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ON CERTAIN HOMOMORPHISM PROPERTIES
OF GRAPHS I

IVAN TAFTEBERG JAKOBSEN

The present paper and its continuation “On certain homomorphism
properties of graphs IT”’ contain the first part of the results presented in
my thesis ([4]). These two papers will in the sequel be referred to as I
and II.

The first section gives the definitions and terminology used in both I
and II, and section 2 is an introduction to both papers containing an
account of earlier investigations concerning the problem considered.
The results are then presented in the following sections.

In this paper it is proved that every finite graph with n =8 vertices
and at least 5n — 14 edges which is not a 4-cockade composed of complete
7-graphs is homomorphic to a complete 8-graph with two edges deleted.

1. Definitions.
1) General definitions.

In this paper a graph is an undirected graph without loops and without
multiple edges.

Let I' be a graph. Then V(I") denotes the set of vertices and E(I") the
set of edges. n(I") denotes the number of vertices in I" and e(I") the number
of edges. If § is a set, |S| denotes the number of elements of S. An edge
joining two vertices x and y is denoted by (x,y) or (y,x). The complement
of I' denoted by T, is the graph whose set of vertices is V(I") and whose
set of edges is the set of all un-ordered pairs of distinct vertices not con-
tained in E(I"). If W < V(I") then I"— W denotes the graph obtained from
I' by deleting all vertices belonging to W and all edges incident with at
least one vertex of W. I'(W) denotes the subgraph of I" spanned by the set
W defined as the subgraph of I" whose set of vertices is W and whose set
of edges is the set of all edges of I" having both endvertices in W. Any
such subgraph is called a spanned subgraph.

Let I'" be a subgraph of I'. The graph I'— V(I") is also written I"— I".
Let I"—x denote I"—{x} if xe V(I"), otherwise I". If x,ye V(I'),
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(x,y) ¢ E(I') (resp. (x,y) € E(I')), then I'U(x,y) (resp. I'— (x,y)) denotes
the graph obtained from I" by adding (resp. deleting) the edge (x,y). For
convenience if (z,y) ¢ E(I") we define I — (z,y)=1I". If x&V(I"), I"ux
denotes I'(V(I")u{x}). Let v(x,I") denote the valency of = in I'. The
subgraph of I" spanned by the set of vertices joined to x is called the
neighbour-configuration of x in I

A regular graph I'is a graph in which the valency of each vertex is the
same, and this number is called the valency of I

A path II is a graph with vertices x;,%,,...,%,, p = 2, and edges (,,%,),
(x9,%3), - - -, (X,—1,%,), Where x,,...,z, are all distinct. The vertices x, and
z, are called the end-vertices of the path and are said to be joined by the
path. Let x,y € V(II). Then II[x,y] denotes that subgraph of IT which is
a path and has z and y as its two end-vertices. I7[x,x] is defined as the
graph consisting of the vertex x. The length of a path is the number of its
edges.

If I'} and I, are two disjoint subgraphs of I, a (I'y)(I)-path is a path
contained in I" with one end-vertex belonging to I}, and the other to I',
and which has nothing else in common with I',uT,.

A subgraph 4 < I'" is said to be joined to a set W of vertices of I, if in I”
each vertex of W is joined by an edge to at least one vertex of A.

A circuit is a graph with vertices x;,,,...,z,, u 23, and edges (z;,,),
(%3, 23), - -+ (%,1,%,), (%,,%,), Where z,,...,2, are all distinct. The circuit
is denoted by ((x,%,,...,2,)). If the circuit is a subgraph of a graph I’
it will sometimes be denoted by I'((z,,%,,.. .,x”)) to emphasize this.
The length of a circuit is the number of its edges. A circuit of length u is
called a u-circuit.

A graph I'is said to be A-fold connected, 1= 2, if n(I")= A+ 1 and when-
ever =A—1 vertices are deleted the remaining graph is connected.

Let I" be a connected graph. A cut-set of I'is a set § £ V(I') such that
I'—8 is disconnected. A minimal cut-set of I' is a cut-set of which no
proper sub-set is a cut-set of I'. A cut-set is said to separate I'. Further-
more [ is said to be separated by a subgraph I'" if I'— I"" is disconnected.

A set of vertices of a graph I'is called ¢ndependent if no two of them are
joined by an edge, and a set of edges of I'is called independent if no two of
them have a vertex in common.

A finite graph with » vertices in which each pair of distinct vertices is
joined by an edge is called a complete v-graph and denoted by (»). By
convention (0)=¢.

A (v) with exactly one edge deleted is denoted by (»—) (for »=2).

A {v) with exactly two edges deleted is denoted by (»=) (for » = 3).
If the two deleted edges are independent, it is denoted by {(v=<).
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A (») with exactly three edges deleted is denoted by (v=) (for »=3).
If the three deleted edges are independent, it is denoted by (»=¢).

A (v) with exactly four edges deleted is denoted by (»=) (for » 2 4). If
the four deleted edges are independent, it is denoted by (»=i).

2) Contractions.

Let I and A be two graphs. A contraction is a mapping m from V(I')
onto V(4) such that (1) Vaxe V(4):I'(m*(x)) is connected and (2)
Vz,y € V(4): (x,y) € E(4) if and only if I'" contains at least one edge
joining a vertex of m~1(x) and a vertex of m~—(y).

A is said to be obtained from I' by a contraction and I' is said to be
contracted into A if such a mapping exists and is applied on I'.

I is said to be homomorphic to A, written I"> A, if I" can be contracted
into a graph containing A4 as a subgraph. I not homomorphic to 4 is
written I} 4.

If I' is contracted into a graph consisting of one vertex then I is said
to be contracted into one vertex for short.

By the term contraction of an edge is meant the contraction of the graph
consisting of the edge and its two end-vertices into one vertex.

3) Projections.

Let I' be a connected, finite graph. Let A be a spanned proper subgraph
of I'. Let C' denote a connected component of I'— /A, and let « be any
vertex of A joined to C. Any contraction P from I'(V(Au()) into a graph
4, defined by contracting Cuz into one vertex and keeping the other
vertices of A fixed is called a simple projection from C onto A and A4 is
denoted by PA. V(4)=V(A4) and 424.

For convenience the identical mapping on V() is also considered to be
a simple projection from any connected component of I'—/ onto A.

Let Cy,...,C,, n=1 possibly, be distinct connected components of
I'—A. Let P; be a simple projection from C; onto 4, i=1,...,n. Here
P, may possibly be the identical mapping on V(4). By applying the
simple projections P,,...,P, successively a contraction P of
I'(AuCyu...uC,) into a graph A4 is defined, where V(4)=V(A4) and
A24. Any contraction P defined in such a way is called a projection
from I'— A onto A, and P is said to be composed of the successive simple
projections P,,...,P,, written P=P, 0P, ;o...0P;. Here P=P, pos-
sibly (i.e. a simple projection is a special case of a projection). 4 is denoted
by PA. Each of the simple projections P;, 1<j<n, is said to be a part
of P. Note that P and PA are independent of the order of the parts.
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P—Pj, for 1<j<n, denotes for n=1 the identical mapping on V(A),
and for n = 2 the projection from I"— A onto A composed of all P,,...,P,,
except P;.

If P’ is the identical mapping on V(A), then P — P’ is defined to be P,
regardless of whether P’ is a part of P or not.

Let z,y € V(A) and (x,y) ¢ E(A). If the projection P from I'— A onto A
yields a graph P/ containing AU (z,y) as a subgraph, then the new edge
(x,y) is said to be provided for A by P from I'— A.

