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ON ARBITRARILY TRACEABLE GRAPHS

GABRIEL DIRAC

1. Introduction and summary.

We follow the terminology of D.Konig [4], in particular degree=
Grad, path=Weg, circuit=Kreis, cut-vertex= Artikulation, member =
Glied. Multiple edges and isolated vertices are allowed.

The concept of a graph which is arbitrarily traceable from a vertex
was introduced by Ore [6], [7] and may be defined as follows:

DeriniTION 1. A graph is arbitrarily traceable from V to V, V being a
vertex, if the graph has an edge and if the procedure of starting from V,
choosing an edge incident with V and traversing it to its other end-
vertex, choosing an edge incident with this vertex not already traversed
and traversing it, and continuing this procedure arbitrarily as long as
possible with the sole restriction that no edge may be traversed more
than once, always causes one to finish at ¥ having traversed every edge
of the graph.

We will also require the following

DEFINITION 2. dp(V) denotes the degree of the vertex ¥V in the graph
I'. A graph is called Eulerian if the set of its edges is finite and every
vertex has even degree.

The principal results concerning the graphs of Definition 1 are due to
Ore [6, p. 74-76], [7] and Harary [3], these may be stated as follows:

Ore’s THEOREM. A graph is arbitrarily traceable from V to V if and
only if it has an edge, is Eulerian, and each of its circuits contains V.

HarARY’s THEOREM. 4 graph which is arbitrarily traceable from V to
V either has no cut-vertex or V is its only cut-vertex.

Harary [3] investigated the corresponding properties of directed graphs
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and established the directed analogues of results of Ore [6], [7] and Bib-
ler [1].

The object of this paper is to give new very short proofs of the above
and related theorems, to derive basic properties of graphs having a
property similar to that of Definition 1, and of their directed counter-
parts, and to present a theory of randomly traceable infinite graphs
undirected and directed.

2. Short proofs of Ore’s and Harary’s theorems.

These will be based on the following classical result of Veblen [8] (see
also [4, p. 23, Satz 6]) (the sets mentioned may be empty).

VEBLEN’s THEOREM. A graph is Eulerian if and only if it is the union
of a finite set of circuits, no two of which have an edge in common, and a
set of isolated vertices.

Proor or OrE’s THEOREM. Suppose first that the graph I' is arbi-
trarily traceable from V to V. Then by a well known easy reasoning I
is Eulerian. Assume (reductio ad absurdum) that I" contains a circuit
Aand V ¢ A. Let I'" be the graph obtained from I" by deleting all edges
of A. I'"is Eulerian. Let €’ denote a set of circuits of I as described in
Veblen’s Theorem. If we traverse successively from V to V all those
circuits of €’ which contain V, then we have traversed every edge of I"
incident with V because V ¢ 4, but we have not traversed the edges of
4, hence I' is not arbitrarily traceable from V to V, which is contrary
to hypothesis. )

Suppose secondly that the graph I" has an edge, is Eulerian, and every
circuit of I' contains the vertex V. By Veblen’s Theorem there are edges
incident with V. Let I'" be traced arbitrarily from V as described in
Definition 1 until we must stop at a vertex V*. But V*=V, for if
V*+£V then we have traversed one more edge going towards V* than
going away from V*, and can continue from V* because I" is Eulerian.

Because V*=7V we have traversed every edge incident with ¥ and we
have traversed the edges of an Eulerian graph. Hence deleting from I
all the edges which we have traversed gives an Eulerian graph, I'"' say,
in which V is isolated. I’ contains no circuit, because every circuit of I’
contains V. Hence by Veblen’s Theorem I’ has no edge, that is, we
have traversed every edge of I. Thus I" is arbitrarily traceable from V
to V. Ore’s Theorem is now proved.

A consequence of Ore’s and Veblen’s theorems is
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Ore’s LEMMA. A graph which is arbitrarily traceable from V to V is
the union of a finite non-empty set of circuits, no two of which have an
edge in common, each of which contains V and no two of which have more
than one vertex besides V in common, and a set (possibly empty) of isolated
vertices [6, p. 7T4-76].

Proor or HararRY’s THEOREM. By Ore’s Lemma each vertex 3V of
the connected component of the graph containing V is connected to V
by two segments of one circuit. Hence if any vertex + V is deleted the
remaining graph is connected, because each vertex is still conunected to
V by a path. This proves Harary’s Theorem.

A number of other properties of graphs arbitrarily traceable from a
vertex V to V are known [1], [3], [7], they all follow at once from the
above results of Ore and Harary.

3. Directed graphs arbitrarily traceable from V to V.
Cycle will denote Konig’s term Zyklus, [4, p. 29].

DeriniTION 3. Following Harary [3] a directed graph is said to be
arbitrarily traceable from the vertex V to V if it has an edge and if the proce-
dure of Definition 1, continued as long as possible, with each edge being
traversed only in the direction of its arrow, always causes one to finish
at V having traversed every edge of the graph.

DEeriniTiON 4. X being a vertex of the directed graph I', the number
of edges incident with and directed into and out of X will be denoted by
d,r(X) and d,(X), respectively. If d,(X)=d,(X), then X is balanced.
If every vertex is balanced then I' is balanced, and if in addition the total
number of edges is finite, then I" is Hulertan. The degree of X in I' is
dp(X) =d;p(X) +dop(X).

The directed analogue of Ore’s Theorem is
HArARY’s THEOREM FOR DIRECTED GRAPHS. A directed graph is arbi-

trarily traceable from V to V if and only if it has an edge, is Eulerian, and
each of its cycles contains V [3].

The directed analogue of Veblen’s Theorem is the well-known result
of Konig [4, p. 29, Satz 8] (the sets mentioned may be empty).

Ko~16’s THEOREM. A directed graph is Eulerian if and only if it is
Math. Scand. 31 — 21
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the union of a finite set of cycles no two of which have an edge in common,
and a set of isolated vertices.

Proor oF HARARY’s THEOREM FOR DIRECTED GRAPHS. The above
proof of Ore’s Theorem almost word for word with “graph’ changed
into ‘“‘directed graph’, “circuit’’ into “cycle”’, “Veblen” into ‘“Konig”,
and ‘“Definition 1”’ into ‘“‘Definition 3.

From Ko6nig’s and Harary’s theorems for directed graphs we have the
following analogue of Ore’s Lemma:

CoroLLARY 1. A4 directed graph I" which is arbitrarily traceable from V
to V is the union of ¢ (c21 and finite) cycles, no two of which have an edge
in common and each of which contains V, and a set (possibly empty) of
isolated vertices.

Proor. By Harary’s Theorem I' is Eulerian. Therefore by Konig’s
Theorem it is the union of ¢ (¢ = 1 and finite) cycles, no two of which have
an ege in common, and a set (possibly empty) of isolated vertices. By
Harary’s Theorem each of the ¢ cycles contains V. This proves Corollary 1.

4. Undirected graphs arbitrarily traceable from one vertex to another.

The modification of Definition 1 suggests itself that the procedure of
Definition 1 continued as long as possible should always cause one to
traverse every edge of the graph, but without necessarily finishing at
the vertex one started from. Now if there is one way of starting from the
vertex V and arriving at the vertex W+ V having traversed every edge
according to the procedure, then the total number of edges is finite and
by a well known reasoning ¥V and W have odd degree and all other ver-
tices (if any) have even degree. Consequently traversing every edge
starting from V, if this is possible, either causes one to finish at V in
every case, or it causes one to finish at a fixed vertex WV in every
case. Therefore we formulate

DEriNiTION 5. A graph is arbitrarily traceable from V to W if it has
an edge and if the procedure of Definition 1 continued arbitrarily as
long as possible always causes one to finish at W having traversed every
edge of the graph.

We will use
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DzeriniTION 6. V and W being two distinct vertices of a graph, the
graph will be called (V, W)-odd if the number of edges is finite, V and W
have odd degree, and all other vertices (if any) have even degree.

In this terminology the modification of Veblen’s Theorem is (the sets
mentioned may be empty):

THEOREM 1. A graph is (V, W)-odd if and only if it is the union of one
VW-path and a finite number of circuits, no two of this system having an
edge in common, and a set of isolated vertices.

Proor. First, the union of a system as described and a set of isolated
vertices is clearly a (V, W)-odd graph.

Secondly, suppose a graph is (V, W)-odd. Then by adding a new WV-
edge not already there we obtain an KEulerian graph. By Veblen’s
Theorem this is the union of a finite non-empty set of circuits, no two
having an edge in common, and perhaps a set of isolated vertices. When
the added WV-edge is deleted, the circuit to which it belonged becomes
a VW-path and the other circuits remain.

This proves Theorem 1.

The modification of Ore’s Theorem is

THEOREM 2. A graph s arbitrarily traceable from V to W, where V+ W,
if and only if it is (V, W)-odd and each of its circuits contains W.

Proor. Suppose first that the graph I is arbitrarily traceable from
V to W, where V+W. Then I'is (V,W)-odd. Assume (reductio ad ab-
surdum) that I" contains a circuit 4 and W ¢ A. Let I"” be obtained from
I" by deleting all edges of 4. Obviously I' is (V, W)-odd. Let &’ be a
set consisting of one ¥V W-path and circuits of I as in Theorem 1. From
V traverse the VW-path to W and then traverse successively the cir-
cuits in &’ containing W (if any). Then we have traversed every edge
of I' incident with W, since W ¢ 4, but not the edges of 4. Hence I
is not arbitrarily traceable—contrary to hypothesis.

Suppose secondly that the graph I'is (V, W)-odd and every circuit of
I’ contains W. Let us trace I" arbitrarily from V as in Definition 1 until
we must stop at a vertex V*.

V*=W since I' is (V, W)-odd.

Because V*=W =V we have traversed the edges of a (V,W)-odd
graph and we have traversed every edge incident with W. Hence delet-
ing from I" all the edges which we have traversed gives an Eulerian graph,
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I'” say, in which W is isolated. I’ contains no circuit because every
circuit of I" contains W. Hence by Veblen’s Theorem I’ has no edge,
that is, we have traversed every edge of I. Thus ["is arbitrarily trace-
able from V to W. Theorem 2 is now proved.

A consequence of Theorems 1 and 2 is the

CorOLLARY 2. A graph I' which is arbitrarily traceable from V to W,
where V+ W, is the union of one VW-path and c circuits (c= 0 and finite)
each contatning W, no two of this system having an edge in common, and
no two having more than one vertex besides W in common, and a set (pos-
sibly empty) of isolated vertices. If ¢ =1 then either W is the only vertex of
maximal degree, or dp(V)=d(W)=2c+1 and the remaining vertices have
degree 2 or 0, or else dp(V) =1, one vertex has degree 2¢ + 2, and the remain-
ing vertices other than W have degree 2 or 0.

Proor. By Theorem 2, I' is (V,W)-odd. Therefore by Theorem 1
I' is the union of one VW-path and a finite number of circuits, no two
of these having an edge in common, and possibly some isolated ver-
tices. By Theorem 2 each of the circuits contains W. No two of the
above system of path and ¢ circuits have more than one vertex besides
W in common, because otherwise the graph would include a circuit not
containing W, contrary to Theorem 2.

Suppose that ¢= 1. Clearly d(W)=2c+ 1. Therefore the degree of W
is greater than the degree of every other vertex unless there is a vertex
Z #+ W which belongs to all ¢ circuits and to the V' W-path. If Z=V then

“dp(V) = dp(W) = 2¢+1,

and the remaining vertices have degree 2 or 0 because any two of the
path and circuits have only ¥ and W in common. If Z+ ¥V then

do(V) =1, dnZ) = 2c+2, d(W) = 2c+1,

and the remaining vertices have degree 2 or 0 again. This proves Cor-
ollary 2. '

Corresponding to Harary’s Theorem we have

THEOREM 3. Suppose that the graph I' is arbitrarily traceable from V
to W, where VW, and has at least 3 vertices.

If d(V)>1 then no vertex except possibly W is a cut-vertex of I', and I"
has no bridge.

If dp(V)=1 then there is a unique VV'-path IT with V£ V' such that
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dr(V')+2 and d(X)=2 for each vertex X of II—-V —V' (if any); every
vertex of II—V —V' (if any) is a cut-vertex of I', V' is a cut-vertex of I"
unless I' is @ VW-path, and no other vertex except possibly W is a cut-
vertex of I'; the bridges of I" are precisely the edges of II.

Proor. Theorem 3 is true with V'=W if I" is a VW-path. Assume
that I'"is not a VW-path. Let I" be the union of a system & as in Corol-
lary 1 and possibly isolated vertices, 1" being the VW-path in . Obvi-
ously no vertex of any circuit of & is separated from W by any cut-
vertex =+ W of I. Therefore, if following ¥ from W, the vertex V' is
the last one encountered belonging to at least one circuit of %, neither
V' nor any vertex of 1" between V' and W (if any) is separated from W
by a cut-vertex + W of I' (possibly V'=V or V'=W). Consequently
the only vertices of I" which might be separated from W by a cut-vertex
+ W are the vertices of 1 on the other side of V' from W (if any). There-
fore, because each cut-vertex # W separates a vertex from W, if V'=V
then no vertex except possibly W is a cut-vertex of I'; by the Corollary
V'=7V if and only if d(V)=3, hence if d(V)>1 then no vertex except
possibly W is a cut-vertex of I

By the last sentence but one every cut-vertex + W of I' is on ¥ and
does not lie between V' and W.

Suppose that d(V)=1, that is, V'+ V. Let I denote the part of ¥
which connects ¥ and V'. By the Corollary every vertex of IT—-V — V'
(if any) has degree 2 in I, so all these vertices are cut-vertices of I" and
all the edges of IT are bridges of I" and I7 is unique. ¥V’ is a cut-vertex
because d(V')>1. V is not a cut-vertex of course. Hence the cut-ver-
tices of I" are as stated in Theorem 3. None of the edges of 1" between
V' and W are bridges because V' belongs to a circuit of &, and of course
no edge of any of the circuits in & is a bridge. This proves Theorem 3.

