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SOME MINIMAX THEOREMS

FRODE TERKELSEN

1. Introduction.

Any real-valued function f defined on a product set X x ¥ satisfies the
inequality
SUPyey lnfa:eXf(x>y) = i-nfar:eX superf(x’y) .

Von Neumann’s minimax theorem [6] can be stated as follows: If X
and Y are finite-dimensional simplices and f is bilinear on X x Y, then
equality holds above (moreover, inf and sup may be replaced by min
and max). This note is related to generalizations of von Neumann’s
minimax theorem by Kneser [4], Fan [3] and Sion [5].

The minimax problem is approached from the viewpoint of a set F
of lower semi-continuous functions on a compact space X, with the order
relation < on F induced by the ordering of the real numbers. If for any
f,g € F there exists h € F with f<h and g <h, that is if F is directed by

<, then a minimax condition holds (Theorem 1 and corollary), the
assumptions being analogous with those of the classical Dini theorem.
The following weaker order condition is then introduced in Theorem 2:
For any f,ge F there exists he F with f+g<2h. This establishes a
connection with the concept of a concavelike function due to Fan.
Further, finite intersections of sets of the form {x e X : f(x)<«} are
required to be connected in Theorem 2. The requirement is satisfied,
in particular, when the quasi-convexity condition of Sion’s minimax
theorem holds.

An application of Theorem 2 to a function on a product set X x ¥
immediately yields the principal minimax theorem of the note, Theorem
3, together with two corollaries, one of which is the Kneser-Fan mini-
max theorem for concave-convex functions. Examples are given to show
that if the assumptions of Theorem 3 are not satisfied, then the conclu-
sion does not necessarily hold. Theorem 3 can be applied to some func-
tions which fail to satisfy the assumptions of Fan’s and Sion’s general
minimax theorems. These theorems are not implied by Theorem 3,
however, as indicated by examples.
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2. Lower semi-continuous functions on a compact space.

The lemma below, to which we shall refer frequently, states a well-
known fact. It is assumed throughout in this section that X +¢ and
F+0.

LeMMA. Let X be a compact space, and let F be a set of lower semi-
continuous real-valued functions on X. The following are equivalent.

(i) For any x € R and any finite non-empty subset G of F such that
o < ming x maxqf (), there exists h € F with « <min, xh(x).

(11) supfeF minxeX f (x ) = minxeX supfeFf (x) .

Proor. For every non-empty set G < F, finite or not, the function
defined by x + supsqf(x) is lower semi-continuous, allowing the value
+oco. Any lower semi-continuous function on the compact space X
attains a minimum.

Suppose (i) holds. Choose any « € R with

& < mina:eX supstf (x) ’

and define A(f)={re X : f(z)S«} for fe F. Then N,z A(f)=0, and
since X is compact and the sets A(f) are closed, there exists a finite set
G<F with Ny gA(f)=0. We have max,f(x)>« for each xeX.
Choose h € F' according to (i), then the inequalities

« S ming xh(z) < supfeFminzeXf ()

imply (ii). The converse implication is trivial.

For two real-valued functions f and g defined on a set X, write f<g
if f(x)<g(x) for all x € X. A set F of real-valued functions on X is said
to be directed with respect to the relation =<, if for any f,g € F there
exists h e F with f<h and g=<b&.

The assumptions of Theorem 1 and the corollary are analogous with
the assumptions of the Dini theorem for continuous functions (see e.g.
Bourbaki [2, Chapter X, § 4.1, Theorem 1 and Corollary]).

THEOREM 1. Let X be a compact space, and let F be a set of lower semi-
continuous real-valued functions on X which is directed with respect to
the relation <. Then

SupfeFminmeXf(x) = minxeXsupfeFf(x) .

Proor. Condition (i) of the lemma is satisfied: If G < F is finite, then
there exists » € F with f<h for each feG.
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CoroLLARY. Let X be a compact space, and let (f,) be a sequence of
lower semi-continuous real-valued functions on X with f,(x) £f,..(x) for
n=12,...,and x € X. Then

hmnemminwsxfn(x) = minxeX(limneoofn(x)) .

In view of Theorem 1 it is natural to investigate whether a weaker
condition involving the order relation =<, possibly together with some
additional assumption, is sufficient to imply the minimax conclusion.
An answer is provided in Theorem 2 by means of a slight generalization
of Fan’s concept of a concavelike function together with a generaliza-
tion of the concept of quasi-convexity (for these concepts, see the follow-
ing section).

If f<h and g=<h, then f+g=<2h (the average of f and g is majorized
by &). Thus, (i) of the following theorem is implied by the order assump-
tion of Theorem 1. The induction proof of statement (b) below is similar
to the method used in Kneser [4] and Fan [3].