RemaARk. Let P be any projection from /™A onto A. It is possible
that PA=A even if P is not the identical mapping on V(A). Clearly
I'>PA.

A similar concept of projection has been introduced by W. Mader in [6].

4) Cockades.

Let x4 be an integer = 0 and let X, and X, be two graphs each containing
a (u) as a subgraph.

Any graph K being the union of » (x any integer = 1) graphs @,,®,,
...,®, such that for 2<k=<x

(¢1U@2U...U¢k_1)n¢k= <‘Lt>

and @, and @, is isomorphic to either X, or X,, is called an (X, X,)-co-
ckade of strength u. K is said to be composed of D, D,,. . .,D,, successively.
The class of all (X, X,)-cockades of strength u is denoted by 4 ™*(X,, X,).

Remark. Let K € ##(X,,X,). K may be composed of just one graph
isomorphic to either X, or X,, that is K ~ X,, or K ~¥ X, may be the case
If u=0, K is the union of a finite number of disjoint graphs each being
isomorphic to X; or X,.

A special case is X; ~ X,~X. Then an (X,,X,)-cockade of strength u
is simply called an X-cockade of strength u, and J#*(X,,X,) is also
denoted by X #(X). In the case X =(v), »=u, these graphs were first
described by G. A. Dirac in [2].

There are two types of cockades that will be of importance here. The
first type is the (»)-cockades of strength u, where u <v and » is an integer
2 1. The class o #({»)) is denoted by o *. The other type are the ({»—1),
v+ 1=1))-cockades of strength » — 3, where » is an integer =7, and this
class is denoted by %-3.
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Finally a definition concerning the notation of numbers: Let ¢ be a
real number =0. Then [t] denotes the greatest integer less than or
equal to ¢ and {t} denotes the least integer greater than or equal to ¢.

2. Introduction.

It is the object of the papers I and II to consider some special cases of
a general extremal problem in the theory of graphs. Among the results
is a theorem announced in [3], but not proved there.

The general extremal problem which is considered is the following:

ProBLEM. Let n and » be integers such that n = v = 4. How many edges
must a finite graph with » vertices contain in order to be homomorphic
to a complete v-graph or to a complete v-graph with one or two edges
deleted ?

Investigations of this problem were initiated by G. A. Dirac in [2].
The results hitherto obtained have been of two kinds. The first kind are
best possible results for small values of ». It was proved by Dirac in [2]
that:

THEOREM x. For v=5 and 6: Every finite graph with n vertices, n>v,
and at least (v—5[2)n— }(v—1) (v —3) edges which is not a member of A -3
is homomorphic to a {v—), and

THEOREM . For v=>5 and 6: Every finite graph with n vertices, n=v,
and at least (v —3)n—3(v—1)(v—4) edges which is not a member of A"~}
ts homomorphic to a (v=">.

It is easy to see that both of the above theorems are true for »=4 as
well.
Furthermore it was proved by W. Mader in [6] that:

THEOREM y. For 3=v=<7: Every finite graph with n wvertices, n=v
and at least (v—2)n— 3v(v—3) edges is homomorphic to a {(v).

Theorem y for »=3,4 and 5 follows from Theorem 8 for y=4,5 and 6,
respectively. Theorem y is best possible, because as observed by Dirac in
[2] there existforeachn = vgraphswithn vertices,and (v — 2)n — §»(v — 3) — 1
edges, which are not homomorphic to a (»), for example the members
of A2,
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The second kind of results are estimates of the number of edges required
for arbitrary values of n and ».

It was proved by W. Mader in [5] that there exists a mapping d, from
the integers =3 to the real numbers such that every finite graph I
with n(I") 2» satisfying the condition

e(I') z doy(wn(I) ,
where

do(v) = Inf{t| t a real number and every graph satisfying
e(I')ztn(I')  ishomomorphic to a {v)},

is homomorphic to a {»). Moreover it was proved (see [2], [5], and [6])
that the following lower and upper bounds hold for dy(»):

v—2 = dy(v) £ 8{rlogvflog2} (v = 3).

From this and Theorem y it follows that dy(»)=v—2 for 3<»=<7.

The present author proved in [3] that Theorem 8 holds for » =7 as well
and claimed that it holds for » = 8. This will be proved in section 4 of this
paper. These two results imply Theorem y for »=6 and 7.

In section 6 of the paper II it is proved that Theorem « holds for
v=1T as well if #73 is replaced by the class €*~3.

In section 7 some estimates of the required number of edges for arbi-
trary values of v and certain (infinitely many) values of n are proved.
These are, I think, mainly of interest because they show what cannot
be hoped for regarding the establishing of analogues for higher values
of » of Theorems «, 8, and y.

Section 3 contains some theorems and auxiliary results to be used in
section 4, while section 5 contains theorems and auxiliary results to be
used in section 6.

3. Results to be used.
The following theorems (A) and (B) will be needed.

(A) Every finite graph with n vertices, n > 7, and at least 4n — 9 edges
which is not a member of #"¢® is homomorphic to a (7=). (See Theorem 1
n [3]; this is Theorem g for v=17.)

(B) A Corollary to an extension of the Theorem of Menger (see [1]).
Let A be a positive integer and I"a A-fold connected graph. Let A, B V(I'),
A+0, B+0, AnB=¢. A mapping 4 from A4 to the positive integers is
defined such that if |4] > then 4(a)=1 for all a4 and if |4| <A then
ZczeA"4 (a) =A.
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If B is a mapping from B to the positive integers defined analogously
then I' contains a set of A (4)(B)-paths # such that

1. The intersection of any two of the members of # has nothing in
common with I'—(AUB).

2. Ya€A: a belongs to at most 4(a) of the paths in #.

3. VbeB: b belongs to at most B(b) of the paths in #¥.

Furthermore we need two lemmas:

LeMma 1. Let K € X F, where vz 2 0. Then
e(K) = 3o +pu—1)n(K)—drpu .

The proof is by induction over the number of (»)-s of which K is

composed and is contained in [2] for x> 0. The lemma clearly holds for
u=0 as well.

LemMA 2. Let K € A-% for v= 4. Then the following holds.

A. If K+{(»v—1), then K contains at least six vertices of valency v—2,
and amony these there are six which in K span a graph consisting of two
disjoint triangles.

B. K} {v=), but if K+{»—1) and an edge joining any two vertices not
already joined by an edge is added to K and any edge of K deleted, then the
resulting graph is homomorphic to a (v=>.

The lemma is proved as lemma 1 in [3] for »=5; it clearly holds for
v=4 as well.

Remark. Let X be a graph and let K € X #(X). Let K be composed of
D, Dy,...,D,. Then every complete subgraph of K is a subgraph of
some D;.

4. Homomorphism Theorems for (8=).

THEOREM 1. Let I" be a graph containing a vertex x, of valency 9. Let the
vertices joined to x, be denoted by x,,%,,...,xy, and let I'(2,,Z,, . ..,%,)
be denoted by I'y. If I satisfies the following conditions

1) I' is 5-fold connected,

2) I' is not separated by a (5), (5—) or (5=,

) Vae V(I): v(x,I)29,

4) Yz, e V(ly): vz, Iy) 25,
then I'>(8=).

Math. Scand. 31 — 25
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Proor or THEOREM 1. If I'=Tju%,, then by 3), I'=(10). Hence it may
be assumed that I'— I'y — x, + J. Every connected component of I'— I'y— z,
is by 1) joined to at least five vertices of I'y. By 4, e(Iy) = 45-9 that is
e(ly) = 23.