Obviously not every graph which is arbitrarily traceable from V to W,
where V & W, is arbitrarily traceable from W to V.
We prove

THEOREM 4. A graph is arbitrarily traceable from V to W and from W
to V, where V£ W, if and only if it is the union of an odd number of VW -
paths, any two of which have no edge and no vertex besides V and W in
common, and a set (possibly empty) of isolated vertices.

Proor. Firstly, a graph with the above structure is obviously arbi-
trarily traceable from V to W and from W to V.
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Secondly, suppose a graph is arbitrarily traceable from V to W and
from W to V, where V + W. By Corollary 2 it is the union of a ¥ W-path
and a finite set C' (possibly empty) of circuits containing W, no two of
this system having an edge in common, and possibly some isolated ver-
tices. By Theorem 2 with ¥V and W exchanged, each circuit of C' con-
tains V. Therefore by Corollary 2 all vertices except ¥V and W have
degree 2. The theorem follows because each circuit of C is the union of
two VW-paths which have nothing but V and W in common.

THEOREM 5. If a graph is arbitrarily traceable from V to W, where
V=W, then if the edges of any (V, W)-odd subgraph are deleted, the remain-
ing graph is arbitrarily traceable from W to W or it has no edges.

Proor. The remaining graph is Eulerian and each of its cycles con-
tains W.

THEOREM 6. A graph is arbitrarily traceable from V to W, where V+ W,
if and only if, apart from isolated vertices, it is obtained by taking a finite
circuitless graph A containing V but not W, and joining V to W by an odd
or an even number of edges according as d (V) is even or odd, and joining
each vertex X ==V of A to W by a number of edges having the same parity as
d (X).

Proor. Any graph obtained in this way is (V, W)-odd and has a finite
number of edges, and W belongs to each of its circuits. Therefore, by
Theorem 2, the graph is arbitrarily traceable from V to W.

Conversely, if a graph is arbitrarily traceable from V to W, where
V+ W, then deleting W leaves a finite circuitless graph by Theorem 2
(apart from isolated vertices) and the graph is (¥, W)-odd. From this
it follows directly that the graph is obtained as described in Theorem 6.

5. Directed graphs arbitrarily traceable from one vertex to another.

In a directed graph I, if there is one way of starting from the vertex V
and arriving at the vertex W=V having traversed every edge just once
and in the direction of its arrow, then the total number of edges is
finite, and by a well-known reasoning

dor(V) —dip(V) = d;pn(W)—dop(W) = 1

and all the other vertices (if any) are balanced. Consequently starting
from V and traversing every edge just once and in the direction of its
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arrow according to the procedure, if this is possible, either causes one to
finish at V in every case, or it causes one to finish at a fixed vertex
WV in every case. Therefore we formulate

DeriNiTION 7. A directed graph is arbitrarily traceable from V to W if
it has an edge and if the procedure of Definition 1 continued as long as
possible with each edge traversed in the direction of its arrow always
causes one to finish at W having traversed every edge of the graph.

DeriniTiON 8. V and W being two distinet vertices of a directed graph,
the graph will be called (V — W)-odd if the number of edges is finite,

doP(V)—diF( V) = dil’( W)—dor(W) =1,
and all the other vertices (if any) are balanced.

In this terminology the analogue of Theorem 1 is (the sets mentioned
may be empty)

THEOREM 7. A directed graph is (V — W)-odd if and only if it is the
union of one directed (V — W)-path and a finite number of cycles, no two
of this system having an edge in common, and a set of isolated vertices.

Proor. The obvious analogue of the proof of Theorem 1. The ana-
logue of Theorem 2 is

THEOREM 8. A directed graph is arbitrarily traceable from V to W, where
VW, if and only if it is (V — W)-odd and each of its cycles contains W.

Proor. The obvious analogue of the proof of Theorem 2. The result
corresponding to Corollary 2 is

CorROLLARY 3. A directed graph I" which is arbitrarily traceable from V
to W, where V=W, is the union of one (V — W)-path and c cycles (c=0
and finite) each containing W, mo two of this system having an edge in
common, and a set (possibly empty) of isolated vertices.

Proor. By Theorem 8 I'is (V — W)-odd. Therefore I" is as described
in Theorem 7. Each of the ¢ cycles contains W by Theorem 8. This
proves Corollary 3.
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REMAREK 1. There is no such restriction on the degrees of the vertices
as in Corollary 2. This is because the cycles and the (V — W)-path may
have any number of vertices in common. When all vertices are common
to all of them then ¥V and W have degree 2c+ 1 and all other vertices
have degree 2c+2. Correspondingly in an undirected graph which is
arbitrarily traceable from V to V, and which is not a circuit, at most
one vertex can have a degree as high as V, and in this case all the re-
maining vertices have degree 2 (Bébler [1]), while in the directed case
the degree of V is maximal, but every vertex may have the same degree
as V.

ReEMARK 2. A directed graph which is arbitrarily traceable from V to
W, where V 4 W, is of course not traceable from W to V.

The directed analogue of Theorem 5 is

THEOREM 9. If a directed graph is arbitrarily traceable from V to W,
where V£ W, then if the edges if any (V — W)-odd subgraph are deleted,
the remaining graph is arbitrarily traceable from W to W, or it has no edges.

Proor. The remaining graph is Eulerian and each of its cycles con-
tains W.

The directed analogue of Theorem 6 is

THEOREM 10. A directed graph is arbitrarily traceable from V to W,
where VW, if and only if, apart from isolated vertices, it is obtained by
taking a finite acyclic graph A containing V but not W, joining each vertex
X of A other than V by edges to W in such a way that X becomes balanced,
and joining V by edges to W in such a way that the outward degree of V
exceeds the inward degree by 1, the number of new edges being finite.

ProoF. Any graph obtained in this way is directed, has a finite num-
ber of edges, and is (V' — W)-odd, and W belongs to each of its cycles.
Therefore by Theorem 8 the graph is arbitrarily traceable from ¥ to W.

Conversely, if a graph is arbitrarily traceable from V to W, where
V+ W, then by Theorem 8 the graph is (V — W)-odd and deleting W
leaves a finite acyclic graph (apart from isolated vertices). From this
it follows that the graph is obtained as described in Theorem 10.



ON ARBITRARILY TRACEABLE GRAPHS 329

6. Arbitrarily traceable infinite graphs.

For graphs with infinitely many edges the analogue of Definitions 1
and 5 is

DerFiNITION 9. I' being a graph with infinitely many edges and V,
being a vertex of I', I' is arbitrarily traceable from V, if the procedure of
forming a sequence V,E,,Vy E,,...,V, Vs, V... being vertices of I,
and E,E, E,,... being edges of I" and being successively selected in
any manner from among the edges of I', subject only to the restriction
that foreach¢=1 E, joins V;and V,,, and foreach i =22 E,+ H, ,,...,E,,
always furnishes a sequence which includes all the edges of I

It is also convenient to formulate

DreriniTION 10. I' being a graph, any finite sequence V,, K, V,, H,. ..,
E, ;,V, (n21) or 1-way infinite sequence V,,H,,V, E,,..., where the
V’s are vertices and the E’s are edges of I', for each ¢ E; joins V, and
Vi1, and E;+E; when ¢+, is called a chain of I" and is said to start
with V,. The chain V,,E,,...,V, is said to be a (V,V,)-chain and is
called open if V,=+V, and closed if V;=V,. The number of edges in a
chain is its length.

A chain of a graph which includes every edge of the graph is called
an Huler-chain of the graph. A graph with infinitely many edges is
said to be traceable from the vertex V, if it has an Euler-chain starting
with V,; (which is necessarily 1-way infinite of course). If 4 is a sub-
graph or a chain of I" then the graph obtained by deleting from I" all
the edges of 4 will be denoted by I'— &(4). Any chain starting with the
vertex V and including the edge E will be called a VE-chain. If I" has
a VE-chain then E is accessible from V in I The chain formed by
2m — 1 consecutive terms of a chain with at least 2m —1 terms, m being
a natural number, will be called a segment, the chain formed by the first
2m—1 a starting segment.

THEOREM 11. A graph with infinitely many edges is arbitrarily traceable
from the vertex V, if and only if it is the union of a l-way infinite path
starting with V, and a set (possibly empty) of isolated vertices.

Proor. The union of a 1-way infinite path starting with the vertex ¥V,
and a set of isolated vertices is obviously arbitrarily traceable from ¥V,
according to Definition 9.

Suppose next that a graph with infinitely many edges is arbitrarily
traceable from the vertex V,. Then the graph has a 1-way infinite Euler
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chain starting from V,, say V,E,,V,y E,,.... Assume (reductio ad ab-
surdum) that the graph is not as described in Theorem 11. Then V=V
for at least one pair of suffixes ¢,7 with ¢ <j, because all vertices having
degree d occur just [(4(d+ 1))] times in every Euler chain. Then if ¢=1,

VB Vi By Visare - -
and if 1>1
VI’EI’ s ’Ei—l’ Vi’Ej’ Vj+1>Ej+1’ Vj+2’ v

is an infinite chain of the graph which does not include any of the edges
E;...,E; ;. Hence the graph is not arbitrarily traceable, contrary to
hypothesis. Theorem 11 is now proved.

Theorem 11 shows that the above definition of arbitrarily traceable
graphs with infinitely many edges is very restrictive. In the other di-
rection we will prove Lemmas 1-3 and Theorems 12 and 13. The presen-
tation has been chosen with the directed analogues in mind.

Lemma 1. If V is a vertex of a closed chain = of the graph I' and if
d (V) is odd or infinite, then V is incident with an edge of I" which does not
belong to E. If £ is an open (XY)-chain of the graph I' and if d(Y) is
even or infinite, then Y is incident with an edge of I" which does not belong

to ',

PROOF. df_g (V) is odd or infinite because the number of edges of &
incident with V is even. d;._gz+(Y) is odd or infinite because the number
of edges of £’ indicent with Y is odd.

LemMmaA 2. If the vertex V, of the graph I' has odd or infinite degree in I"
and if no vertex other than V, has odd degree in I then every finite chain of
I starting with V. is a starting segment of a 1-way infinite chain of I.

Proor. By Lemma 1 every finite chain of I" starting with ¥V, can be
continued indefinitely.

LemMMma 3. Let A be any graph with a 1-way infinite Euler chain, let A
be obtained by deleting from A any finite set of edges, and let V be any ver-
tex of A. Then either the set of edges accessible from V in A’ is finite, or A’
has a chain starting with V which includes all but at most a finite number of
the edges of A. The second alternative holds for at least two vertices, and for
all but at most a finite number of the vertices of A of non-zero degree.
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Proor. Let V,E,,V,,E,,... be a l-way infinite Euler chain of 4.
V is a vertex of this chain unless d(V)=0. There exists an integer m
such that A’ is obtained by deleting from A a subset of {E,,...,E,_,}.
Then V,,E,,, Viyi1sBpmits- - - 18 & chain of A, If V is one of V,,, V.1,
V pi2s- - - there is nothing to prove. Suppose that V&V, .,V .1, Vipsos- - -
Either the edges accessible from V in A4’ are a subset of {E,,...,E,,_,}
or else for some j=m, A" has a VE,-chain. When we follow this chain
from V let W be the first vertex encountered which is one of V,,, V.1,
V,ie- .. and suppose that W=1V,, where kt=m. The portion of thisg
chain up to and including W does not contain any of £,,,E,,,1, E,,.s,- - -
Therefore this portion together with V,,E,, V. ,1,E;.4,... is a chain of
A’ starting with V which includes all the edges of 4 other than X,,. .
E,_,. Lemma 3 is now proved.

L]

THEOREM 12. If the graph I' has a l-way infinite Euler chain starting
with the vertex V, then if 5 is any (V,V,)-chain of I" of length =1, the
vertices and edges of I'— &(E) which are not accessible from V, in I'— &(EF)
and are not isolated vertices of I' constitute an Eulerian subgraph I'z of
I'— &(B) and each vertex of I'y is in I' incident only with a subset of
E(I's)U E(E). The graph I' has a chain E* such that £* has = as a starting
segment, &(E*)=E(I')— &(I's), each connected component of I's (if any)
contains a vertex of Z, and I'; does not contain V,, or any vertex of Z* which
occurs beyond E.

The proof of Theorem 12 will use

LemmaA 4. Any graph with a finite non-zero number of edges is the union
of a finite set of circuits and[or paths of length =1 such that no two members
of the set have an edge in common and no two paths of the set have an end-
vertex tn common, together with a set (possibly empty) of isolated vertices.
The vertices of odd degree in the graph are precisely the end-vertices of these

paths.

Proor or LEMMA 4. Let 4 denote the graph. If A has no circuit then
let A=A. If A has a circuit then we can delete successively sets of edges
of circuits from A4 until we are left with a graph /A having no circuit.
If A has no edge then Lemma 4 holds for 4. If 4 has an edge then let
7, be a path of maximal length in A. Clearly 7; has length =1 and each
end-vertex of ¥, has degree 1in 4. If 4 — &(¥;) hasno edge then Lemma 4
holds for 4, otherwise let 7, be a path of maximal length in A4 — &(1;).
Clearly 7, has length =1 and each end-vertex of 1, has degree 1 in
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A—&(Y;) and each end-vertex of 1, has degree 0 in A — &(17). Since
&(A) is finite, A is the union of a finite set of paths of length =1, no
two of which have an edge or an end-vertex in common, together with a
set (possibly empty) of isolated vertices. Furthermore the degrees of
the end-vertices of these paths are odd in 4 and in 4, while the degrees
of all the other vertices are even in A and in 4. This proves Lemma 4.

