5)(x—T7)+ 1.

The extremal special polynomials were found, by computer, for
n=2,...,26. We describe them by 0—1—sequencess,,...,Sy, Where

8,(0) = 1<>ie{by,..., by}
(cf. (1.4)). The sequences are

01, 011, 0110, 01010, 010010, s,10, 01101001, s,10,
0110101001, s,10, 001010110100, s,,10, 00101011010100,
81310, 0010101011010100, 8,510, 001010110100110100, s,,10,
00101011100010110100, 000101011010110101000,
0010101110000111010100, 00010101101011001101000,
001010101110010010110100, 0001010101101011010101000,
00101011011000011011010100.

The corresponding values of ¢(n), when written in the form A,”m!
give the following sequence of A’s (rounded values): 2.00, 1.23, 1.22,
0.88, 1.05, 0.91, 1.24, 0.98, 1.29, 1.05, 1.33, 1.11, 1.31, 1.16, 1.37, 1.21,
1.39, 1.25, 1.43, 1.27, 1.45, 1.30, 1.48, 1.30, 1.52.

11. Concluding remarks.

It is clear that much remains to be done on the problem of estimating
P(n) and @(n). The outstanding problem seems to be the determination
of A and the (probably existing and unique) corresponding continuous
function ¢. But it would also be interesting to find out something more
on the extremal polynomials.

It is tempting to conjecture that they are either special polynomials
or obtainable from such by linear transformations, or by replacing one
or both of the “1’s” in (1.4) by — 1. It is rather easy to see, using lemma
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1, that if g(x)=ax?+ ... is one of the two factors in an extremal poly-
nomial, then

g(x) = a(x—by)(x—by) ... (x—b,) +g,(x)

where b,,. . .,b, are the integers near the zeros of g and g,(x) is of degree k
satisfying
klogk = O(m) .

It seems probable that here O(m) can be replaced by O(1).
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