It will first be proved that the following is a consequence of the assump-
tions of Theorem 1.

(1) There exists a projection P from I'—Iy—x, onto I'y such that
e(PI'y) = 26. (Possibly P is the identical mapping on V(I%).)

Proor or (1). The proof will be by reductio ad absurdum.
Suppose that there does not exist any projection P from I'—I'y—z,
onto I'y such that e(PI) = 26.

(1.1).  I'y does not contain a {6) or {6 —).

For suppose it does. The total number of edges of I'y incident with any
three vertices of I'y is by 4) at least 12. Hence e(Iy) = 14 + 12 = 26, contrary
to hypothesis. This proves (1.1).

Obviously e(I'y) <25, hence at least four vertices of I'y have valency
5 in I,

(1.2). I'—=T'y—x, has at least two connected components.

For suppose not. Then it has exactly one, C say. Suppose that v(z,,I'y) =5
and (2,,%,), (%1,%3), (¥1,%4) & B(Iy). Then by 3) C is joined to each of
Z,,%,, %5, %, because the valency of these vertices in I'yux, is at most 8.
By contracting Cuw, into one vertex a simple projection P is obtained
such that e(PIy)=e(ly)+3, which is contrary to hypothesis, because
e(I'y) = 23. This proves (1.2).

(1.3). EHwvery connected component of I'—I'y—x, ts joined to three vertices
of I'y such that one of them is not joined to either of the others.

Suppose on the contrary that C, is a connected component of I'— I'y—x,
such that any three vertices of I'y joined to C; span a (3—) or a (3) in I',.
Then any five vertices of I'y joined to C'; span a graph containing a (6=1)
as a subgraph and any six vertices of Iy joined to C, span a graph con-
taining a (6=1) as a subgraph. From this it follows by 2) that it may
without loss of generality be assumed that C, is joined to x,,z,,...,z4
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and that Iy(zy,. . .,%s) 2 {6=1). The total number of edges of I'y incident
with 2,,24,%, is by 4) at least 12, hence e(Iy) = 24. By (1.1), I'y(x,,. . .,%q)
c(6=). By (1.2), I'-I'y—x, contains another connected component,
C, say. By 2) and (1.1), C, is joined to two vertices of I'y which are not
joined by an edge in I'y. Therefore there exist simple projections P; and
P, from C,,C, onto I'y respectively such that e((Pyo Py)Iy) = 24+ 2=26,
contrary to hypothesis. This contradiction proves (1.3).

Now let C; be a connected component of I'— I’y —x,. Assume without
loss of generality that C; is joined to x,...,z; and by (1.3) that
(@1, %), (X9, 3) & E(Iy). Let C, be another connected component of
I'-T'y—x,. By (1.3), C, is joined to x,,z,x,.€V(I'y) such that (z,,,),
(wg,z,) ¢ E(I'y). Now there always exist simple projections P, and P, from
C,,C, onto I'y respectively such that e( (P o Py)Iy) 2 e(I') + 3 2 26, unless
X, =Xy, 4, =X, ¥, =3 (0T, analogously, z, =z, x, = 2., %, =x,) and I'y(z,,...,
x5) = (5=, hence by hypothesis this must be the case. But then by 2),
C, is joined to at least one more vertex of Iy, say to x;. Again there exist
simple projections P, and P, from C;,C, onto I'y respectively such that
e( (P10 Py)Iy) = 26, unless x4 is joined to each of ,,...,x; In this case,
however, by contracting C,Ux, into one vertex a simple projection
P from C,; onto I'y is obtained such that e(PIy)=e({(6=))+12+2=27,
contrary to hypothesis. This completes the proof of (1).

(2)  If there exists a projection P from I'— I'y—x, onto I'y (possibly P
is the identical mapping on V(I'y)) such that e(PIy)2 27, then

I'>(8=).

ProOF OF (2). Ase(Ply)227=4-9-19, it follows that if PIy¢ 4 3 then
PI'y>(7=) by (A), hence I'>(8=). Assume now that PI'yeX @ is
composed of two (6)-s. Assume without loss of generality

Pr9(x1’x2’w3’$4,x5’xe) = <6>’ Pro(mbxssxs’x'l’xmxs) = <6> .

By 4) no edge incident with a vertex of valency 5 in PI'y can have been
provided by P, hence at most the edges (x,,a;), (%5, %), (%4, %4) can have
been provided by P.

Let C be a connected component of I'— I'y — x,. Assume that C is joined
to a vertex different from x,,2;, x4 in both (6)-s of PI'y; say C is joined
to z, and z;. By contracting each of Cux,, I'(xy,x,), and I'(x;,xg) into
one vertex I'—x, is contracted into a graph containing a (7=) as a
subgraph, all the vertices of which are joined to z,, hence I'>>(8=) in
this case. Assume now that C is not joined to vertices different from
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X4, %5, %q i both (6)-s of PI'y. Then C is joined to at least five vertices of
one of the {6)-s of PI'y, say to five of the vertices x;,x,,...,zs By con-
tracting each of I'(x;,z,), I'(xy,2¢) and C into one vertex I'—ux, is con-
tracted into a graph containing a (7 —) as a subgraph six vertices of which
are joined to x,, hence again I'>(8=). This proves (2).

(3) If there exists a projection P from I'—I'y—x, onto I'y such that
PI'y> ({6), then I'>(8=).

ProorF orF (3): By 4) the total number of edges of I'y incident with any
three vertices of I'y is at least 12. Hence e(Ply)=12+15=27 and
I'>(8=) by (2). This proves (3).

In the rest of the proof of Theorem 1 let P be a projection from
I'—TI'y—x, onto I'y such that e(PIy)=26.

(i) PIy contains a vertex of valency 5 in PI',. For otherwise
e(Ply) = 27.

(ii) If there is a vertex of valency 5 in PI'y whose neighbour-configura-
tion in PIy contains a vertex of valency =<2 in the neighbour-
configuration, then I">(8=).

Proor orF (ii): Let the notation be chosen so that z, is joined to exactly
Xy, %, . . ., %g in PI'y and

v(g, PTy(@s,. .., %)) S 2.

By contracting PI'y(x,,x,) into one vertex Pl is contracted into a graph
A4 such that n(4)=38, ¢(4)=26—-5+2=23=4-8—9. 4 ¢ A ;® because a
member of " ¢® cannot have 8 vertices, hence by (A), 4>(7=) and conse-
quently I'>(8=). This proves (ii).

Because of (ii) it may be assumed from now on that there are no
vertices of the kind described in (ii). Furthermore, if any vertex of Pl
has a (5) as neighbour-configuration in PI'y, then PI'y>(6) and by (3),
I'>(8=). Hence in what follows it will be assumed that this is not the
case. These assumptions imply that

(iii) Every vertex of valency 5 in PI'y has one of the two neighbour-
configurations (6=1) or (6—) in PI,

These two possibilities will be analysed in turn.

(A)  Assume that there is a vertex in PI'y whose neighbour-configuration in
PT'y is a (b=1).
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Assume without loss of generality that , is joined to exactly z,, s, . . ., %4
that PIy(x,,. ..,z =(5=1%), and that (x,,x,), (x5 %¢) ¢ E(PI%).

The total number of edges of PI'y incident with x,,x,,x, is 26 —13=13,
hence by 4) there are two alternatives, «) and f):

«) v(x, PIy)=5 for k=17,8,9 and PIg(z;,2g,%,) is a (3—).
B) Two vertices of x;g,2, have valency 5 in PI'y, one vertex has
valency 6 in PI'y and Ply(x,,xg,7,) is a (3).