REMARK 3. From Lemma 4 there follows the well-known result that
in any graph with a finite number of edges the number of vertices of
odd degree is even.

Proor or THEOREM 12. I" has a l-way infinite Euler chain starting
with V,, therefore I'— &(Z) satisfies the conditions of Lemma 2 with
V, in place of V,, hence I'— &(Z) has a 1-way infinite chain starting
with V,. Consequently by Lemma 3, I'— &(5) has a chain starting
with V,, which includes all but at most a finite number of the edges of I.
Therefore I" has a chain £, which has = as a starting segment and includes
all but at most a finite number of the edges of I'. If = is an Euler chain
of I" then every edge of I'— &(£) is accessible from ¥V, in I'— &(%)
and Theorem 12 holds with 5*=Z%,. Suppose in what follows that Z,
is not an Euler chain of I

If I'— &(5,) is Eulerian then let 5’ =5,. Otherwise we obtain a chain
Z' of I' such that £’ starts with V., has & as an initial segment, includes
every edge of 5, and I'— &(EZ’) is Eulerian, as follows: I'— &(Z,) has a
finite non-zero number of edges, therefore it contains a finite set % of
paths and/or circuits as given in Lemma 4, and % contains at least one
path because I'— &(5,) is not Eulerian. Let the paths of & be 17,...,71,,
where a = 1, and let the end-vertices of ¥; be X, and Y, for ¢=1,...,a;
X,,Y,,...,X,, Y, are all distinct and constitute all the vertices having
odd degree in I'— &(&,). Clearly dn(X,), d(Y,),...,d(X,), d(Y,) are
all infinite. Therefore X,,7Y,,...,X,, Y, each occur infinitely often on
Z,. It follows that Z; is the juxta-position of an infinite sequence of
finite segments of itself Fyy, 5y, 50e,... Where Ey, is a (V,X,)-chain
having £ as a starting segment, and =, 5, =, . . . are (X;Y;)-chains,
and gy, Zg4, Zpg,. . . are (Y,X,;)-chains. Let II; denote the chain whose
terms are the vertices and edges of 1; in turn starting with X;. Let
&, denote the chain which is the juxtaposition of

—

= I.5.5 & &
00; 4415 =2, Zo15 Zo4> o35 - -

in this order. Clearly Z; is a chain of I" having Z as an initial segment,
and &(E,)= &(Z,)Ué(1;). Also, if a=1 then I'— &(&;) is Eulerian and
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if a>1 then the only vertices ha,ving odd degree in I'— &(Z;) are
X, Y,,...,X,,Y,. If a=1 then put £'=F5,. If a>1 then we can obtam
chains 5,,...,5, which incorporate successively 15,...,7,. Put E'=5,.
Now =’ is a chain of I' having 5 as an initial segment, and I'— &(E")
is Eulerian.

If £(Z')=&(I') then put Z*=FE", in this case every edge of I'— &(&)
is accessible from V, in I'— &(Z) and E* has the required properties.
If &(E&')+= &) then let the connected components with edges of
I'—&(&') be @,,...,9,, where b= 1. Of course @,,...,D, are Eulerian.
Let 5=V, H,,...,V,, where n>2, and let

"
E =VyEy. ...V Bo, Vesrs By -« -

For v=1,...,b if @, contains a vertex V; of Z’ with j=n then select one
such vertex V; and insert into £’ immediately after V, in turn all
edges and vertices of a closed Euler chain of @, in cyclic order starting
with an edge incident with V. Let Z* denote the resulting chain,

possibly £*= 25", Let
—, ’ ’ !
E*=V,E,,... . B,V 1 ,E ...

If &(&E*)=4&(I") then every edge of I'— &(Z) is accessible from V, in
I'— &(&) and E* has the required properties. If I'— &(&*) has edges then
it is the union of a subset of @,,...,P, and perhaps a set of isolated
vertices, in this case we may assume that the connected components
with edges of I'— &(5*) are @,,...,D,, where 1 <c<b. Clearly I'— &(E*)
and @, ...P, are Eulerian.

Let W be any vertex of ®,u...U®P,. Then WV, , V' ., V' .
because

{Vm V'n-i-l’ V/n+27' . } = {V'm Vn+1> n+2 } U V c+1U v UQb) .

Therefore in I', W is not incident with any of the edges E',,E’, .1, E', 10,
. Consequently in I', W is incident with a subset of &(P,U...UD,)U
&(5). Each of @,,...,®, contains a vertex of Z* because I is traceable
from V,, and none of them contains any of V,, V', .1,V pie.---
Therefore each of @,,...,D, contains a vertex of & and none of V,,
V,n+17 V’n+2:' e
Because V, ¢é®,U...uD, and each vertex of D,U...UDd, is incident
only with edges of @,u...U®P, and of £, no vertex or edge of P,u...UD,
is accessible from V,, in I'— &(Z). On the other hand all edges of

I'-&8E&)-&@d,u...ud,)

are accessible from V, in I'— &(£) of course, because they are just the
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edges of £Z* beyond V,. Hence @,u...U®P,=1";. Theorem 12 is now
proved.

THEOREM 13. A graph I' with infinitely many edges is traceable from
the vertex V, if and only if every edge of I' is accessible from V., and =
being any finite chain of I" starting with V,, I" has a chain starting with V,
which includes all but at most a finite number of the edges of I' and which
has E as a starting segment.

Proor. It was shown in the first part of the proof of Theorem 12
that if I" has infinitely many edges and is traceable from V, then if =
is any finite chain of I" starting with V,, I" has a chain which includes
all but at most a finite number of the edges of I" and which has 5 as a
starting segment. Theorem 12 in fact implies this. Obviously every edge

is accessible from V, if I is traceable from V,.

Next we prove the converse for graphs with infinitely many edges.
There is no valid analogue of this converse for directed graphs!

(i) dp(V)zl
For by hypothesis I" has edges and each edge is accessible from V.

(ii) Each edge of I' is contained in a chain of I" which starts with 7,
and includes all but at most a finite number of the edges of I

For each edge is included in a finite chain of I” starting from ¥V, and
each such chain is a starting segment of a chain as specified.

(iii) d(V,) is odd or infinite and no vertex other than V, has odd degree
in I

Proor or (iii). Let X be any vertex of I"having finite degree =+ 0. Among
all the chains of I" which start with ¥, and include all but at most a
finite number of the edges of I'let 5y be one which includes the greatest
number of edges incident with X. By (ii) this number is >0 because
dp(X)>0 is assumed.

We will show that £y includes all the edges of I' incident with X.
Assume (reductio ad absurdum) that the edge E’ is incident with X and
E' ¢é¢Eyx. Let E” denote the last edge in =y incident with X, and let
¥« denote the starting segment of &y immediately preceding E'’; the
last term of ¥y is X. I has a chain @y which starts with 7, includes
all but at most a finite number of the edges of I', has ¥ as a starting
segment, and has the edge E’ immediately following ¥ . Clearly &y
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and @y have ¥y as a starting segment and have infinitely many edges
in common; E' ¢ Eyx by hypothesis and E" ¢ @y from the maximal
property of 5y . Let E* be the first edge of 5 occurring after the edges
of ¥y which is also in @y and let V* be the vertex represented by the
vertex-term of 5y immediately preceding E*. We have E*+E" since
E'" ¢ @y, therefore E* is not incident with X, consequently V*s+X.
The segment of @y starting with X and £’ and continuing until V* is
reached for the first time, followed by the segment of 5, immediately
preceding E* and going back as far as £’' and X, is a chain of I" because
of the definition of E*, and it contains £’ and E’’ and has no edge in
common with ¥y. Therefore ¥y starting with V,, followed by this
chain, is a chain of I" which includes more edges incident with X than
does £y, and this chain is the starting segment of a chain of I" which
includes all but at most a finite number of the edges of I". This is con-
trary to the definition of Zy. Therefore 5y includes all the edges of I’
which are incident with X.

Because 5y is a 1-way infinite chain starting with V, it follows that
if Y=V,, then dy(Y) is odd or infinite, and if Y = V,, then d,(Y) is
even or infinite. The isolated vertices of I" (if any) all have zero degree.
Now (iii) is proved.

(iv) The number of edges of I' is enumerably infinite, and if any finite
set of edges is deleted from I then only one connected component
of the remaining graph is infinite.

I" has an enumerable infinity of edges because it has infinitely many
edges and a 1-way infinite chain which includes all but at most a finite
number of the edges of I By Lemma 3 therefore, if any finite set of
edges is deleted from " then the remaining graph has a vertex from which
all but at most a finite number of the edges are accessible. This proves
(iv).

Erdos, Griinwald and Vazsonyi [2] proved that I has a 1-way infinite
Euler chain starting with 7, if and only if every edge of I" is accessible
from ¥V, and I satisfies (iii) and (iv). The converse of (1) follows from
this.

Theorem 13 is now proved.

Theorem 11 suggests that it is too much to require that every infinite
chain starting with V, shall be an Euler chain. Theorems 11 and 13 to-
gether suggest the following
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DeriniTiON 11. A graph will be called semi-arbitrarily traceable from
the vertex V, if it has infinitely many edges and if every finite chain of
the graph starting with V, is a starting segment of at least one Euler
chain of the graph starting with V,. This is equivalent to the following
property in the terminology of Definition 1: the procedure of starting
with the vertex V, and traversing edges at random as described in Defi-
nition 1 can be continued without end, and at each stage, whatever
finite set of edges have been traversed, the procedure can be continued
in such a way that every edge of the graph is traversed exactly once.

Obviously if a graph is semi-arbitrarily traceable from the vertex V;
then it is traceable from V,. That Definition 11 is far less restrictive
than Definition 9 is shown by Theorems 14 and 15.

THEOREM 14. A graph I' is semi-arbitrarily traceable from the vertex V,
if and only if &(I") is enumerably infinite, and = being any (V,V,)-chain
of the graph, in I'— &(E) every edge is accessible from V,,.

Proor. It is easy to see that if I" is semi-arbitrarily traceable from ¥,
then it has the properties stated.

Suppose next that the graph I" has the stated properties. Let &, be
any finite chain of I" starting with ¥;. We have to prove that I" has an
Euler chain starting with V, of which 5, is a starting segment. Let the
edges of I" be enumerated E,,E,, E,,... Fori=1,2,3,... I" has a finite
chain & starting with V,, of which Z,_; is a starting segment and which
contains ;. Therefore the chain Z,uE,UZ,U... is an Euler chain of I"
starting with ¥, and having =, as a starting segment. Theorem 14 is
now proved.

TaEOREM 15. A graph is semi-arbitrarily traceable from the vertex V, if
and only if it has infinitely many edges and is traceable from V,, and every
circuit of the graph contains at least one vertex having infinite degree in the
graph.

Because of the criterion of Erdés, Grinwald and Vazsonyi quoted at
the end of the proof of Theorem 13, Theorem 15 is equivalent to

THEOREM 15'. The graph I is semi-arbitrarily traceable from the vertex V,
if and only if

(a) only one connected component of I' has edges,
(b) the number of edges is enumerably infinite,
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(¢) dp(V,) is odd or infinite and no vertex other than V, has odd degree
in I,

(d) if the edges of any finite chain of I" starting with V, are deleted from
T, the remaining graph has only one infinite connected component,

(e) every circuit of I" contains at least one vertex of infinite degree.

Proor or THEOREM 15. First we will prove that if the graph I" has a
1-way infinite Euler chain starting with the vertex V, and if every
circuit of I' contains at least one vertex having infinite degree then I"
is semi-arbitrarily traceable from V,. Let 5 be any (V,V,)-chain of I.
In the terminology of Theorem 12 &(I'g)=4, because if &(I's)+0 then
by Theorem 12 and Veblen’s Theorem I’y is the union of one or more
circuits, and in I" each vertex of each of these circuits has finite degree
contrary to hypothesis. Therefore by Theorem 12 I" has an Euler chain
E* which has Z as a starting segment. Hence I is semi-arbitrarily trace-
able from V,.

Next we will prove that if the graph I' is semi-arbitrarily traceable
from the vertex ¥V, then it has infinitely many edges and is traceable
from V,, and every circuit of I" contains at least one vertex having in-
finite degree in I'. Definition 11 implies that the set of edges of I" is
enumerably infinite and I" is traceable from V,. Assume (reductio ad
absurdum) that the circuit ® of I' contains no vertex having infinite
degree in I

I’ has an Euler chain starting with V,, and this contains the vertices
of ©. Among the starting segments of this Euler chain which contain
a vertex of © let 5, be the one with the least number of edges, and let

El = Vl?'EI"",VmJ

where m21 and V,¢ 60 if t<m. Let the vertices and edges of @ in
cyclic order round & be V,,E, .V .1,.... B, 1, V,, where V, =V, and
n=m+2, and let 5, denote the chain

VB Vo Br Viase o By 1, Vo

Because I' is semi-arbitrarily traceable from V,, I" has an Euler chain
which starts with V7, and has &, as a starting segment, &* say. Let

15* = Vl"El’ “ ey Vm,.Em, Vm+1,- .« ’En—l’ Vn,E,n, Vn+1’En+1’ Vn+2,. .

The total number of edges incident with at least one vertex of @ is fi-
nite because each vertex of @ has finite degree in I'. Therefore there is

a term V, in Z* such that p=n+1 and none of the edges E,,E,,,,
E,.s,... is incident with any vertex of @. Now let Z; denote the chain

Math. Scand. 81 — 22
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VarEare ooy Vs By Vissoe -, Vi

and consider I'— &(&;). The edges of I'— §(Z;) are precisely E, ,E,, .4,
o By yand B B, B, ,,....In I'— &(E;) none of the edges £,,,.. .,
E, _, are accessible from V,, because V,, ¢ © since X, is not incident with
any vertex of @, by definition %,,...,E,_, €6, and none of E,, B, ,,
E,,,,... are incident with any vertex of ®. However, by Theorem 14 in
I'- &(&,) every edge is accessible from V. This contradiction com-
pletes the proof of Theorem 15.