THEOREM 2. Let X be a compact space, and let F be a set of lower semi-
continuous real-valued functions on X satisfying:

(i) For any f,9 € F there exists h € F such that f+g =< 2h.

(ii) Ewvery finite intersection of sets of the form {x € X : f(x) £ x} 18 con-
nected, with (f,«) € F x R. Then

SUPsep mmxeXf (9}‘) = min:ceX supfeF’f (z) .

Proor. First we shal prove:
(a) For any « € R and any f,g € F such that

® < minweXma’X(f(x):g(x)) ’
there exists h € F with « < min, _x k().
Choose g with
& < /3 < minxeXmax(f(x)’g(x)) N
Defining y=min, ¢ f(z) and d=min  xg(z), we may assume that
max (y,0) < f. According to (i), choose k € F with f+g < 2k. Let
A={xeX: f(x)sp}, B={reX: gx)<p},
C={weX: kix)sp},

and observe that 4 and B are non-empty closed sets with AnB=4d.
If ¢ AuB, we have k(x) 2 4(f(x)+g(x))>8, so C<AuB. By (ii), C is
connected, and therefore either C =4 or C < B holds. If C< A4, set f, =k,
g1=9, and if C< B, set f;=f, g;=k. Then
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ﬂ < mina:eX max (fl(x)’ gl(x))

in each case. Defining
y1 = ming xf;(x), 6 = min, xg,(x),

it can be verified that we have either y, > 4(y + ) and §,=¢ (in the case
Cc ), or y;=y and 8;> }(f+9) (in the case C'<B). If max(y,,6,) =8,
say y, 2 f, then h=f, satisfies the conclusion of (a). Otherwise, suppose
the procedure can be repeated for all i=1,2,3,.... We obtain functions
fis9: € F whose minimum values y, and §; satisfy max(y,,d;)<f and
either y,> (y;,_; +p) and ;,=6;_,, or y;=y,_, and é;> }(f+9;_,). Clearly,
at least one of the sequences (y;) and (d;) must converge to 5. Suppose
y; = B for © - co. Since x < f, there exists ¢ such that « <y,. Set h=f,,
then % satisfies the conclusion of (a). In order to use the lemma we now
prove by induction:
(b) For any « € R and any set {f;,...,f,} <F such that

& < minxexma’xl§i§nfi(x) s

there exists h € F with « <min_ xh(x).

This is trivial for » =1, and the case n =2 is identical with (a). Suppose
the assumptions of the theorem imply that (b) is true for sets containing
less than n functions f;. Let « € R and {f},...,f,} <F be as in (b). De-
fine A={xeX: f,(x) <«}, a compact set. We may assume A4+, other-
wise take h=f, in (b). The set of restrictions {f| A4 : fe F} satisfies the
assumptions of the theorem with respect to A. In particular, intersec-
tions of the form

N feed: gj@)sp;} = AnNL {zeX: glx)<p;}
are connected, with (g;,5;) € F x R. We have
& < ming  Max, ;<. file)
80 by the induction hypothesis there exists k € F with « <min,_,k(x).
Then

o < min, ymax(k(x),f,(z)) .

Now (a) implies the existence of % € F' with « < min__x h(x). We conclude
that (b) holds for all n=1,2,3,..., hence (i) of the lemma is satisfied.

The assumptions of Theorem 2 imply that X itself is connected. For
let fe F and z, € X satisfy f(x,) =min, xf(x). Then

X = Uizrupfz e X: fl@)sa},
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i.e. X is a union of connected sets whose intersection contains the point
z,. Hence, in Theorem 3 of the next section we do not lose generality by
assuming, for emphasis, that X is connected.

3. Main result and corollaries.

The usual object of minimax theorems is now considered: a real-
valued function f defined on a product set X x Y. We assume throughout
that X and Y are non-empty. Setting

F={xrflxy:yel},

Theorem 2 is equivalent with the following minimax theorem.

THEOREM 3. Let X be a compact connected space, let Y be a set, and let
[: X x Y — R be a function satisfying:
(i) For any y,,ys € Y there exists yy€ Y such that

f(x’?/o) g %(f(x’yl) +f(x,?/2))
for all ze X.

(ii) Every finite intersection of sets of the form {xe X : f(x,y) S «},
with (y,«) € Y xR, is closed and connected.
Then

super minzeX.f (x’ y) = minzeX superf (x’ y)

It is shown by Examples 1 and 2 that if any one of the assumptions
of Theorem 3 is not satisfied, then the conclusion may fail to hold.