Alternative «). Assume without loss of generality (x,,xg), (%g,%,) €
E(Ply) and (x,%,) & E(PIy). The vertex x, has valency 5 in PI'y, hence
by (iii) its neighbour-configuration in PI'y contains a (56 =1) as a subgraph.

If 2, were joined to x,,x,, 25,24 in PI'y, then x4 would have to be joined
to x4, %5, 25,24 in PI'y as well, contrary to the fact that x; has valency 5
in PI'y. Hence x, is not joined to all of wy,x;,%5,7¢ in PI'y and by an
analogous argument x4 is not joined to all of x,, x5, x5, 25 in PI'y. Therefore
z, and x4 are both joined to x, in PI'y. Furthermore x, is joined;to three
more vertices among x,, &y, Z, &, in PI'y. Assume without loss of generality
%, joined to x,,&5,x; in PIy. The neighbour-configuration of x, in PI'y
contains a (6 =1) as a subgraph by (iii), hence x4 is joined to x, and x5 in
PTIy. Furthermore the neighbour-configuration of zg in PI'y contains a
{6=1) as a subgraph by (iii), hence x, is joined to x, and x, in PI'y. Now
(xq, %) & E(PIy), because otherwise by (iii) applied to xg, (%4,24) € E(PI)
contrary to v(x,, PIy)=5. But v(ze, PI'y) =5, hence necessarily (x4,24) €
E(Ply). By (iii) the neighbour-configuration of x, in PIy contains a
(6=1) as a subgraph, hence (xg,%,) € E(PI). There are no further edges
in PI.

Figure 1.
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PTI'y may be described as follows: It consists of a 6-circuit, ((xy, 25,2,
Xg, %y, %g) ), and a path of length 2, spanned by the vertices z,,z,,2,,
disjoint from it, such that each vertex of the 6-circuit is joined to all
three vertices of the path of length 2. (See Figure 1).

No edge incident with a vertex of valency 5 in PI'y can have been
provided by P, hence at most (x3,7,) and (z,,«,) can have been provided
by P (heavily drawn on figure). In particular, ((x, 25,2, g, 2y, %)) S L.

Let C be a connected component of I'—I'y—x, Assume first that C
is joined to 2 non-consecutive vertices of the 6-circuit ( (x, 5, %, &g, T, ¢) ).
Then it may be supposed by symmetry that C is joined to x4 and z, or to
zy and x;. By contracting each of I'(xg,x,), I'(x,,25) and CUz, into one
vertex, I'—x, is contracted into a graph containing a (7=) as a sub-
graph, all the vertices of which are joined to x,, hence I">(8=) in this
case. Assume secondly that no connected component of I'—I'y—z, is
joined to two non-consecutive vertices of the abovementioned 6-circuit.
Then I'— I'y—x, has at least three connected components because each of
Xy, %y, %q, Xy, Xy, Xg 18 joined to I'— I'y—x, (the minimal valency of a vertex
in I" being 9); and every component is joined to z,,25,2, and two conse-
cutive vertices of ( (x,%;, %, 24, %y, %) ). Let C; and C, be two components
of I'-I'y—x, By contracting each of C,uz,, Coux,, and I'(x;,x,,x3)
into one vertex I'—x, is contracted into a graph containing a (7=) as
a subgraph all the vertices of which are joined to z,, hence I'>(8=) in
this case also.

Alternative f). Assume without loss of generality v(x,, PIy)=86,
v(xy, PIy) =5 for k=8,9. x, is then joined to four of x,,x,,2,, 25,24 in PI,
hence without loss of generality it may be assumed that z, is joined in
PTy either to

a) Xy, %, 5% Orto b)) @,,%5,247;.

Case a). We have v(x;, PIy) =6 for £=2,3,5,6 by (iii) because z,,;,
x5, %g are all joined to each of z,,z,,2, and (2;,%,;), (%4,2,;) & E(PI,).
Hence x,, %4, 25, 74 are each joined to at least one of x4, 2y in PIy. If either
Zg OT x, is joined to z, in PI'y, then by contracting each of PIy(x,, ;)
and PI'y(xg,2,) into one vertex, Pl is contracted into a (7 =), therefore
I'>(8=) in this case. Now (zg,2,), (%9,2,) & E(PI'y) may be assumed.
Then without loss of generality suppose that x, is joined to exactly
%q,%g, Tg, X5, %3 in PI'y, Then necessarily (x,,25) € E(PIy). By (iii) the
neighbour-configuration of x4 contains a (6=1¢) as a subgraph, hence x4
is joined to x; and x4 in PI'y. There are no further edges in PI',. By
contracting each of PIy(x;,x;) and Ply(x,x,) into one vertex Pl is
contracted into a (7=, hence I">(8=) in this case also.
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Case b). The vertex z, is joined to x4 or 2, in PI'y, because v(zg, P1y) = 5.
Furthermore z4 is joined to both xg; and x, in PI, because if e.g. z, is
joined to x, and not to xz then v(xg, PIy) =5 and by (iii) the neighbour-
configuration of x4 in PI'y contains a (5=1%) as a subgraph so that z, is
joined to @y, 23, 2, in PIy (24, 25) and (2,,%,) & E(PI)), but this is contrary
to the fact that v(xy, PI'y)=5. Hence xg is joined to both x5 and x, in PI,.

We have v(x;, PIy) = 6 for k=2,3 by (iii) because x,,; are both joined
to each of x,,xq,,, and (2,,2,), (x4, %;) € Z(PIy). Hence z, and x; are each
joined to at least one of xg,2,, in PI'y. If one of x,,z,, say g, is joined to
both z, and x; in PIy, then by contracting each of PIy(xs x,) and
PrI'y(x,,2,) into one vertex PI'y is contracted into a (7=, hence I'> (8=
in this case. Therefore it may now be assumed without loss of generality
that (%,,%;), (%5,%9) € E(PI'y) and (xg,%;), (g,%,) ¢ E(PIy). For k=8,9
we have v(x;, PIy) =5, hence by (iii) the neighbour-configuration of
in PI'y contains a {5 =1) a8 a subgraph. Therefore (x4, x;), (¢4, ;) § E(PT),
because (x5, 24), (¥q,%;) &€ E(PIy). Then necessarily (g, x,), (€g,%4) €H(PL).
There are no further edges in PI,.

PTI'y may be described as follows: It consists of a 4-circuit 3 =( (3,2,
%y, %) ), and a set S = {x,,x;, %, %,}, of four vertices not on 3, each having
valency 5 in PI'y and each joined to three vertices of ¥ so that no two
vertices of S are joined to the same three vertices of 3, and finally a ninth
vertex, x,, joined to all the others. Furthermore any two vertices of 8
are joined by an edge if and only if they are joined to the same pair of
non-adjacent vertices of 3. (See Figure 2).

Figure 2.

By 4) no edge incident with a vertex of valency 5 in PI'y can have been
provided by P, hence at most the edges of 3, and the edges joining x, to the
vertices of 3 can have been provided by P (heavily drawn on figure).
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1. Assume that at least one edge of 3, has been provided by P.