From Theorem 15’ we easily deduce the following

CoroLLARY 4. T'he only locally finite graphs which are semi-arbitrarily
traceable from a vertex are those which consist of a 1-way infinite path and
a set (possibly empty) of isolated vertices.

Three further kinds of arbitrary traceability may be distinguished.
For this purpose we will formulate some new definitions.

DeriNiTiON 12. Let =W, E,, W, E,,...,E,_,, W, be a closed chain
(Wy=W,). Then the closed chain W, &,,...,E, ;, W.E,,....BE,_;,W,,
where 2<a<n—1, will be called a rotation of =.

Let E=WE,,...,E,_;,W, be any chain. Then the chain W ,E,_,,
..., By, W, will be called the reverse of =& and denoted by Zrev.

It E=W,E,...,W,and '=W',E',,...,W', are two chains which
have no edge in common and if W,=W’', then W, KE,,..., W, E',,
..., W, is a chain, it will be denoted by =,5".

DeriniTION 13. Let 1" be a graph with infinitely many edges and 7,
a vertex of I'. We will say that I'is

a) type 1 traceable from V, if, for 5 any finite chain of I" starting with
Vi, I" has an Euler chain starting with V; which has £ as a segment,

b) type 2 traceadble from V, if, for £ any open chain of I', I" has an
Euler chain starting with ¥, which has 5 or Erev as a segment, and &
being any closed chain of I" other than an isolated vertex of I', I" has
an Euler chain starting with ¥, which has 5 as a segment,

c) type 3 traceable from V, if Z being any finite chain of I" other than
an isolated vertex, I" has an Euler chain starting with ¥, which has &
as a segment.

Obviously if a graph is type 3 traceable from the vertex ¥V, then it is
also type 2 and type 1 traceable from V,, but not conversely. We also
have
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Lemma 5. If a graph is type 2 traceable from the vertex V, then it ts
type 1 traceable from V,, but not conversely.

Proor. Let I' denote the graph which is type 2 traceable from V,.
Let £ be a finite chain of I' starting with V,. By definition I" has an
Euler chain starting with V; which has either & or Zrev as a segment.
In the first case there is nothing to prove. In the second case let =’ be
an Euler chain of I" starting with ¥, which has Erev as a segment. Let
E, be the starting segment of 5’ which ends with V, having just de-
scribed Zrev, and let £’ be the remainder of Z’. Then clearly =,rev,
E'" is an Euler chain of I" starting with V,; which has 5 as a starting
segment. Therefore I' is type 1 traceable from V,.

Let I' consist of the vertices V,,V,, V;,... and edges E,,E,, E,,. .
joining the pairs (Vy,V5),(Ve, Vi), (Vs, V1), (Vy, Vi), (Vi Vi), (Vs V), - -«
respectively. I' is type 1 traceable from V; but not type 2 traceable
from V,. (I" has no Euler chain which has the chain V,,E,,V,,E,, V,
or the reverse of this chain as a segment). Lemma 5 is now proved.

THEOREM 16. A graph is type 1 traceable from the vertex V, if and only
if it has infinitely many edges and is traceable from V,, and every circuit
of the graph which does not include V, contains a vertex having infinite
degree in the graph.

Proor. First we will prove that if the graph I" satisfies the conditions
of the theorem then I' is type 1 traceable from V,. Let & be any
(V1V,)-chain of I" of length > 0. In the terminology of Theorem 12, I'g
is Eulerian. If I'; has no edge then by Theorem 12, I" has an Euler
chain having £ as a starting segment. If I'; has an edge then by Veblen’s
Theorem it is the union of a finite number of circuits no two of which
have an edge in common, and perhaps a set of isolated vertices. None
of these circuits includes a vertex having infinite degree in I" by Theo-
rem 12, therefore each of them includes V,. By Theorem 12, I" has
a chain £* which has Z as a starting segment and includes every edge of
I'not in I's. If we first describe every circuit of I'g from ¥, to V¥, in turn
and then 5* we have an Euler chain of I" starting with ¥, which has
Z as a segment. Hence I' is type 1 traceable from V,.

Next we will prove that if the graph I' is type 1 traceable from the
vertex ¥, then it has the required properties. From Definition 13, I"
has infinitely many edges and is traceable from V,. Assume (reductio
ad absurdum) that the circuit @ of I" does not include ¥, and contains
no vertex having infinite degree in I". Let =, be defined as in the last
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paragraph of the proof of Theorem 15. I" has an Euler chain 5’ which
starts with 7, and has 5, as a segment. Because every vertex of ® has
finite degree in I', there is a vertex-term in &’ such that none of the
edges of £’ beyond it are incident with a vertex of ©. Let Z’'; denote
the starting segment of £’ up to and including this vertex-term. Of
course F, is a segment of £’;. Let Z; denote the chain obtained from
E's by leaving out K,V 11, . By, V.

I" contains no chain which has =, as a segment and includes an edge of ©.
For neither the first nor the last vertex-term of =, belongs to ®, and
&, contains every edge of I" incident with every vertex of ® except only
the edges of @. But this contradicts the definition of I". Therefore every
circuit of I" which does not include ¥V, contains a vertex having infinite
degree in I'. Theorem 16 is now proved.

CoROLLARY 5. If a graph is type 1 traceable from a vertex whose degree
18 1 or infinite, then the graph is semi-arbitrarily traceable from that vertex.

Proor. Let ¥V, denote the vertex. It follows from Theorem 16 and
the degree of ¥, that the graph has infinitely many edges and is trace-
able from V¥, and every circuit of the graph contains a vertex of infinite
degree in the graph. Therefore by Theorem 15 the graph is semi-arbi-
trarily traceable from V,. This proves Corollary 5.

CoROLLARY 6. There are only two kinds of locally finite graphs which
are type 1 traceable from the vertex V., apart from isolated vertices:

1. a l-way infinite path starting with V,,

2. the union of a l-way infinite path starting with V, and a finite graph
arbitrarily traceable from Vi to V., such that the two graphs have no edge
in common and every circuit of their union contains V,.

Proor. Let I" denote a locally finite graph without isolated vertices
which is type 1 traceable from the vertex V,. It follows from Theorem 16
that I" has a l-way infinite Euler chain starting with V; and every
circuit of I" includes V,. Let E*=V,E,,V,,... be an Euler chain of I
starting with V;. Only a finite number of the vertex-terms of Z* coin-
cide with V; because d,(V,) is finite. Let ¥, be the vertex-term of Z*
with largest suffix such that V,=V, (p= 1) andlet E**=V K,V ,....

From the definition of p, and since every circuit of I" includes V,,
it follows that Z** is the chain of a 1-way infinite path starting with V,,
say II. If p=1 then IT=T. If p>1 then let I'; denote the subgraph of I
whose vertices and edges are V,,E,,...,V,. Then I'| has edges, is Eule-
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rian, and every circuit of I'; includes V. Therefore by Ore’s Theorem Iy
is arbitrarily traceable from V, to V,. Also I'=ITul. Furthermore I
and I'| have no edge in common, and by Theorem 16 every circuit of I’
contains V,. This proves Corollary 6.

In what follows we will use

Lemwma 6. If a graph is traceable from a vertex of infinite degree then
it 18 traceable from every vertex of infinite degree.

ProoF. Suppose that the graph I'" has an Euler chain starting with
the vertex V,, where d,(V,) is infinite, say Z*. Let W be any vertex of
I'" such that V,+ W and d(W) is infinite. The chain 5* is the juxta-

position of an infinite sequence of segments of itself =,,5,,5;,... where
5,54,55,... are (VW)-chains and 5,5, 5,... are (WV)-chains.
Therefore

Ex* = 52,51154,53,56:55"

is an Euler chain of I" starting with W. This proves Lemma 6.

DEerFiNITION 14. A graph will be called locally infinite traceable if it is
traceable from a vertex and each of its vertices has infinite degree.

REMARK 4. A graph without isolated vertices is locally infinite trace-
able if and only if it is enumerably infinite, and remains connected when
any finite set of edges is deleted from it. For if V,, B, V,,H,,... is an
Euler chain of a locally infinite graph I" and & is any finite subset of the
edges of I, then VK, V,.1,E,.1,... with m chosen so that
&c{f,,...,E,} is a chain of I'- &, and it contains every vertex of
I’ because I" is locally infinite, so I'— & is connected. Conversely, if I’
is an enumerably infinite graph which remains connected when any
finite set of edges is deleted from it, then let V, be any vertex and = any
(W,W,)-chain of I'. I'— &(X) contains a (V,W,)-chain, £, say. Enumer-
ate &(I")— E(8)— E(E,) as E', By, E'y,.... From the hypothesis I'—
&(E)— &(E,) contains a path 7; starting with W, and ending with E’y
and the vertex X, say; if E’; is the first of E'y,E’5,... in I'—- &(&)—
&(5,)— &(1,) then this graph contains a path 7, starting with X; and
ending with E’; and the vertex X, say, etc. Thus I" is type 3 and semi-
arbitrarily traceable from each vertex. Obviously I" is also locally in-
finite.
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THEOREM 17. A graph is type 3 traceable from the vertex V, if and only
iof it 18 locally infinite and traceable from V., apart from isolated vertices.
It is then type 3 and semi-arbitrarily traceable from all its vertices except
the isolated ones.

Proor. If the graph I"is locally infinite and traceable from V,, then
by Remark 4, I' is type 3 traceable from each vertex. Otherwise thus:
I" has a 1-way infinite Euler chain starting with V,. By Theorem 16,
I' is type 1 traceable from V,. Let = be a (W,W,)-chain of length >0
of I'. Since d,(V,) is infinite, by Lemma 3, I'— &(=) has a chain 5*
starting with V,; which includes all but at most a finite number of the
edges of I'— &(Z). The chain Z* includes W, because d(W,) is infinite.
Therefore 5* has a starting segment which is a (V,W,)-chain, say &,.
Then £,,Z is a finite chain of I" starting with ¥;. Now I" has an Euler
chain starting with ¥V, which has 5,5 as a segment because I" is type 1
traceable from V,. Hence I' is type 3 traceable from V,.

Next we will prove that if the graph I is type 3 traceable from the
vertex V, then it satisfies the conditions of the theorem. From Defini-
tion 13, I" has an infinite Euler chain 5* starting with V,.

Now d(V,) is infinite. For otherwise Z* has as a starting segment an
open chain & which contains all the edges of I" incident with V,. But
then I' has no chain starting with ¥, which has 5rev as a segment, con-
trary to the hypothesis that I" is type 3 traceable from V.

Suppose (reductio ad absurdum) that W is a vertex of I" with non-zero
finite degree. Of course W+ V,. Then 5* has as a starting segment a
closed chain =’ which contains all edges of I" incident with W. But then
I’ has no chain starting with ¥, which has as a segment the rotaion of
£’ which starts and ends with W, contrary to the hypothesis that I" is
type 3 traceable from V,. So every vertex of I" except the isolated ver-
tices has infinite degree.

Let X be any vertex of infinite degree in I'. Then I is traceable from
X by Lemma 6. Therefore by the part of Theorem 17 which is already
proved I' is type 3 traceable from X. By Corollary 5, I' is therefore
semi-arbitrarily traceable from X. Theorem 17 is now proved.

THEOREM 18. A graph is type 2 traceable from the vertex V, if and only
if it has infinitely many edges and is traceable from V,, every circuit of the
graph which does mot include V, contains a vertex having infinite degree
in the graph, and if the edges of any connected Eulerian subgraph are deleted
then in the remaining graph every vertex which is not an isolated vertex of
the original graph is accessible from V.
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The proof of Theorem 18 will use

LemMma 7. Let I' be a graph with a 1-way infinite Euler chain starting
with the vertex V, and let E be an open (W, W, )-chain of I'. If in I'— &(5)
neither W, nor W, is accessible from V, then W, and W, belong to the same
connected component of I'— &(E) and this connected component is finite
and (W,, W,)-odd.

Proor. By Lemma 1 it follows that any finite chain of I'— &(Z)
starting with V, can be continued. Therefore I'— &(Z) contains an in-
finite chain starting with V,. Therefore by Lemma 3 the connected
component of I'— &(Z) to which V, belongs contains all but a finite
number of the edges of I. But d(W,), d(W,) are not odd, hence
dr_g(W1), dr_gi=(W,) are not even. Therefore W, and W, belong to
the same connected component of I"— &(Z). This proves Lemma 7.

Proor or THEOREM 18. First we will prove that if the graph I" satis-
fies the conditions of the theorem then it is type 2 traceable from the
vertex V,. By Theorem 16, I" is type 1 traceable from V,.

Let £ be any closed (W,W,)-chain of I" of length >0. In I'—- &(5)
the vertex W, is accessible from ¥V, by hypothesis, so let =, denote a
(V,W,)-chain of I'— &(E). (If V,=W, then &, =V, of course.) 5,5 is a
finite chain of I' starting with V,. Since I" is type 1 traceable from ¥V,
by Theorem 16, therefore I" has an Euler chain starting with V,; which
has 5,,5 as a segment.

Let £ be any open (W, W ,)-chain of I'. In I'— &(E) either W, or W,
is accessible from V. For if neither W, nor W, is accessible from V; in
I'— &(E) then by Lemma 7 I'— &(E) contains a (W,W,)-path, say II,
therefore &(Z)uU &'(II) constitutes the set of edges of an Eulerian sub-
graph of I" and in I'— &(&Z)— &(IT) neither W, nor W,, is accessible from
V,, which is contrary to hypothesis. So in I'— &(Z) either W, or W, is
accessible from V,. It follows easily, since I" is type 1 traceable from
V,, that I" has an Euler chain starting with ¥, which has Z or Zrev as
a segment. This proves that if I" satisfies the conditions of the theorem
then I' is type 2 traceable from V.