If Y is a convex subset of a vector space, and for each x € X the func-
tion y  f(x,y) is concave on Y, then (i) of Theorem 3 is satisfied with
Yo=3(¥1+vy,). The following concepts were introduced by Fan in [3]
in order to prove minimax theorems involving no vector space structure:
Let X and Y be arbitrary sets. A function f: X x ¥ — R is convexlike
on X, if for any x;,2,€ X and « € R with 0 <« <1, there exists 2y € X
such that

f(@,y) £ of (21,9) + (1 — &) f(5,9)

for all y € Y. Similarly, f is concavelike on Y, if for any y,,¥,€ ¥ and
o« € R with 0 <« <1, there exists y, € Y such that

f@y0) 2 of (@,9,) + (1 —a)f(2,y,)

for all z € X. In case, say, Y is convex and the functions y - f(x,y) are
concave, then f is concavelike on Y. Clearly, if f is concavelike on Y,
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then (i) of Theorem 3 is satisfied. The converse is not obvious in view of
the fact that no continuity is involved.

The concepts above are used in the following minimax theorem,
henceforth referred to as Fan’s theorem [3, Theorem 2]. Let X be a
compact space, ¥ a set, and f: X x ¥ — R a function satisfying: (i) f is
concavelike on Y'; (ii) f is convexlike on X, and for each y € Y the func-
tion x  f(x,y) is lower semi-continuous on X. Then

sup, min,,f = min,sup,f .

Another generalization of the concepts of convex and concave functions
has been used in minimax theorems. Let X be a subset of a vector space.
Recall that a function ¢: X — R is quasi-convex (resp. quasi-concave)
on X, if {reX: ¢(x)<oa} (resp. {xe X : @p(x)2«}) is a convex set for
each « € R (clearly X has to be convex).

Sion’s theorem [5, Corollary 3.3 of Theorem 3.4] is as follows. Let X
and Y be convex subsets of topological vector spaces, with X compact,
and let f: X x ¥ — R satisfy: (i) For each 2 € X the function y - f(x,¥)
is upper semi-continuous and quasi-concave on Y; (ii) for each ye ¥
the function z + f(x,y) is lower semi-continuous and quasi-convex on X.

Then
sup, min,f = min,sup,f .

(In the proof, Sion applies a theorem of Knaster, Kuratowski and
Mazurkiewicz based on Sperner’s lemma).

We observe that property (ii) of Theorem 3 is an extension of property
(ii) of Sion’s theorem. The relationship between Fan’s and Sion’s theo-
rems and Theorem 3 is illustrated in Example 3: For each of the theo-
rems, there exist functions satisfying the assumptions of that theorem
and violating the assumptions of the other two theorems.

The following corollary depends on a simple property of the weak
topology on a locally convex topological vector space.

CoroLLARY 1. Let X be a weakly compact and convex subset of a Haus-
dorff locally convex space E, let Y be a set, and let f: X x ¥ — R be a func-
tion satisfying:

(i) For any y,,y, € Y there exists y, € Y such that f(x,y,) = 3(f (2, 1)+
f(x,y,)) for all z € X.

(ii) For each y € Y the function x v f(x,y) ts lower semi-continuous and

quasi-convex on X.
Then

Supyey mjnxexf (x’ y) = minzeX superf (x: y) .
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Proor. If C is any intersection of sets of the form {x € X : f(x,y) S «},
then C is closed in X and convex. Since E is Hausdorff and locally con-
vex, C is actually weakly closed.

The corollary below is the Kneser—Fan minimax theorem for concave-
convex functions, [4], [3]. It is implied by Theorem 3. We present an
alternative proof of the result based only on separation in R® of disjoint
convex sets. This method is used in Berge [1] with X <R™ and Y <R¥%,

CoROLLARY 2. Let X be a compact convex subset of a topological vector
space, let Y be a convex subset of a vector space, and let f: X x Y — R be
a function satisfying:

(i) For each x € X the function y o f(x,y) 18 concave on Y.

(ii) For each y € Y the function x v f(x,y) 18 lower semi-continuous and
convexr on X. Then

Supyy mi-na:eXf (z,y) = minmeX SUPyey f (=, y) .

ALTERNATIVE PROOF. In order to apply the lemma of section 2, let
x€R and {y,,...,y,} <Y satisfy
& < minmeXma’Xlgignf(x’yi) .