Assume without loss of generality that (z,,%,) has been provided by P.
The valency of , and x, in I'y is then 5 by 4), hence no other edge incident
with x, or z, can have been provided by P. Then (z,,,) has been provided
for I'y by a simple projection denoted by P, from a connected component
C of I'—-TI'y—x, onto I'y as part of P, and no other edge of PI'y not in I’y
has been provided by P, for I'y. C is of course joined to z, and x,. Assume
that C is not joined to any of ;,x5,2¢ or 4. Then by 1), C is joined to
exactly x,,2,,%5,&;,25. But (2,,2,), (24,%;) € E(Iy) because as mentioned
above these edges cannot have been provided by P; furthermore
(g, ;) & E(I'y), hence I'y(y,x,,x5,%,,xs)=(b=) contrary to 2). This
contradiction shows that C' must be joined to one of x;,x;,24,x,. It may
then be assumed that C is joined to z; or z,. Let P, denote the simple
projection from C onto I'y obtained by contracting C'uz, into one vertex.
P’'=(P—P,)o P, is then a projection from I'— I'y—x, onto I'y such that
P'I'y 2 PI'yu(xy,24) or P'Ty 2 PI'yuU(x,x,) and therefore e(P'Iy)=27;
hence by (2) I">(8=). (Note that P =P, possibly). So if at least one edge
of 3 has been provided by P then I'>{8=).

At most three edges can have been provided for I'y by P because
e(I'y) = 23. Hence the alternative to the assumption that at least one edge
of 3 has been provided by P is:

2. The only edges provided by P, if any, are three or fewer of (x4,%,),
(24, %3), (%4,%6), (X4,%7).

In what follows assume without loss of generality that (x,,x,) € E(I)
and at most (z4,%,), (%4,%;), (£4,2;) have been provided by P.

Let C be a connected component of I'— I'y—x,. Assume that no edge
of PI'y not in I'y has been provided for I'y by a simple projection from C
onto I'y as a part of P. It may then be assumed that P does not contain
a part which is a simple projection from C onto I'y. C is joined to at least
five vertices of I'y and PI'y3{5), hence there clearly exists a simple
projection P, from C onto I'y which provides at least one new edge for Iy
not contained in PI. It follows that P, o P is a projection from I'— I'y— 2,
onto I'y such that e( (P, 0 P)I'y) = 27, hence by (2), I'>(8=) in this case.
Consequently it may be assumed that at least one edge of PI'y not in I'y
has been provided for I'y by a simple projection from C onto I'y as a part
of P. Let this simple projection be denoted by P;.

Now let the following three cases (a), (b) and (¢) be considered.
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(a) C is joined to x4 and x,. Let P, denote the simple projection from C
onto I'y obtained by contracting Cuz, into one vertex, and let P*=
Pyo (P —P,). Clearly (xq,2,;) € E(P*I). Also (x,,%,) € E(P*I). In fact
this is clearly true if (x4,2;) € E(I'y) and also if (2,,,) is provided for Iy
by P — P,. The remaining possibility is that (x,,;) is provided for I'y by
P,. If this is so then obviously x, is joined to C' and consequently
(%4, 7) € B(Pyl), hence (x4,2;) € E(P*Iy). By contracting each of
P*[y(xy,x5) and P*I'y(x,,2;) into one vertex P*Iy is contracted into a
{7=). Hence I'>>({8=) in this case.

(b) C s joined to x, and one of x; and x,. Let P, denote the simple
projection from C onto I'y obtained by contracting Cuz, into one vertex,
and let P*=P,o(P—P,). Clearly (x,,;) or (%%, € E(P*[}). Also
(%4, 5) € B(P*Iy) for the same reasons that (z,,x,) € E(P*IY) in case (a)
above. By contracting each of P*I'y(x,,xs) and P*I'y(xs,x,) into one
vertex, P*Iy is contracted into a (7=). Hence I'>>(8=) in this case.

(¢) C is joined to x; and xs. By symmetry this is analogous to case (b).

Each of the vertices of I'y except possibly x, is joined to one or more
connected components of I'— I'y — x, because the valency of these vertices
in I'yuz, is at most 7 and their valency in I" is at least 9. This is in parti-
cular the case for xg. Let C from now on be a connected component of
I'—=T'y—x, joined to .

If one of the cases (a), (b) or (c¢) holds for C, then I'> (8= is proved
above. Assume consequently that none of (a), (b), (c) holds for C. Further-
more it may be assumed that at least one edge of PI'y not in I'y has been
provided for I'y by a simple projection, denoted by P, from C onto I'y
as a part of P, because otherwise I'>(8=) as proved above for any
connected component of I'— I'y — z,. In this case C is not joined to z,, and
not to both of x, and ;. Therefore exactly one edge of PIy has been
provided by P; as a part of P, namely either (z,,,) or (2,,%;), by symme-
try it may be assumed to be (x,,,). Then C is of course joined to z, and
Z,. Since cases (a) and (b) do not hold it follows that C is joined to none
of z,,2,,2,. But C is joined to at least five vertices of I'y, hence it is joined
to at least two of the vertices x,,x;, 5. If C is not joined to x;, then I'is
separated by I'g(xy, %, %s,%g,2,) =(5=), which is contrary to 2). If C is
not joined to xg, then I' is separated by I'y(xy, g, %5, 5, 7,) = (5=, which
is contrary to 2). Hence C is joined to a least g, x,, %4, 75, 25. Let P, denote
the simple projection from C onto I'y obtained by contracting C'uz; into
one vertex. Then P*=P,o0 (P —P,) is a projection from I'—I'y—z, onto
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I'ysuchthat P*I'y 2 PI'yU(z5, xg) U(X5, ) — (%9, 7,) and thereforee(P* 7)) = 27
hence by (2) I'>(8=).

This shows that I">(8=) also if (a), (b) and (c) do not hold for C. It
has then been proved that I"> (8= also in the alternative case ). Hence
I'> (8= if possibility (A) holds. The alternative to (A) is by (iii)

(B)  Every vertex of valency 5 in PI'yhas a {5—) as neighbour-configura-
tion in PI.

Assume without loss of generality that z, is joined to exactly x,,. .., 24
in PIy, that PIy(x,,...,25)=(6—), and that (x,;) ¢ E(PI,). The
total number of edges of PI'y incident with x,,ag,2, is then 26 —14=12,
hence by 4) necessarily PI'y(x,,%s,2,)=(3) and each of z,;,xg 2, has
valency 5 in PI'y and is consequently joined to exactly 3 of x,,...,24
in P,

At least one of 4,4, x4 18 joined to both x, and x4 in PI'y. For x, is joined
to at least one of x,,xg,2, in PI'y because of 4). Assume without loss of
generality that it is joined to x,. By (B) the neighbour-configuration of
%, is a (56 —), hence z, is joined to at least two of x,,xg,x,. Similarly x; is
joined to at least two of «,,xg,2,. But then clearly at least one of x,, 4,7,
is joined to both z, and x,.

Assume without loss of generality in what follows that , is joined to
both z, and ;. Assume forthermore without loss of generality that z,
is joined to z,. By (B) the neighbour-configuration of z, in PI'yis a {(6—),
hence x3 and x, are both joined to x,,a,,2,. There are no further edges
in PIy. So PIy consists of two (6—) -8 (PIy(®,,,...,%) and
PTy(xg, 24,24, %,,%4,%,) ) having a (3—) (PIy(x5,%3,%,)) in common. (See
Figure 3).
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Let I'g(zy,%,,. . .,24) be denoted by A, and I'y(x,, %3, &4, 24, g, Z9) by Aj.
No edge incident with a vertex of valency 5 in PI'y can have been provided
by P, hence at most the edges (z,,2,), (%3, %,) can have been provided by
P (heavily drawn on figure).