Next we will prove that if the graph I" is type 2 traceable from the
vertex V, then it satisfies the conditions of the theorem. From Defini-
tion 13, I" has infinitely many edges and is traceable from V,. Now I’
is type 1 traceable from V, by Lemma 5, therefore every circuit of I’
which does not include ¥, contains a vertex having infinite degree in I,

Suppose (reductio ad absurdum) that if the edges of the connected
Eulerian subgraph @ of I" are deleted from I" then the connected com-
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ponent of I' to which ¥V, belongs becomes disconnected. Of course
&(P)+0. Every connected component of the abovementioned graph
has a vertex in common with @. Therefore there is a vertex X; of @
such that in I'— &(P), X, is not accessible from V,. Then if 5 denotes a
closed Euler chain of @ starting and ending with X,, there is no (V,X,)-
chain in I'— &(&), hence I" has no chain starting with ¥, which has =
as a segment. This contradicts the hypothesis that I" is type 2 traceable
from V,. Theorem 18 is now proved.

An alternative form of Theorem 18 is

TrEOREM 18'. A graph without isolated vertices is type 2 traceable from
the vertex V. if and only if it has infinitely many edges and is traceable
from V., every circuit of the graph which does not include V, contains a
vertex having infinite degree in the graph, and if the edges of any connected
Eulerian subgraph are deleted then the remaining graph has no isolated
vertex.

This follows directly from the following

Lemwma 8. If a (finite or infinite) graph has an Euler chain starting with
the vertex V,, and if it has an Eulerian subgraph such that when its edges
are deleted then the remaining graph is disconnected, then the graph has a
connected Eulerian subgraph such that when its edges are deleted then the
rematning graph has an isolated vertex.

Proor. If the graph has a closed Euler chain then deleting its edges
leaves only isolated vertices. Suppose that I"is a graph without an isolated
vertex which has an open or an infinite Euler chain starting with V,,
and that @ is an Eulerian subgraph of I' such that I'— &(®P) is discon-
nected.

If there is an isolated vertex W in I'— &(®) then, in case @ is dis-
connected, W. is an isolated vertex of the graph obtained by deleting
from I" the edges of the connected component of @ to which W belongs.
Lemma 8 is therefore true if there is an isolated vertex in I'— &(®).
In what follows we assume that this is not the case.

The connected components of I'— &(®) which do not contain V,, are fi-
nite in number and Eulerian. For if &(I’) isfinite then V', and just one other
vertex have odd degree in I'— &(®), and they both belong to the same
connected component of I'— &(P), and if &(I") is infinite then by Lem-
mas 2 and 3 applied to I'— &(P), all but a finite number of edges belong
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to the connected component containing ¥,, also no vertex other than
V, has odd degree in I'— &(®). This proves the assertion.

Let A be a connected component of I'— &(®P) not containing V,.
The vertices of A are in I" incident only with a subset of &(Au®), and
by the above A is Eulerian and contains edges. The union of 4 and all
those connected components of @ which have a vertex in common with
A is a connected Eulerian subgraph of I', and when its edges are deleted
then in the remaining graph the vertices of A are isolated. This proves
Lemma 8.

The type 2 traceable graphs can be characterised in another way,
using the second part of the following

THEOREM 19. There is only one category of finite graphs without iso-
lated vertices which have an Euler chain starting with a vertex X, and are
such that if the edges of any connected Eulerian subgraph are deleted then
the remaining graph does not have an isolated vertex, namely all those graphs
consisting of the distinct vertices X,,. .., X, , where n 2 2, and an odd num-
ber of (X,;X;,1)-edges for 1 <i <n— 1. If the edges of any Eulerian subgraph
are deleted, then the remaining graph is in the same category.

There are only three categories of infinite graphs with the above proper-
ties, namely

I. Al locally infinite traceable graphs.

II. AU those which consist of the infinite set of distinct vertices X,,X,,
X, ... together with an odd number of (X;X,,,)-edges for each 1=1, and
no other edges.

ITI. Al those which consist of the distinct vertices X,,...,X,, where
nz1, and an odd number of (X,;X,,,)-edges for 1<i<n—1 if n>1, to-
gether with a locally infinite traceable graph not containing any of X,,. . .,
X, , and an odd number of edges joining X, to vertices of the locally infinite
traceable graph, and no other edges.

If we delete from any of these graphs any finite set of edges, such that
each vertex having finite degree in the graph is incident with an even number
of edges of the set, then the remaining graph is in the same category as the
original one.

The proof of Theorem 19 will use the following four lemmas.

LemMA 9. If a graph has mo isolated vertex and 18 traceable from the
vertex Vy, then if any finite set of edges whose endvertices all have infinite
degree in the graph are deleted or added, the resulting graph always has an
Euler chain starting with V, which includes every vertex.
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Proor. Let I' denote the graph and let Z be a (Y Z)-edge of I" such that
d(Y) and d,(Z) are infinite. Let £* be an Euler chain of I" starting
with V;. Then Z* includes every vertex of I" and Z* is the ]uxtaposmon
of an infinite sequence of finite segments of itself 5,=,,5,,5,,...
where & is a (V,Y)-chain, 5,,5,,5,,... are (YZ)-chains, 5,,5,,5,,. ..
are (ZY)-chains, and for some value of a (a=1), &(Z,)=E. Then

— — fund ford fd
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is an Euler chain of I'— E starting with ¥, which includes every vertex
of I'.

Y’ and Z’ being any two distinct vertices having infinite degree in I,
let a new (Y'Z’)-edge E’ be added to I'. The chain 5* is the juxtaposition

[ld fenld [wndd

of an infinite sequence of finite segments of itself 5y, 5,5y, 5",,. ..

where £’ is an (V,Y’)-chain, 5',,5';,5';,... are (Y'Z’)-chains, and
5=y, E,... are (Z'Y')-chains. Let 5’ denote the chain Y’ B',Z'.
Then E'(,E', 55,5, 5y ,5'¢,E’,... is an Euler chain of I'U{E'}

starting with V; which includes every vertex of I
The truth of Lemma 9 follows by iteration.

RemARk 5. It can be shown that if an enumerably infinite number of
edges whose end-vertices all have infinite degree in the original graph
are added, then the resulting graph always has an Euler chain starting
with ¥V, which includes every vertex. This result will not be required
in the sequel, however.

Lemma 10. If 2 is a locally infinite traceable graph and Q' is any graph
obtained from 2 by adding a vertex A not belonging to 2 and an odd number
of edges joining A to vertices of 2, then Q' is semi-arbitrarily and type 2
traceable from A and is not traceable from any other vertex.

Proor. Q' is not traceable from any vertex other than A because
dy(4)is odd. We will show that ' is traceable from 4 by induction over
do(A4). If d,(4)=1 then Q' is traceable from 4 because by Lemma 6,
£ is traceable from each of its vertices. Let dg (A4)=2x%+1, where »>1,
and suppose that if the degree of 4 is 2x—1 then the graph is traceable
from A. If in Q' two edges incident with A are incident with the same
vertex of Q2 then ' is clearly traceable from A4 on the basis of the induc-
tion hypothesis. The alternative is that two edges F' and @ are incident
with the two distinct vertices C and D of £, respectively. In this case
let Z* be an Euler chain of '—F —@ starting with A. Since C and D
have infinite degree, Z* is the juxtaposition of an infinite sequence of
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finite segments =y, 5, 5,,5,,... of itself, where Z; is an (AC)-chain,
F1,53,85,... are (CD)-chains and Xy, 5,,5,,... are (DC)-chains. Then

P~ e pm e

is an Euler chain of Q' starting with A. It follows from Theorems 15
and 18’ that £’ is semi-arbitrarily and type 2 traceable from A. This
proves Lemma 10.

ReMARK 6. In fact, if Q is any graph with a l-way infinite Euler
chain and £’ is any graph obtained from 2 by adding a vertex 4 not
belonging to 2 and an odd or enumerably infinite number of edges
joining A to vertices of {2 so that 4 is joined to the vertex having odd
valency in Q (if there is one) by an odd number of edges, and to each
vertex having even valency in {2 (if there are any) by an even number
of edges, then £’ is traceable from A. Also, if an even number of edges
join A to the vertices of 2, and to the vertex having odd valency in 2
(if there is one), then £’ is traceable from the vertex having odd valency
in Q (if there is one), or from every vertex having infinite valency, as
the case may be, but £’ is not traceable from A. These results will not
be required in the sequel, however.

Lemma 11. If a graph I' (finite or infinite) is traceable from a vertex,
and if deleting from I' the edges of any connected Eulerian subgraph of I'
never results in a graph with an isolated vertex, then every circuit of length
> 20 I' has a vertex having infinite degree in I

Proor. Suppose on the contrary (reductio ad absurdum) that @ is a
circuit of length >2 contained in I" and every vertex of © has finite
degreein I'. Let Z*=V,,H,,V,,... be an Euler chain of I", Let V;and V;,
respectively, be the vertex terms of £* with smallest and largest suffix
belonging to O, and let £=V, E,,...,V;. Let @ denote the subgraph of
I' formed by the vertices and edges of 5. Every vertex of @ belongs
to @, and also every edge of I" incident with every vertex of @, except
possibly E;_, and E;.

Now V,+V;. For if V;=V,, then @ is Eulerian and connected and
in I'— &(P) every vertex of O other than V, is isolated, which is contrary
to hypothesis.

From V= V; it follows that @ is (V,¥;)-odd. Let A denote a shortest
(V;V;)-path contained in @, then ® has a vertex W not in A. Clearly
@D — £(A) is Eulerian. If we delete from I' the edges of the connected
component of @ — &(A) to which W belongs, then in the remaining graph
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W is isolated. This is contrary to hypothesis, therefore Lemma 11 is
proved.

ReMARK 7. The converse of Lemma 11 is not true of course.

Lemwma 12. If a (finite or infinite) graph I' with an edge is traceable
Jrom a vertex V, of odd degree, if deleting from I" the edges of any connected
Eulerian subgraph never results in a graph with an isolated vertex, and if I"
contains no circuit of length > 2, then V, is joined to only one vertex of I

Proor. Clearly I' does not have a closed Euler chain. Lemma 12 is
obviously true if d,(V,)=1. Suppose that d.(V,)>1 and let F*=
Vi, B, V... be an Euler chain of I',and let ¥V, be the vertex-term of
E* with largest suffix which coincides with V;; § = 3 because d (V) > 1.
Let

E=V,E,. ...V, and E** =V, E,Vs,....

E** has an edge because I' does not have a closed Euler chain. Then
V,+V, for i26+1, and E contains every vertex joined to ¥V, except
possibly V,,;. Now

Voo s Vsa} € {Vos Vorrs Vosns- - -}

for otherwise one of V,,...,V,_, would be isolated in I"— &(Z). There-
fore the vertices joined to ¥V, in I" all belong to Z**, Suppose that Lemma
12 does not hold for I" (reductio ad absurdum) and that V, is joined to
a vertex Z of £** by an edge E,, where Z+V,,,. Clearly E, ¢ Z**,
because in the subgraph of I" consisting of the vertices and edges of Z**
the only edge incident with ¥V, is E;. Thus this graph contains a (V,Z)-
path of length > 1. Such a path and E, together constitute a circuit of
length > 2, whereas I" contains no circuit of length > 2. This contradic-
tion shows that V, is joined to no vertex different from V,,, in I". Lemma
12 is now proved.

Proor or THEOREM 19. To prove the part of the theorem concerning
finite graphs we first verify that each graph in the category described
has the properties stated in the theorem. It clearly has an Euler chain
starting with X, and has no isolated vertex. Any Eulerian subgraph
contains an even number of (X,X,,,)-edges for 1 <i=<n-—1, therefore if
the edges of such a subgraph are deleted then the remaining graph is
in the same category. Next we show that if I" is any graph having the
properties stated in the theorem then I belongs to the category described.
I" does not have a closed Euler chain obviously. Therefore I" has an open
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Euler chain starting with X,. Hence, by Lemma 4, I' is the union of a
path IT of length >1 having X, as an end-vertex, and possibly some
circuits, no two of this system having an edge in common. Every such
path IT contains every vertex of I', because if W is a vertex of I" not
in I7, then in the graph obtained by deleting from I" all the edges of all
the above circuits containing W, this vertex is isolated, which is contrary
to hypothesis. Let the vertices of I7 in order be X,,...,X,, where n>2.
By Lemma 11, X; and X; are not joined by an edge if ¢+—j>1. Also I'
is (X,X,)-odd. It follows directly that I' contains an odd number of
(X;X;.,)-edges for 1<¢=<n—1. The first part of Theorem 19 is now
proved.

To prove the part of the theorem concerning infinite graphs we first
verify that every graph in each of the categories I, IT and III has the
properties stated in the theorem. If a graph is locally infinite traceable
then it has no isolated vertices, and by Lemma 9 if any finite number of
edges are deleted from it then the remaining graph is locally infinite
traceable. A graph in category II obviously has no isolated vertices and
has an infinite Euler chain starting with X,. If any finite set of edges as
described at the end of Theorem 19 are deleted, then the remaining graph
contains an odd number of (X, X, ,)-edges for +=1,2,3,... and is there-
fore in category II. A graph in category III obviously has no isolated
vertex, and by Lemma 10 it has an infinite Euler chain starting with X .
Let I' denote the graph, and £ the locally infinite traceable graph, and
£’ the graph consisting of 2 and X, together with the edges joining X,
to vertices of 2. Assume first that n=1, that is Q'=1TI" If any finite set
of edges as described at the end of Theorem 19 are deleted from I, then
by Lemma 9 the remaining graph consists of a locally infinite traceable
graph 2* together with X, and an odd number of edges joining X, to
the vertices of 2%, and therefore it is in category I1I. Assume secondly
that » > 1. Any finite set of edges as described at the end of Theorem 19
contains an even number of (X,X,,,)-edges for ¢=1,...,n—1, and an
even number of edges joining X, to vertices of 2. From this and Lemma
9 it follows that when any such set of edges is deleted, the remaining
graph is in category III. It has now been proved that every graph in
each of the categories I, II, III has the properties mentioned in Theorem
19.