Let P<R" be the convex hull of the set
{(f(x’yl):' . "f(x)yn)) CXE X} >

and let @ be the cone of points (z,...,2") € R* with 2!<«, 1=1,...,n.
We show that PNnQ=9. Any ze P is of the form

2= z;n=1 ﬂj(f(xj’yl):' . "f(xj’yn)) 4

where z;€ X, ;20, j=1,...,m, and 37, f;=1. Setting =37, 8;,
there exists ¢ € {1,...,n} such that f(z,,y,) > «. Since z - f(z,y;) is con-
vex, the ¢th coordinate 2¢ of z satisfies

2= Z;’Ll Bif ®5y:) 2 f(®,45) > &,

showing that 2z ¢ Q. The disjoint convex sets P and @ can be separated
by a hyperplane, i.e. there exists a non-zero vector c=(y,,...,y,) with
sup,oc'2=inf, pc2. We clearly have y,20, i=1,...,n, and may as-
sume X7 ,y,=1. Define y,=37_,7,y;. For each € X the function

y b f(x,y) is concave, so

f@,yo) 2 201 7if (#,9:) Z sup,gcz = &,
showing that (i) of the lemma holds.
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4. Examples.

The examples below serve to illustrate the concepts treated in the
note. In particular, the assumptions of Theorem 3 are investigated. We
use the notation

[x,8] = {xeR: x2x=p}, [xp)={reR: asx<p}, etec.

ExampLE 1. In each of the cases a.—d. of functions f: X x ¥ — R,
all except one of the assumptions of Theorem 3 are satisfied, and
sup, inf, f < inf,sup, f.

a. Let X=(0,1], Y =[0, + ), f(x,y)=2y. X is not compact, but for
example locally compact and o-compact.

b. Let X=Y=[0,1], f(z,y)=2 if ze X and y€[0,1), f(z,1)=1-2x
if x€[0,4], and f(x,1)=2x—1 if x € (},1]. There exists no y,€ ¥ with
f(x,y0) 2 ¥(f(,0) +f(x,1)) for z € X.

c. Let X=Y=[0,1], f(z,y)=y if 2€[0,1), and f(l,y)=1-y, for
yeY. The set {xe X : f(x,0)<0} is not closed.

d. Let X=Y=[0,1], f(x,y)=2+y if z+y =<1, and f(z,y)=2—(x+y)
if z+y>1. The set {xr e X : f(x,4) <1} is not connected.

ExampLEe 2. Let X;=[-2,-1], X,=[1,2], X=X,uX, and Y=
[—1,1], and define f(z,y) =xy/|x|. The restriction of f to X; x Y satisfies
the assumptions of Theorem 3 for :=1,2, but X is not connected, and
the conclusion of the theorem fails for f on X x Y.

ExampLE 3. Each of the functions f: X x ¥ — R of a.—c. below satis-
fies the assumptions of precisely one of the following three theorems:
Fan’s theorem, Sion’s theorem and Theorem 3 (cf. section 3). Hence,

sup, min,f = min,sup,f
holds in each case.

a. Let X=Y=[0,1], f(0,y9)=0 and f(l,y)=0 for ye Y, f(z,y)=1
elsewhere. Fan’s theorem applies (take x,=0 to verify that f is convex-
like on X). The sets {x € X : f(x,y) <0} are not connected, violating (ii)
of Theorem 3, hence (ii) of Sion’s theorem.

b. Let X=Y=[0,1], f(0,y)=y—1 for ye Y, f(x,0)=x for z € (0,1],
f(x,y)=0 elsewhere. Sion’s theorem applies. There exists no y,€ Y
with f(x,y,) 2 3(f(2,0) +f(,1)) for x € X, so neither (i) of Theorem 3
nor (i) of Fan’s theorem holds.

c. Let X be the half-circle in the Euclidean plane consisting of points
x=(21,2?) with (x1)2+(22)2=1 and 2220, and let Y =[0,1]. Define
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£(1,0,9)=0 if y€[0,1), f(x,1)=0 if ze X\{(—1,0)}, f(—1,0,1)=—1,
and f(x,y)=1 elsewhere. Theorem 3 can be applied. There exists no
xo € X with f(ze,y) = 3(f(1,0,9)+f(—1,0,y)) for y € Y, implying that f
is not convexlike on X, i.e. (ii) of Fan’s theorem is violated. The functions
x - f(x,y) are not quasi-convex (X is not convex), i.e. the assumptions
of Sion’s theorem are violated.

REFERENCES

Berge, Topological spaces, Oliver and Boyd, Edinburgh, 1963.

Bourbaki, Elements of mathematics, General topology, part 2, Hermann, Paris, 1966.
Fan, Minimaz theorems, Proc. Nat. Acad. Sci. 39 (1953), 42-47.

Kneser, Sur un théoréme fondamental de la théorie des jeux, C. R. Acad. Sci. Paris
Sér. A 234 (1952), 2418-2420.

5. M. Sion, On general mintmax theorems, Pacific J. Math. 8 (1958), 171-176.

6. J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), 295-320.

1. C.
2. N.
3. K.
4. H.

UNIVERSITY OF COPENHAGEN, DENMARK