Let C be a connected component of I'—I'y—x, Assume that C is
joined to at least five vertices of either A, or A,, say 4,. By contracting
each of I'(x,,%,), I'(xg,%5), and C into one vertex I'— x, is contracted into
a graph containing a (7 —) as a subgraph, six vertices of which are joined
to x,, hence I">> (8= in this case. The alternative is that C is joined to a
vertex of A, and a vertex of A,, both different from xz,,x,,2,. Assume
without loss of generality that C is joined to z;, and z,. By contracting
each of Cux,, I'(x,,x,), and I'(xg,x,) into one vertex I'—x, is contracted
into a graph containing a (7= as a subgraph, all the vertices of which
are joined to x,, hence I'> (8= in this case also.

Thus I'> (8= also when (B) holds, and (B) is the alternative to (A).
Hence I'>(8=) always, and the proof of Theorem 1 is completed.

THEOREM 2. Let I' be a finite graph with n vertices and e edges. If
nz8, exbn—14, and I' & A 4, then I'>(8=).

Proor. By induction over n. The theorem is trivially true for n=38.

Induction hypothesis: Assume the theorem is true for all graphs with m
vertices satisfying the conditions, where 8 <m=n—1.

Let I" be any graph with n vertices and e edges satisfying the condi-
tions of the theorem.

It is sufficient to consider the case e=5n— 14 in the rest of the proof. For
assume that e > 5n— 14 and that the theorem holds for all graphs having
exactly 5n—14 edges. By deleting edges from I' a graph I'* may be
obtained such that e(I™)=>5n—14. If I'™* ¢ A ,* then I'*>(8=) by the
last assumption and therefore I'>(8=). If I"* € ", then, because n > 8
and by Lemma 2 B, again I">(8=. This proves the assertion. Assume
therefore in the sequel that e=5n—14.

(1) If 3xeV(I):v(x,I')<4, then I'>{8=).
Proor oF (1). As n(I'—x)=n—128, and e(I'—x)2e—4=5(n—1)—13
it follows by lemma 1 and the induction hypothesis that I'— 2> (8=).

(2) Let I be a graph with n’ vertices and e’ edges, where 6 <n' <n.
If ¢’ 2 5n' — 14, then either I">(8=), or I € A A.
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Proor or (2). Clearly e’ = 5n' — 14 implies that n'$6. If n'="7, then
e’ 221, hence I"=(T) e A" ;2. If n’' 2 8, then by the induction hypothesis
I">(8=) or I'"e A ;A This proves (2).

(3) If I' is disconnected or has a cut-set S such that |[S| <4 or such
that |S|=5 and I'(S)=(5), (5—), or (5=), then I'>(8=).

Proor oF (3). If I" has a cut-set, then it has a minimal cut-set. In the
sequel let S denote a minimal cut-set of I" if I" is connected and & if I is
disconnected.

Let I'=I'Nurl,, Iy and I', being spanned subgraphs of I" such that
V(I nIy)=8 and I't—S=+0 and I',—S=0. Let |S|=0, where 0<¢<5,
and if 0> 1 let S={sy,s,,...,s,}. Let |E(I'(S))|=p and

|V(Fi)l = Ny, IE(Fz)l = €; for 7 = 1, 2.

Then n=mn,+n,—0 and e=e, + e, —p. If S==0, then let I';’ be a connected
component of I'— 8 contained in I';— 8 for ¢=1,2. Then I}’ is joined by
edges to every vertex of S, because S is a minimal cut-set.

Let P, denote the simple projection from I}’ onto I, obtained by
contracting I}’ Us; into one vertex, and let P, denote the simple projec-
tion from I'y’ onto I'; obtained by contracting I',’ Us; into one vertex.

If n;<5 for i =1 or 2 then every vertex of I;— S has valency <4in I,
therefore by (1), I'>(8=) in this case. Hence it may be assumed from
now on that

(3.1) n
Now

>6, i=12.

e,te, =¢e+p =6n—14+p = 5(n,+ny,)—506—14+p.
By the symmetry between Iy and I', it may be assumed that
e, 2 5ny—4(50+14—p).

i) Suppose that o < 2.
Then p < 1and e, = 5n; — 12, hence by (3.1), (2) and Lemma 1, I'; > (8 =).

ii) Suppose that o=3.
1) Let p = 2. Then e, = 5n, —27/2. By (3.1), (2) and Lemma 1, I'; > (8 =).

2) Let p<1. Then e, > 5n,—29/2. Assume without loss of generality
(81,85),(81,83) & E(I'). Consider P,I'y=17U(8;,85)U(81,85). Then n(P,I})=
ny 26 by (3.1) and e(P,I)=e,+2256n,—25/2. By Lemma 1 and (2),
P, >{8=).
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This shows that it remains to assume that I" is connected and has no
cut-set with fewer than 4 vertices.

iii) Suppose that o=4.

1) Let p=6. Then e, 25n,—14. By (3.1) and (2), I'>(8=) except
when I'y e X2 If Iy € A4, then e, =5n,— 14 by Lemma 1 and conse-
quently e, 2 5n,— 14. By (3.1) and (2), I',>> (8= except when I', € ;%
But if this is so then I'e £ ,4, contrary to hypothesis. Hence I'>(8=)
in this case.

2) Let p=5. Then e; = 5n, —29/2. Assume without loss of generality
that (sy,8,) &€ E(I'). Consider P,I'y=17U(sy,8;). Now n(P,[})=n,26 by
(3.1) and e(Pyl)=e,+1>5n,—14. By (2) and Lemma 1, P,I;>{8=).

3) Let p=4. Then e, = 5n, — 15. Assume without loss of generality that
(81,82) € E(I") and sq is incident with the other missing edge, denoted by e,
and s, is not incident with e. Consider P,l =17 U(s;,8,). Then n(P,I})=
n,;2 6 by (3.1) and e(P,I)=¢;+ 1= 5n, —14. By (2), P,I'; > (8= except
when P,I') € % Futhermore P,I';+(7) because ¢ ¢ E(P,[;). Assume
therefore that P,I", € 2 ;% By contracting I'y’ Us; into one vertex we get
P,y — (81,85)Ue, which is homomorphic to (8=) by Lemma 2B since
e E(P,lY).

4) Let p=3. Then e, 2 5n, — 31/2. Now I'(S) contains at least one vertex
of valency <1 in I'(S). Assume without loss of generality that s, is such
a vertex and (s;,8,),(81,83)¢E(I"). Consider P,I"; 2= I'7U(8,85)U(8;,83).
Then n(Pyl})=n,26 by (3.1) and e(P,I) = e, + 2 2 b5n, —27/2 > bn, — 14.
By Lemma 1 and (2), P,I;>{8=).

5) Let p=2. Then e, = 5n, — 16. Assume without loss of generality that
(81,82) (51,83) 6 B (I") (81,8,)€E(I") and that s, is incident with a third
missing edge denoted by e. Consider P,I",=I3U(8;,85)U(81,85). Then
n(PyI)=n, 2 6by (3.1)and e(PyIy) =¢, + 22 5n, — 14. By (2), Pol} > (8=)
except when P,I € "% Furthermore P,I;+{7) because c¢H(P,IY).
Assume therefore that P,I'; € /"% By contracting I',' Us, into one vertex
we get P,I", —(81,83)Ue, which is homomorphic to (8=) by Lemma 2B
since ¢¢E(P,I7).