To complete the proof of the theorem it remains to show that if I" is
any infinite graph having the properties stated in the first paragraph
of the theorem, then I" belongs to one of the three categories described.
We note that since I' is infinite and without isolated vertices, and has
an Euler chain, therefore &(I") is enumerably infinite.
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One of the following three possibilities holds: (i) dx(X,) is infinite,
(ii) the degree of every vertex of I" is finite, (iii) d(X,) is finite and a
vertex of I" has infinite degree.

Suppose that (i) holds. In this case every vertex of I' has infinite
degree. For otherwise let Y denote a vertex of finite degree. Because
d(X,) is infinite, any Euler chain of I" starting with X, has as a starting
segment a closed chain £y which includes every edge of I" incident with
Y. Then in I'— &(&y) the vertex Y is isolated, which is contrary to
the hypothesis. This proves that if (i) holds then I' is in category I.

Suppose that (ii) holds. Then by Lemma 11 the graph I contains no
circuit of length > 2. Therefore by Lemma 12 the vertex X, is joined to
only one vertex of I', say X,. Obviously there are an odd number of
(X,X,)-edges in I'. It follows that I'— X, is traceable from X,. If the
edges of any Eulerian subgraph @ of I'—X, are deleted from I'— X,
then the remaining graph has no isolated vertex, for any isolated vertex
would be different from X, (because d,_x (X,) is odd), and therefore,
because X, is joined only to X, in I', it would be an isolated vertex of
I'— &(P), contrary to hypothesis. I'— X, contains no circuit of length
> 2 because I" does not. Therefore by Lemma 12 applied to I'— X, with
X, in place of V,, X, is joined to only one vertex of I'—X,, say X,.
It is easy to see that there are an odd number of (X,X;)-edges in I
It follows that I'— X; — X, is traceable from X;. By a repetition of the
argument just given we have that X; is joined to only one vertex of
I'-X,—-X,, say X,, and there are an odd number of (X;X,)-edges in I".
This reasoning can be repeated without end, proving that I" belongs to
category II if (ii) holds.

Suppose that (iii) holds. Let &%=V, E,,V,,... be an Euler chain of
I" with V;=X,, and suppose that the vertex-term of Z* with smallest
suffix having infinite degree in I' is V,,;, here p=1 because d,(V;) is
finite. Let E=V,E,,...,V, (if p=1 then E=V,) and let E¥*=V,,,
By, Vs Epigse v ot

Vy,...,V, are the only vertices of I" having finite degree. For if not,
then there is a vertex-term ¥, such that ¢ > p+ 1, which has even degree
and is different from each of V,,...,V,,,. Because d.(V,,,) is infinite,
E** has as a starting segment a closed chain Z, which contains every
edge of I" incident with V,, so that V is isolated in I'— &(&,), contrary
to hypothesis. This contradiction shows that V,,...,V, are the only
vertices having finite degree in I

If p=1 then X, is the only vertex of finite degree in I', of course
d.(X,) is odd. Let V, be the vertex-term with largest suffix in Z* such
that V,=V,=X,, here r> 1. The subgraph I', of I" whose vertices and



ON ARBITRARILY TRACEABLE GRAPHS 351

edges are V,,1,E,.1, V410, E, 5 ... is & locally infinite traceable graph.
I', includes every vertex of I" except X, because I', includes every edge
of I' except H,,...,E,, and V,=X, is the only vertex having finite
degree in I'. Let 2 be the graph obtained by adding to I, those of E,,
...,E, both of whose end-vertices have infinite degree in I', possibly
Q=T,. By Lemma 9, 2 is locally infinite traceable. I" is obtained from
2 by adding the vertex X; and an odd number of edges joining X, to
vertices of Q. Therefore I is in category III when p=1.

In what follows p>1 will be assumed.

As d(V,,;) is infinite, Z** has as a starting segment a closed chain
Z' which includes every edge of I’ incident with each of V,,...,V,
other than E,,...,E,, if any; if the only edges of I" incident with V,,
...,V, are Ey,...,E, then for convenience we write Z'=¢. Of course
E(E)nEE)=0.

Now V,+V,. For suppose not (reductio ad absurdum). Then &(Z)u
&(&') is the set of edges of an Eulerian subgraph of I'. In I'— &(5) —
&(Z') the only edge incident with V,,...,V, is E,. Now £, is a
(VpoVp41)-edge, and V, 3% V,,...,V, because d(V,.,) is infinite while
d(Vy),...,d(V,) are finite. Therefore in I'— &(Z) — £(Z’) the vertices
Vg,...,V,_; are isolated. It follows by Lemma 8 that I" has a connected
Eulerian subgraph such that when its edges are deleted from I' the
remaining graph has an isolated vertex, which is contrary to hypothesis.
This contradiction proves that V,+7V,,.

Let I', denote the subgraph of I' consisting of V,,E,,...,V,. Then
I, is (V,V,)-odd because V%V, and therefore by Lemma 4 I', is the
union of a (V,V,)-path, say ¥, and a set & (possibly empty) of circuits,
no two of this system of path and circuits having an edge in common.
The path 1 contains every vertex of I',. For suppose not (reduction ad
absurdum), and let W be a vertex of I', not belonging to 7. Of course
W4V, and W+V,. Let @ denote the union of the circuits of &, then
@ is Eulerian, and therefore &(@)u &(ZE’) is the set of edges of an Eule-
rian subgraph of I', say 4, since &(P)< &(Z) and S(E)n&(E')=0. In
I'— &(4) the set of edges incident with V,,...,V, is {E,}u &(Y), there-
fore W is an isolated vertex. By Lemma 8 this is again contrary to hypo-
thesis. This contradiction proves that 1" contains all of V,,...,V,,.

Let the vertices of 7" in order along ¥ be X,,...,X,, where X;=7V,
and X,=V,, and of course 2sn=<p. By Lemma 11, I' contains no
(X,X,)-edge with 1<g<h<n and h—g>1.

The chain 5* has a vertex term V, with r>p+1 such that V,,E,,V,,
E,,...,V, includes all the edges of & and of £’ and V,=V,,,, for
dr(Vy4y) is infinite. Let E***=V _E_V, ., E,,,.... The vertices of
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Z*** gre precisely all the vertices of I" other than X,,...,X,,, because
E*** includes every vertex having infinite degree in I" and X,,..., X,
are the only vertices having finite degree in I" and Z*** includes no edge
incident with any of X,,...,X, . Let I', denote the subgraph of I" whose
vertices and edges are VB, V,.1,H,,,.... Then I', is locally infinite
traceable because it includes every edge of I' except E,,E,,...,E,_,.
Let 2 denote the subgraph of I" obtained by adding to I', all those
edges among E,,...,E,_, both of whose end-vertices have infinite degree
in I" (all vertices having infinite degree in I" belong to I,); possibly
Q=TI,. By Lemma 9, 2 is locally infinite traceable. Clearly 2 includes
every edge of I' except all those with one of X,,...,X, as end-vertex.

None of X,,...,X,_; are joined to any vertex of Q. For suppose the
contrary (reduction ad absurdum). Then I" contains an edge E joining
X, to V,with 1<k=<n-1 and s=r. Clearly £ € £'. From the definition
of A4 we may assume that

&) = {By.. ., By 1, Bpiyse. .. By} — ET) .

Therefore if in &(4) E is replaced by the edges of ¥ between X, and X,
together with K, and, if V,+V,, also E,,...,E,_,, then the result is
the set of edges of an Eulerian subgraph of I, say A+. In I'— &(d4+)
the only edges incident with X,,...,X, are E and, if k> 1, the edges of
Y between X, and X,. Therefore X, ,,...,X, are isolated in I'— &(4+).
By Lemma 8 this is again contrary to hypothesis. This contradiction
proves that none of X,,...,X, _; are joined to any vertex of Q.

I'is traceable from X, therefore d,(X,) is odd and d(X,),. .., d(X,,_;)
are all even. X, is not joined to any vertex other than X, by what has
been proved above. Therefore I' contains an odd number of (X,X,)-
edges, and no further edges incident with X,. If » =2 then an odd num-
ber of edges join X, to vertices of £2 since d,(X,) is even. If n> 2 then
by what has been proved above X, is not joined to any vertex other than
X, and X, also d(X,) is even, therefore I" contains an odd number of
(X,Xj)-edges. By repetition of this argument we have that the only
edges incident with X;,...,X, are an odd number of (X,X,,,)-edges for
1=¢=n—1 and an odd number of edges joining X, to vertices of £.
Therefore I' belongs to category III also if p> 1.

It has now been proved that if I" is any infinite graph having the
properties described in the first paragraph of Theorem 19 then I" belongs
to one of the three categories enumerated in Theorem 19. This completes
the proof of Theorem 19.

From Theorems 18 and 19 there follows directly the characterisation
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of type 2 traceable graphs given in Theorem 20. Of course Theorem 20
can also be proved directly, without using Theorem 19.

THEOREM 20. There are only three categories of graphs without isolated

vertices which are type 2 traceable from a vertex X, namely
I. AUl locally infinite traceable graphs.

II. Al those which consist of the infinite set of distinct vertices X,,X,,
X,. .. together with an odd number of (X,X,)-edges and just one (X, X;,4)-
edge for 1=2,3,4,..., and no other edges.

ITT. AUl those which consist of the distinct vertices X,,...,X,, where
n21, and an odd number of (X,X,)-edges if n>1, and just one (X, X;,,)-
edge for 2<i1<n—1 if n>2, together with a locally infinite traceable graph
not containing any of Xy,...,X, , and an odd number of edges joining X,
to the vertices of the locally infinite traceable graph, and no other edges.

Next we will establish some properties of the above kinds of trace-
able graphs.

THEOREM 21. If we delete from a graph which is semi-arbitrarily|
type 1[type 2[type 3 traceable from a vertex any finite set of edges such that
each vertex having finite degree in the graph is incident with an even number
of edges df the set, then the remaining graph is semi-arbitrarily/type 1/
type 2[type 3 traceable from that vertex.

Proor. For type 3 traceable graphs this follows directly from Lemma 9
and for type 2 traceable graphs from Theorems 19 and 20. It only re-
mains to prove Theorem 21 for semi-arbitrarily traceable graphs and
for type 1 traceable graphs.

Let I" denote the graph and & a set of edges as described in the theo-
rem. The graph I" has infinitely many edges, and is traceable from V,,
say. Therefore in I'— & the degree of V, is odd or infinite and the degrees
of the vertices other than ¥V, are even or infinite. Therefore by Lemmas 2
and 3, I'— & has a chain starting with ¥, which includes all but at most
a finite number of the edges of I'— &. Among all such chains of I'— &
let 5, be one such that the number of edges of I'— & not contained in
it is minimal.

E, is an Euler chain of I'— &. For suppose not (reductio ad absurdum)
and let I, denote the graph composed of the edges of I'— & — &(Z,)
together with their end-vertices.

I'y contains no circuit. For if @ is a circuit of I'y then by Theorem
15/16 either V, € ® or one of the vertices of @ has infinite degree in

Math. Scand. 31 — 23
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I'— &, and in the latter case X contains a vertex of . Since =, contains
a vertex of O, therefore =5, can be augmented into a chain of I'- &
starting with ¥, and including the edges of @, which is contrary to the
definition of Z,. Hence I, contains no circuit.

It follows that I'; is the union of a system % of paths of length =1
as described in Lemma 4. Let the paths of & be 17,...,7,, where a2 1,
and let the end-vertices of 7; be X; and Y, for ¢=1,...,a. Here X,,Y,,
.., X4 Y, are all distinet and constitute all the vertices having odd
degree in I'— & — &(5,). Now X,,Y,,...,X,, Y, all have infinite degree
in I, for if dj(V,;) is odd then d. g(V,) is odd and therefore
dr-g-g=y(V1) is even, and if W is any vertex of I" other than V; and
dr(W) is even, then d,_g(W) is even and therefore d,_o_g (W) is
even, consequently all vertices which have finite degree in I" have even
degree in I'— & — &(&5,). Hence X,,Y,,...,X,, Y, all have infinite degree
in I'-¢&.

By the same reasoning as in the proof of Theorem 12 with I" replaced
by I'— &, it follows that &5, can be augmented into a chain of I'— &
starting with ¥, which includes the edges of 17, which is contrary to
the definition of Z;. This contradiction proves that 5, is an Euler chain
of I'-¢&.

If I' is semi-arbitrarily traceable from ¥V, then by Theorem 15 every
circuit of I" contains a vertex of infinite degree. Hence every circuit of
I'— & contains a vertex of infinite degree, and we have shown that
I'— & has a 1-way infinite Euler chain starting with V,. It follows by
Theorem 15 that I'— & is semi-arbitrarily traceable from V.

If I' is type 1 traceable from V, then by Theorem 16 every circuit of
I" which does not include ¥V, contains a vertex of infinite degree, and
we have shown that I'— & has a l-way infinite Euler chain starting
with V. It follows by Theorem 16 that I'— & is type 1 traceable from
V.. Theorem 21 is now proved.

THEOREM 22. If a graph is type 1l[type 2 traceable from the vertex V,
then it is semi-arbitrarily/semi-arbitrarily and type 2 traceable from every
vertex of infinite degree if and only if the degree of V, is infinite.