6) Let p=1. Then e, 2 5n, —33/2. Assume without loss of generality
that (s3,8,) is the only edge of I'(S). Consider P,I'y=1I"U(8;,8,)U(8;,85)U
(81,84). Then n(P,I)=n,26 by (3.1) and e(P,[})=e,+325n,—27/2>

5n,—14. By Lemma 1 and (2), P,I}>{8=).
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7) Let p=0. Then e;=5n,—17. Consider P,I",=1I%U(s;,8,)U(81,85)U
(81,84). Then n(P,I})=n,=6 by (3.1) and e(P,I;)=e¢,+ 3 = 5n, —14. By
(2), P,I'};>-{8=) except when P,I'; € X ;% Suppose that P,I" € X A
Then by Lemma 1, e(P,I") = 5n, — 14. By the remark just after Lemma 2,
P,T in this case contains a (7), A say, to which s; and s, both belong.
8,¢ V(A) because (sy,8,) € E(Pyl). Also s3¢ V(A) because (8;,8,) ¢ E(PylY).
Now I'—s; —s, is 2-fold connected because I" has no cut-set with fewer
than 4 vertices, hence by (B) contains 2 disjoint (A —s; —8,) (I'y’ UsyUSss)-
paths, say I7, and II,. Clearly 11,11, have s, and s, as one pair of end-
vertices. (See Figure 4).

Figure 4.

The graph I =I3U(8;,85)U(8g,84)U(81,835)U(83,84)U(84,85) is obtained
from I" by contracting each of IT, and II, into one vertex. e; = e(Pyl) — 3=
6n;—17, hence e,=5n,—17. Therefore e(I")=ey+52=5n,—12. Also
n(I")=ny,2 6 by (3.1). By Lemma 1 and (2) therefore I"">{8=).

iv) Suppose that a=>5.

1) Let I'(S)=(5). Then p=10 and e, = 5n, —29/2, hence e, = 5n,— 14.
By (3.1) and (2) I'>(8=) except when I e Xt If I'ie X * then
(by the remark just after Lemma 2), I'(S) is contained in a (7) c I}.
By contracting I'y’ into one vertex I'is contracted into a graph containing
a (8=) as a subgraph.

2) Let I'(S)=(6—). Then p=9 and e, = 5n, — 15. Assume without loss
of generality (s;,8,)¢E(I"). Consider P,I'y=1I7U(s,8,). Then n(P,I5)=
n, 2 6 by (3.1) and e(P,I)=e,+ 12 5n,— 14. By (2), P,I'}>({8=) except
when P,I; € XA If P,I'y € A3, then by Lemma 1, e;=5n,—15 and
consequently e,=5n,—15. Consider P,I'y=1I,U(s;,8;). Then n(P,I,)=
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ny2 6 by (3.1) and e(PyI',) =e,+ 1 ="5n,— 14. By (2), P,I,> (8= except
when P,I'y € ;% Suppose that P,I', e X ;*. Now P,I(8) is contained
in a {7) g P,I'| and P,I'y(8) is contained in a (7) < P,I',. Let the former
{7) be denoted by A’ and the latter by A”'. Then I' o A'uUA" —(8;,8,) >
8=).

3) Let I'(S)=(6=). Then p=8 and e, = 5n, —31/2, hence e, = 5n, — 15.
From here the argumentation is identical with that of case iii), 3).
As 05 all possibilities are exhausted. This completes the proof of (3).

(4)  If I'is 5-fold connected and I"is not separated by a (5, (6—), or
(5=), then I'>(8=).

Proor oF (4). Assume I" has the properties stated in (4). The proof will
be by the steps (4.1)—(4.8).

(4.1) If I'2 {7, then I>{8=).

Proor oF (4.1). Let A be a (7) < I'. Then I'— A+, because n> 8.
Let C be a connected component of I'—A. As I' is 5-fold connected C is
joined to at least 5 of the vertices of A, and by contracting C into one
vertex I' is contracted into a graph containing an (8 =) as a subgraph.
This proves (4.1).

Let z, be a vertex of minimal valency in I". Let v(zy,I") =j, say. Then
j=5 because I' is 5-fold connected. If j= 10 then e = 5n contrary to the
assumption that e=5n— 14. Hence

(4.2) 5<j<9.

Let the vertices joined to x, be denoted by x,,,,. . .,;, and let I'(z,,,,
...,%;) be denoted by I7;.
(4.3) If Iy = (j), then I'>(8=).

Proor or (4.3). Clearly j=6 implies I';ux,=(7), hence by (4.1).
I'>(8=). Now j=5 implies e(l'—2,)=56(n—1)—14. By (2) with
n'=n—128, I'-xy>(8=) except when I'—z, € X % But if I'— 2, X 4,
then I' 2 (7) and by (4.1), I'>{(8=).

(4.4) If 3, eV(Iy):v(@, I;) <3, then I'> (8=).
ProOF OF (4.4). Assume without loss of generality ¢=1. By contracting

I'(z,2,) into one vertex I'is contracted into I, say. Then n([")=n—128
and e(I")2e—j+(j—4)=6(n—1)—13. By Lemma 1 and (2), I >{8=).
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(4.5) If Va,e V(Iy):v(x,I;) 2 4 and
dw,e V(Iy) :v(xy, I;) = 4, then I'> (8=).

Proor or (4.5). Clearly j=5 implies I';=(j), hence because of (4.3),
j=6 may be assumed.

Assume without loss of generality that i=1 and x; is joined to
Zg,. .., %5 By contracting I'(xy, ;) into one vertex I" is contracted into

(I'=20) U Uj=g @1,%) = I7 .

Then »([')=n—128 and e(l')=e—j+j—5=5(n—-1)—14. By (2),
I'">({8=) except when I"" € /" ,%. Assume therefore that I'" € 2/ ,*. Then
I'" £ {7y, because n —1 = 8. Futhermore j= 6. For suppose on the contrary
that j = 7. By the contraction of I'(xy,,) only the vertices z,,. . .,x; have
their valency decreased, since the valency of x, is not decreased because
J>band (xy,x;)¢éE(I"). Each of the valencies of x,,. . .,x; decreases by 1.
Hence the minimal valency of I is 2j—1= 6 and at most four vertices
have valency 6, contrary to Lemma 2A. Hence j=@6.

In I' the vertex z, is joined to x,,...,z; and not to x,. Hence I =
("= 24) U (21, 2). Assume firstly that I contains a (7) to which z,,. ..,z
all belong; then , is joined in I" to six vertices of a (7—) < I'—x,, hence
I' 2 (8=). Assume next that this is not the case. Then Ix,,x, € V(I}),
2=q<rs<b, such that (x,x,)¢E(I'), otherwise x,,...,24 would span a
complete graph in I and consequently (remark just after Lemma 2)
I" would contain a (7) to which z,,...,zg all belong. By contracting
I'(xy,x,) into one vertex I' is contracted into a graph containing

(F_xo)u(xq’xr) = F,_(xlyxe) U (xq’xr) > <8=>
by Lemma 2B, because (x,,z,)¢E(I"). This proves (4.5).

As a consequence of (4.4) and (4.5) it may be assumed from now on
that
(4.6) Va,e V(Iy) vz, I) 2 5.

Clearly j =6 implies I';={j), hence by (4.3), I'>(8=) in this case. It
may therefore be assumed that

(4.7) jzT.

Assume I'-I';—xy=0. Then I'=I;Ux,, hence n=j+ 1. Now j is the
minimal valency of I', hence I'={j+1) 2 (8) by (4.7). Consequently

(4.8) I—Tj—xy + 0
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may be assumed from now on. Every connected component of I'— I'; —x,
is joined to at least 5 vertices of I'; because I" is 5-fold connected.

By (4.2) and (4.7), 7<j=<9. Each of the cases =7, 8 and 9 will be
considered separately.

i) Suppose that j="1.