Proor. Let I" denote the graph. If d(V,) is odd then I' is not trace-
able from any vertex other than V,.

Suppose that d.(V,) is infinite. Then it follows from Theorem 16/17
that every circuit of I" contains a vertex having infinite degree in I
Let W be any vertex having infinite degree in I. By Lemma 6, I" is
traceable from W. It now follows from Theorem 15 that I' is semi-
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arbitrarily traceable from W. Furthermore if I" is type 2 traceable from
V, then it now follows from Theorem 18 that I" is also type 2 traceable
from W. This proves Theorem 22.

THEOREM 23. Suppose that the graph I is type 1 traceable from the ver-
tex V, and has no isolated vertices.

Then if E is any closed chain of I, there exists an Huler chain of I'
starting with V, which has 5 or a rotation of = as a segment.

If 5 is any open (W, W ,)-chain of I then either I" has an Euler chain
starting with V, which has E or EreV as a segment, or dp(W,) and d (W)
are even, and the edges of I'— &(E) which are not accessible from V, in
I'— &(F) together with their end-vertices form a (W W ,)-path, and E’ being
the chain of this path starting with W, , I" has an Euler chain starting with
V, which has a segment a rotation of the closed chain E,E' starting with a
vertex of 5 which does not belong to E’.

Proor. Let E=V'},E'y,...,V’,, where V';=V’,. I' has a finite chain
&, which contains exactly one of the vertices of &, V', say, and is a
(V,V'p,)-chain. Let 5, denote the chain V' E',,....E', ,V'i,E',...,
E, ,,V',. If a=1 then E=5,, otherwise 5, is a rotation of Z. In any
case F;,5, is a finite chain of I starting with V. Since I"is type 1 trace-
able from V,, I" has an Euler chain starting with ¥, which has &, 5,
as a segment. This proves the first part of Theorem 23.

Now suppose that = is an open (W, W ,)-chain of I'. If I'— &(Z) has a
(V,W,)-chain, say =,, then 5,5 is a chain of I starting with V,, there-
fore I" has an Euler chain starting with V,, which has =, 5 as a segment.
Similarly if I'— &(&) has a (W,W,)-chain then I" has an Euler chain
starting with 7, which has the chain &}, 5rev as a segment.

Suppose finally that I'— &(Z) has no (V,W,)-chain and no (V,W,)-
chain. Then by Lemma 1 and Lemma 3 the connected component of
I'— &(Z) to which ¥, belongs contains all but at most a finite number
of the edges of I', and by Lemma 7, W, and W, belong to the same
finite connected component of I'— &(%), say I". The degree in I" of each
vertex of each finite connected component of I'— &(£) is finite and there-
fore even, therefore d.(W,) and d.(W,) are odd, and all vertices of all finite
connected components of I'— & (=) other than W, and W, have even degree
in I'— &(&). Now by Theorem 16 every circuit of I” which does not
include V, contains a vertex having infinite degree in I, so by Lemma 4
it follows that I'” consists of a (W,W,)-path /I, and the finite connected
components of I'— &(Z) other than I (if any) are isolated vertices.

— -y

As EZ' is the chain of IT starting with W, , clearly Z,Z’ is a closed chain
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of I'. Also I contains a chain &, which starts with V; and ends with a
vertex W, of &, where 1 <a<n, and contains no other vertex of & and
no vertex of Z'. Let 5, be the roation of =,Z’ starting with W,. Then
E,,E, is a finite chain of I' starting with V,, and therefore I" has an
Euler chain starting with ¥, which has 5,5, as a segment. Theorem 23
is now proved.

7. Arbitrarily traceable infinite directed graphs.

DeriniTION 15. I' being a directed graph, any finite sequence V., E,,
Vo Ey,.... B, _1,V, (n21) or 1-way infinite sequence V,E,,V,y, H,,...,
where the V’s are vertices and the £’s are edges of I', for each ¢ E, is a
(V;— V;41)-edge, and E; =+ E; when i <3, is called a directed chain of I" and
is said to start with V,, and to be directed away from V., and to be a
(Vy— V,)-chain. If E,is a (V,,, - V,)-edge for each ¢ instead of being a
(V; = V,;,41)-edge then we have a directed chain directed towards V, which
ends with V,and a (V, — V,)-chain. The chain is closed if V,= 7V, and open
if V;+V, . A directed chain of a directed graph which includes every edge
of the graph is called a directed Euler chain of the graph. A directed graph
with infinitely many edges is said to be traceable away from the vertex V,
if it has a directed Euler chain starting with and directed away from V,
(which is necessarily 1-way infinte), and it is said to be traceable towards
V, if it has a directed Euler chain ending with and directed towards V.
Any chain starting with the vertex ¥ and directed away from ¥V which
includes the edge E will be called a (V — E)-chain, and if a graph has a
(&£ < V)-chain then we say that ¥ is accessible away from V in the graph.
Analogously for an (£ — V)-chain, and if a graph has a (# — V)-chain
then we say that E is accessible towards V.

DeriniTION 16. A directed graph will be called arbitrarily traceable
away from the vertex V,[towards V, if it has infinitely many edges and a
directed Euler chain starting/ending with ¥, and directed away from/
towards V;, and if every infinite chain of the graph starting/ending with
V, and directed away from/towards V, is a directed Euler chain of the
graph. It will be called semi-arbitrarily traceable away from V,[towards V,
if it has infinitely many edges and if every finite directed chain of the
graph starting/ending with V, and directed away from V,/towards V,
is a starting/ending segment of at least one directed Euler chain of the
graph starting/ending with V, and directed away from V,/towards V,.

Corresponding to Theorem 11 we have
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THEOREM 24. A directed graph with infinitely many edges is arbitrarily
traceable away from[towards the vertex V, if and only if it is the union of
a l-way infinite directed path startinglending with V, and directed away
from[towards V,, and a set (possibly empty) of isolated vertices.

Proor. The obvious adaptation of the proof of Theorem 11.

REMARK 8. Because of the obvious symmetry between the two direc-
tions, in what follows only the case of paths and chains directed
away from V; will be considered. Any closed directed chain which con-
tains V; may be regarded both as directed away from and towards V,,
and if the degree of V, is infinite, so may any directed Euler chain.

Corresponding to Lemma 1 we have for a directed graph

Lemma 13. If V is a vertex of a closed directed chain = of the directed
graph I' and if either d (V) >d; (V) or d, (V) is infinite, then I' contains
an edge directed away from V and not belonging to E. If E' is an open
(X — Y)-chain of the directed graph I' and if either d,(Y)2d;n(Y) or
d,(Y) is infinite, then I' contains an edge directed away from Y and not
belonging to ='.

Proor. The obvious adaptation of the proof of Lemma 1.
The directed analogue of Lemma 2 is

Lemma 14. If V is a vertex of the directed graph I" and either d, (V) >
d;(V) or d,,(V) is infinite, and for each vertex Z=+V of I either d, (%)=
d;p(Z) or dy(Z) is infinite, then every finite chain of I' starting with and
directed away from V is a starting segment of a l-way infinite directed
chain of I

Proor. By Lemma 13 every finite chain starting with and directed
away from V can be continued indefinitely.

The directed analogue of Lemma 3 is

Lemma 15. Let A be any directed graph with a l-way infinite Eu-
ler chain directed away from its starting vertex, let A’ be obtained
by deleting from A any finite set of edges, and let V be any vertex of A.
Then either the set of edges accessible away from V in A’ is finite, or A’
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has a chain starting with and directed away from V which includes all
but at most a finite number of the edges of A. The second alternative holds
for at least two vertices, and for all but at most a finite number of the vertices
of A having non-zero degree.

Proor. The obvious adaptation of the proof of Lemma 3.
The directed analogue of Lemma 4 is

Lemma 16. Any directed graph with a finite non-zero number of edges is
the union of a finite set of cycles and|or directed paths of length =1 such
that no two members of the set have an edge in common, and the starting/
ending vertex of any path of the set is never the ending/starting vertex of
another path of the set, together with a set (possibly empty) of isolated ver-
tices. The vertices of the graph which are not balanced are precisely the end-
vertices of the paths of the set.

Proor. The obvious adaptation of the proof of Lemma 4.

REMARK 9. From Lemma 16 there follows the known fact that if I
is a directed graph with a finite number of edges then Xd (V)=
>d;(V), the summation being over all the vertices V of I

The directed analogue of Theorem 12 is part (A) of

THEOREM 25. (A) Suppose that the directed graph I' has an infinite
Euler chain starting with and directed away from the vertex V,. Then if &
is any (V,— V,)-chain of length =1, the edges of I'— &(E) which are not
accessible away from V, in I'— E(E) (if any) constitute (with their two
end-vertices) an Eulerian subgraph, I's say, of I'— &(E), and each vertex
of I'z is in I' incident only with a subset of &(I's)U &(E) and is not accessible
away from V, in I'— &(E), and I' has a directed chain E* such that Z*
has E as a starting segment and includes every edge of I'— &(E) which is
accessible away from V, in I'— &(E); each connected component of I':
(¢f any) contains a vertex of =, and I'; does not contain V,, or any vertex of Z*
which occurs beyond E.

(B) If F ts any finite subset of &(I") such that for each vertex having
fimite degree in I' the number of edges of F directed away from it is equal
to the number of edges of & directed towards it, then the edges of I'—F
which are not accessible away from V, in I'—F (if any) constitute (with
their two-end vertices) an Eulerian subgraph, I' gz say, of I'—F, each vertex
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of Iz is in I' incident only with a subset of F U &(I'g), and is not accessible
away from Vi in I'—F, furthermore I'—F has a chain starting with and
directed away from V, which includes every edge of I'—F except those
which are not accessible away from Vi in I'— F.

Proor or (A). From Lemmas 14 and 15 it follows along the lines of
the first part of the proof of Theorem 12 that I" has a directed chain 5
which has Z as a starting segment and includes all but at most a finite
number of the edges of I'. If = is a directed Euler chain of I" then Theo-
rem 24 holds with £*=5,. In what follows suppose that =, is not a
directed Euler chain of I

If I'- &(Z,) is Eulerian, then let 5'=5,. Otherwise I'— &(&,) con-
tains a finite set & of directed paths and/or cycles as described in Lemma
16, and & contains at least one directed path because I'— &(Z,) is not
Eulerian. Let the directed paths of & be 13,...,Y,, where a2 1, and for
t=1,...,a let ¥; be a (X; — Y,)-path where

Xy X0 {Yoy. ., ¥} =0

Clearly d(X;),dn(Y4),-..,dx(X,),dr(Y,) are all infinite. It follows as in
the proof of Theorem 12 that I has a directed chain =’ such that =’ has
Z as a starting segment and

EE) = EENUEXYU ... U EL),

so that I'— &(&”) is Eulerian.
The proof of Theorem 25 (A) can now be completed by an obvious
adaptation of the last part of the proof of Theorem 12.

Proor or (B). If I'— % has an Euler chain starting with and directed
away from ¥, then (B) holds with I';z=0. In the remainder of the proof
it will be assumed that I'— % has no such Euler chain.

I'— % satisfies the conditions of Lemma 14, therefore by Lemma 15
I'=% has a directed chain starting with and directed away from 7,
which includes all but a finite number of the edges of I'— %, say Z,.

If I'-F — &(5,) is Eulerian then let £'=5,, if I'- % — (&) is not
Eulerian, then as in the corresponding part of the proof of (A), I'—%F
has a chain &’ starting with and directed away from V,, such that
I'- % — £(E') is Eulerian.

As in the proof of Theorem 12, £’ can be augmented if necessary into
a chain &* of I'— % starting with and directed away from V, which
includes every edge of £’ and of all those connected components of
I'— % — &(E’) which have a vertex in common with Z’. The connected
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components with edges of I'—% — &(5*) are Eulerian and have no
vertex in common with Z*. Their union is I'g. Clearly F né&(E*)u
&(I'g)= &(I'). Theorem 25 is now proved.

In connection with Theorem 13 we observe that it is not true that if
I' is a directed graph with infinitely many edges and if for any finite
chain 5 of I starting with and directed away from the vertex V,, I
has a directed chain which has & as a starting segment and includes all
but at most a finite number of the edges of I', and every edge is acces-
sible away from V,, then I" is traceable away from V,. A simple count-
erexample is a graph which consists of a 1-way infinite path starting with
and directed away from the vertex V, together with one or more edges
directed away from ¥, which join ¥, to vertices of the path but do not
belong to the path. But it is true if in addition d,.(V,)=d;-(V,)+1 and
the other vertices are balanced.

Corresponding to Theorem 14 we have

THEOREM 26. 4 directed graph I' is semi-arbitrarily traceable away
from the vertex V, if and only if &(I') is enumerably infinite, and if £
being any (V, - V,)-chain of I, in I'— &E(E) every edge is accessible away
from V.

Proor. The obvious adaptation of the proof of Theorem 14.
The directed analogue of Theorem 15 is

THEOREM 27. A directed graph is semi-arbitrarily traceable away from
the vertex V, if and only if it has infinitely many edges and is traceable
away from V., and every cycle of the graph contains at least one vertex
having infinite degree in the graph.

Proor. The obvious adaptation of the proof of Theorem 15, using
Theorem 25 in place of Theorem 12.

Correspohdjng to Corollary 4 we have

CoROLLARY 7. The only locally finite directed graphs which are semi-
arbitrarily traceable away from a vertex are those which consist of a 1-way
infinite directed path starting with and directed away from the vertex, and
a set (possibly empty) of isolated vertices.

Criteria for infinite directed graphs to be traceable have been estab-
lished by C. St. J. A. Nash-Williams [5]. With the help of these Theo-
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rem 27 can be re-formulated, replacing the condition that the directed
graph is traceable away from the vertex ¥, by the equivalent structural
properties. This form of Theorem 27 will not be given here because of
the length of the required definitions.