By (4.8) there exists a connected component C of I'— I'; —x,. Assume C
18 joined to xy,x,€V(I;) such that (xy,x,)¢E(I"). By contracting Cuz,
into one vertex a projection P from C onto I, is obtained such that
e(PI'))ze(l})+1235-7+1 that is e(PI,)219=4-7—9. Now P& 8,
because a member of 2 cannot have 7 vertices, hence by (A),
PI',;>(7=), consequently I'>>(8=) in this case. The alternative is that
the = 5 vertices of I'y to which C 18 joined span a complete graph. But a (5)
does not separate I', hence C is joined to at least six vertices of I'; span-
ning a {6) and then I"'>({8 — ). Therefore I'>(8=)if j=17.

ii) Suppose that j=8.

Assume there exists a projection P from I'— I'y — x, onto I'y (possibly P
is the identical mapping on V(I%)) such that e(PIg) > 23. Now PIg¢A g3
because a member of £°¢® cannot have 8 vertices. Hence by (A),
PI'y>(7=) and consequently I"'>(8=). It may then be assumed that

(4.9) There exists no projection P from I'—I'y—x, onto I'y (including
the identical mapping on V(I%)) such that e(PI)= 23.

As a consequence e([g) <23. By (4.6), e(Ig) = 35-8=20, so there are 3
possibilities: e(Ig) =22, 21, and 20.

1) Let e(I'g)=22.

(4.9') By (4.9) no new edge can be provided for I'y by any projection
from I'—I'y—x, onto I'g.

By (4.8) there exists a connected component C of I'— I'y—x,. A {(5) does
not separate I" and C cannot by (4.9") be joined to two vertices of I'y not
joined by an edge, hence C is joined to the vertices of a (6) < I's. But
then I"'>(8—).

2) Let e(I'g)=21.

(4.9”") By (4.9) at most one new edge can be provided for I'y by any pro-
jection from I'—I's—x, onto I%.

By (4.8) there exists a connected component C of I'— I'y—x,. C is joined
to at least 5 vertices of I'y and by (4.9'') any such 5 vertices span a graph
containing a (5=1¢) as a subgraph. But a (6=, (6—), or (56) does not

Math. Scand. 31 — 26



402 IVAN TAFTEBERG JAKOBSEN

separate I, hence C is joined to at least 6 vertices of I’y and by (4.9")
these vertices span a graph containing a (6=+¢) as a subgraph.

Assume without loss of generality that C is joined to z,,x,,. ..,z It
follows from e(I'y) =21 and (4.6) that I'(z,,. . .,xg) =(6=1), (xq,25) e E(I),
and v(x,, I') =v(xg, ') = 5.

Since I'(xy,...,2s) ={6=1) by (4.6) each of x;,%,,...,%; is joined to
I'(z4,75). Assume without loss of generality that (xz,,,)¢E(I"). By con-
tracting each of Cuz, and I'(z,,x,) into one vertex I'—x, is contracted
into a graph containing a (7= as a subgraph all the vertices of which
are joined to x,, hence I'>{8=).

3) Let e(I'5) = 20.

(4.9""") By (4.9) at most two new edges can be provided for I'y by any pro-
jection from I'— I'y—x, onto I'y.

By (4.6) and 3) every vertex of I'y has valency 5 in I, i.e. every
vertex of fs has valency 2 in fs. There are consequently three possibil-
ities:

A) fs consists of a 3-circuit and a 5-circuit, disjoint from each other.
B) fs concists of 2 disjoint 4-circuits.

C) I’y consists of an 8-circuit.

A) Suppose I—‘; consists of a 3-circuit and a 5-circuit, disjoint from
each other.

Assume without loss of generality fs( (21, %4,23) ) to be the 3-circuit and
I'g( (24, %5, %, 25, 5) ) to be the 5-circuit. Three subcases are distinguished :

Subcase Al. A connected component C of I'—Ig—x, 1s joined to 3
consecutive vertices of the 5-circuit of f’s. Assume without loss of generality
that C is joined to z,, x5, 2. Then by contracting each of Cux,; and I'(x,, %)
into one vertex I'—x, is contracted into a graph containing a (7=)as a
subgraph, all the vertices of which are joined to x,, hence I'>(8=) in
subcase Al.

Subcase A2. An edge from the 3-circuit of I'y together with an edge from
the 5-circuit of fs can be provided for I's by a projection P from I'—I'y—x,
onto I'y. Assume without loss of generality that (z,,x,) and (xz,,%;) can
be provided. Then by contracting PIl'y(x,,x,) into one vertex Py is
contracted into a (7=, all the vertices of which are joined to x,, hence
I'>({8=) in subcase A2.
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Subcase A3. Neither Al nor A2 holds. Then I'— I'y— x, has at least two
connected components, because if not, the only existing connected com-
ponent (there is one by (4.8)) would be joined to every vertex of I
since the minimal valency in I" is 8, and then Al would hold. Further-
more every connected component of I'—I'y—x, is joined to at least two
vertices of the 3-circuit of I_’s. No connected component of I'—I'j—x,

is then joined to two consecutive vertices of the 5-circuit of I'y. For sup-
pose the contrary. It has just been proved that there exists another
connected component of I'— I'y — x, which is joined to at least two vertices

of the 3-circuit of fs, hence an edge from each circuit of I_‘s can be provided
for Iy in an obvious way, and then A2 would hold. It follows that every
connected component of I'—Iy—x, is joined to at most two of the

vertices of the 5-circuit of I_‘s and hence to all three vertices of the 3-

circuit of I'y. There are at least two connected components of I'— Iy — %o,
hence by suitable contractions all three of the edges (z,,,), (%4, Z3), (%1, %5)
can be provided for I'y, contrary to (4.9””’). Therefore A3 cannot hold.

The subcases Al, A2 and A3 clearly exhaust all the possibilities, hence
I'>{8=)1in case A).

B) fs consists of two disjoint 4-circuits.

Assume without loss of generality I'( (%y, %y, 23, 2,) ) and Ty (25, 6, 25, 2g) )
to be the 4-circuits of fs. Let C be a connected component of I"'— I'y — ;).
C is joined to 3 consecutive vertices of at least one of the 4-circuits.
Assume without loss of generality that C is joined to z,,z,,x;. By contract-
ing each of Cux, and I'(z,,x;) into one vertex I'—x, is contracted into
a graph containing a (7=) as a subgraph, all the vertices of which are
joined to x,, hence I'>{8=> in case B).

C) I’y consists of an 8-circuit.

Assume without loss of generality the 8-circuit to be fs( (4,9, . .,%g)).
Let C be a connected component of I'— I'y—x,. C is joined to at least 5
vertices of I'y and I" is not separated by a (5= hence (easily verified) C
is joined to 3 consecutive vertices of the 8-circuit of I:s, say to x,,,, 5.
By contracting each of Cux, and I'(x;,%s) into one vertex I'—x, is con-
tracted into a graph containing a (7= as a subgraph all the vertices of
which are joined to x,, hence I"> (8= in case C).

A), B), and C) deal with all possibilities when e(Ig) = 20. So if j =8, then
I'>(8=).
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iii) Suppose that j=9.

In Theorem 1 the conditions 1) and 2) are the assumptions of (4),
condition 3) is precisely iii), and condition 4) is (4.6). Hence all the
conditions of Theorem 1 are satisfied and it follows that I'>(8=)if j=9.
This completes the proof of (4).

(3) and (4) exhaust all possibilities, therefore I">({(8=). Thus under
the induction hypothesis Theorem 2 is true for all graphs with n vertices
satisfying its conditions. It is true when the number of vertices is 8,
therefore it is true generally.
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