For the directed analogues of the other kinds of arbitrary traceability
discussed in the previous section we formulate

DEerFiniTION 17. Let E=W,,E,,...,E,_;,W, be a closed directed
chain. Then the closed directed chain W, E,,...,E,_;, W,E,,..., B, 4,
W,, where 2<a=<n—1, will be called a rotation of =.

If E=W,E,,...,W, and E'=W',E',,...,W’,, are chains directed
away from W, and W', respectively and have no edge in common, and
if W,=W',, then W,E,,..., W,,E'\, W,,...,W, is a chain directed
away from W, it will be denoted by =,5".

DerintTION 18. Let I be a directed graph with infinitely many edges
and V; a vertex of I. We call I

a) type 1 traceable away from V, if for any finite chain & of I" starting
with and directed away from V,, I" has an Euler chain starting with
and directed away from ¥V, which has 5 as a segment,

b) type 11 traceable away from V, if for any finite chain & of I" other
than an isolated vertex, I" has an Euler chain starting with and directed
away from V, which has & as a segment.

Clearly if a directed graph is type II traceable away from V, then it
is type I traceable away from ¥V, but not conversely.

The directed analogue of Theorem 16 is

THEOREM 28. A directed graph is type 1 traceable away from the vertex
V, if and only if it has infinitely many edges and is traceable away from
V1, and every cycle of the graph which does not include V, contains a vertex
having infinite degree in the graph.

Proor. The obvious adaptation of the proof of Theorem 16, using
Theorem 25 in place of Theorem 12.

Corresponding to Corollary 5 we have

CorOLLARY 8. If a directed graph is type 1 traceable away from a ver-
tex whose degree 18 1 or infinite, then the graph is semi-arbitrarily traceable
away from that vertex.
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Proor. The obvious adaptation of the proof of Corollary 5 using
Theorems 27 and 28 in place of Theorems 15 and 16, respectively.

Corresponding to Corollary 6 we have

CoROLLARY 9. There are only two kinds of locally finite directed graphs
which are type 1 traceable away from a vertex V,, apart from isolated ver-
tices:

1. a l-way infinite directed path starting with and directed away from V,,

2. the union of a l-way infinite directed path starting with and directed
away from Vi and a finite directed graph arbitrarily traceable from V, to
Vi, such that the two graphs have no edge in common and every cycle of
their unton contains V,.

Proor. The obvious adaptation of the proof of Corollary 6, using
Theorem 28 in place of Theorem 16 and Harary’s theorem for directed
graphs in place of Ore’s Theorem.

The directed analogue of Lemma 6 is

Lemma 17. If a directed graph is traceable away from o vertex of infinite
degree, then it is traceable away from, and also towards, every vertex of
infinite degree.

Proor. The obvious adaptation of the proof of Lemma 6.
Corresponding to Lemma 7 we have

Lemma 18. Let I' be a directed graph with an infinite HEuler chain
starting with and directed away from the vertex V,, and let £ be an open
(W, — W,)-chain of I'. If I'— &(E) has no (V, — W,)-chain then the num-
ber of edges not accessible away from V, in I'— &(E) is finite, and I'— &(E)
has a (W, — W,)-chain.

Proor. Obviously W,+V,, so d(W)=d,s(W,). If &' is any
(Vy— V,)-chain of I'— &(Z) then I'— &(Z) contains an edge not belong-
ing to =’ and directed away from V,, for if ¥V, =V, then either

dor—g’(s)-g’(s')(vm) > dir—g(s)—g’(s')( Vi)
or dor_gzy-gen( V) s infinite, and if ¥, + V; then

dor—g(s)-g(s';( V) > d«zr—g(s)-,g(sf)( V)
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because V,, + W,. Therefore I'— &(Z) has an infinite chain starting with
and directed away from V,. Consequently by Lemma 15, I'— &(Z) has
a chain starting with and directed away from ¥V, which includes all but
at most a finite number of the edges of I'— &(Z).

I'— &(E) contains an (X, > W,)-edge E’';, where X,=+7V,. For
dir_gz(W1) 2 1 because d;,(W;)=d,(W;) and £ is an open (W, — W,)-
chain, hence I'— &(&) contains an (X; — W,)-edge. Note that X, =V,
because I'— &(Z) has no (V; — W,)-chain.

If X, W, then I'— &(5)— E’, contains an (X, - X,)-edge E’,, where
Xy#Vy. For dir g g,(Xy) 21 because d;n(X,)=d,(X,) since X, +V,,
and X,+W,, and 5 is an open (W, — W, )-chain, hence ['— &(5)—E';
contains an (X, - X,)-edge E’,. Note that X,+ V, because I'— &(=) has
no (Vy, - W,)-chain. If X;=W,, then I'— &(%) has a (W, - W,)-chain.

By repetition of the above arguments we have that if X,+ W, then

I'-&E)-E)—...—E'; contains an (X, > X,)-edge E’;.,, where
X +=Vy, fore=2,3,....
E'\, B’y B',,... are not accessible away from ¥V, in I'— &(Z) because

I'— &(Z) has no (Vy - W,)-chain. It was shown above that the number
of edges not accessible away from V, in I'— &(Z) is finite. Therefore for
some integer j (jz1), X;=W,. Then W, ,E';,X; ,,E'; ,,..., X, B}, W,
is a (W, - W;)-chain of I'— &(Z). Lemma 18 is now proved.

Corresponding to Theorem 18 we have

THEOREM 29. 4 directed graph is type 11 traceable away from the ver-
tex V, if and only if it has infinitely many edges and is traceable from V,,
every cycle of the graph which does not include V, contains a vertex having
infinite degree in the graph, and if the edges of any closed directed chain of
the graph are deleted then in the remaining graph every vertex which is not
an isolated vertex of the original graph is accessible away from V.

The proof of this theorem will use

LemMA 19. If I' is a directed graph, & is a subset of the set of edges of I,
and the vertex B of I' is accessible away from the vertex A in I" but not in
I'— &, then there exists an ending-vertex of an edge of & which is accessible
away from 4 in I' but not in I'— &.

Proor. If B is the ending-vertex of an edge of & then there is nothing
to prove. In what follows suppose that B is not the ending vertex of any
of the edges of &. Every (4 — B)-path in I' includes an edge of &.
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Let II be an (4 — B)-path in I" and let C denote the last vertex incident
with an edge of IT belonging to & when IT is followed from A4 to B.
Clearly C+A4,B and C is accessible away from 4 in I

C is not accessible away from 4 in I'— &. For suppose on the contrary
(reductio ad absurdum) that I'— & contains an (4 — C)-path I7’. When
IT' is followed from A to C, let D be the first vertex encountered belong-
ing to the part of IT starting with C' and ending with B; C =D possibly.
Then the union of the part of II' going from 4 to D and the part of I7
going from D to B is an (4 — B)-path contained in I'— &, which is con-
trary to hypothesis. Therefore C is not accessible away from 4 in I'— &.
Obviously C is an ending-vertex of an edge of &. Therefore C has the
required properties. This proves Lemma 19.

Proor or THEOREM 29. This an adaptation of the proof of Theorem
18, using Theorem 28 in place of Theorem 16. Suppose that I" is a di-
rected graph which satisfies the conditions of Theorem 29. Then I' is
type I traceable away from V,; by Theorem 28.

Z being any closed directed chain of I" of length >0, I" has an Euler
chain starting with and directed away from ¥V, which has 5 as a segment,
by an obvious adaptation of the corresponding part of the proof of
Theorem 18, using Theorem 28 in place of Theorem 16.

Let & be any open (W, — W,)-chain of I. In I'— &(Z) there is a
(Vy— Wy)-chain. For if not, then by Lemma 17 I'—&(Z) has a
(W, > Wy)-chain, &’ say; clearly 5,5’ is a closed directed chain of I"
and in I'— &(&,E’) W, is not accessible away from V,, which is contrary
to hypothesis. Since I'— &(Z) has a (V, - W;)-chain and I" is type I
traceable away from V,, it follows at once that I" has an Euler chain
starting with and directed away from ¥V, which has Z as a segment.
This proves that if I" satisfies the conditions of the theorem then I is
type II traceable away from V.

Next we will prove that if the directed graph I" is type II traceable
away from the vertex ¥V, then it satisfies the conditions of the theorem.
From Definition 18 I" has infinitely many edges and is traceable away
from V,. Now I'is type I traceable away from V,, therefore by Theorem
28 every cycle of I" which does not include V, contains a vertex having
infinite degree in I

Suppose (reductio ad absurdum) that = is a closed directed chain of
I'and in I'— &(£) a vertex Y having non-zero degree in I"is not accessible
away from V;. Now Y is accessible away from V', in I"since I is traceable
away from V,. Therefore by Lemma 19 a vertex W of Z is not accessible a-
way from V,in I'— &(Z). It follows that I"has no Euler chain starting with
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and directed away from ¥, which has as a segment the rotation of 5
starting and ending with W (or Z itself if = starts and ends with W).
Therefore I' is not type II traceable away from V,. But this is contrary
to hypothesis. This contradiction proves that I" satisfies the conditions
of the theorem. Theorem 29 is now proved.

An alternative form of Theorem 29 and the directed analogue of
Theorem 18’ is

TaEOREM 29'. A directed graph without isolated vertices is type 11 trace-
able away from the vertex V, if and only if it has infinitely many edges and
is traceable away from V,, every cycle of the graph which does not include
V. contains a vertex having infinite degree in the graph, and if the edges of
any Eulerian connected subgraph are deleted from the graph then the re-
maining graph never has an isolated vertex.

This follows directly from the following analogue of Lemma 8:

LeMma 20. If a (finite or infinite) directed graph is traceable away
from the vertex V,, and if it has an Eulerian subgraph such that when its
edges are deleted from the graph then in the remaining graph not every vertex
18 accessible from V., then the graph has an Eulerian comnected subgraph
such that when its edges are deleted from the graph then the remaining graph
has an isolated vertex.

Proor. If the graph has a closed Euler chain then deleting its edges
leaves only isolated vertices. Suppose that I is a directed graph without
an isolated vertex which has an open or infinite Euler chain starting with
and directed away from the vertex V,, and that @ is an Eulerian sub-
graph of I" such that in I'— &(D) not every vertex is accessible away
from V,. If I'— &(P) has an isolated vertex W, then W is an isolated
vertex of the graph obtained by deleting from I" the edges of the con-
nected component of @ to which W belongs. Lemma 20 is therefore true
for I' if there is an isolated vertex in I'— &(®). In what follows we will
assume that this is not the case.

Suppose first that &(I") is finite. Then clearly I'— &(D) is (V, » V,)-
odd, and therefore it has a (V, - V,)-chain. Let Z be a longest (V, - V,)-
chain of I'— &(®). £ does not contain every vertex of I' because not
every vertex of I'is accessible away from V, in I'— &(®). By our previous
assumption the vertices of I" which do not belong to Z are not isolated in
I'— &(®D). Therefore I'— &(P)— £(Z) is an Eulerian graph with edges.
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Let A be a connected component with edges of I'— &(P)— &(&). Then
A is Eulerian, and has no vertex in common with = because = is a longest
(V4 -> V,)-chain of I'— &(®P). Therefore the vertices of A are in I" incident
only with a subset of &(Au®). The union ¥ say, of 4 and all those
connected components of @ which have a vertex in common with A,
is an Eulerian connected subgraph of I' and in I'— &(¥) the vertices of
A are isolated.

Suppose next that &(I") is infinite. From Theorem 25 (B) with % =
&(P), and the above assumptions, it follows that I'— &(®) has a chain
starting with and directed away from V, which contains every vertex
and every edge of I'— &(P) except the vertices and edges of a non-
empty Eulerian subgraph 4 of I'— &(®). Let A denote a connected com-
ponent of 4. Each vertex of A is in I' incident only with a subset of
&(Au®). The union, ¥ say, of A and all those connected components
of @ which have a vertex in common with A is Eulerian and connected,
and in I'— &(¥) the vertices of A are isolated. This completes the proof
of Lemma 20.

The directed analogue of Definition 14 is

DeriniTioN 19. A directed graph will be called locally infinite trace-
able if it is traceable away from a vertex and each of its vertices has
infinite degree.

ReEMARK 10. By an argument analogous to that of Remark 4 a di-
rected graph without isolated vertices is locally infinite traceable if and
only if it is enumerably infinite and remains strongly connected when
any finite set of edges is deleted from it, and any such graph is type II
and semi-arbitrarily traceable away from and towards each vertex.

THEOREM 30. (A) Every locally infinite traceable directed graph is type
IT and semi-arbitrarily traceable away from, and also towards, each of its
vertices.

(B) If a directed graph has mo isolated vertices and is traceable away
from and also towards the vertex V,, and if deleting the edges of any Eule-
rian connected subgraph never results in a graph with an isolated vertex,
then the graph is locally infinite traceable.

Proor oF (A). This can be proved as indicated in Remark 10, and
otherwise thus: By Lemma 17 every locally infinite traceable directed
graph is traceable away from, and also towards, each of its vertices.



ON ARBITRARILY TRACEABLE GRAPHS 367

Therefore by Theorem 29" every such graph is type II traceable away
from each of its vertices, and analogously it is also type II traceable
towards each of its vertices. Hence by Corollary 8 every such graph is
semi-arbitrarily traceable away from each of its vertices, and analogous-
ly it is also semi-arbitrarily traceable towards each of its vertices. This
proves (A).

Proor oF (B). Let I" be the graph. d(V,) is infinite, because if d(V,)
is finite then I" has a closed Euler chain = and so I'— &(&) consists of
isolated vertices, which is contrary to hypothesis. Suppose (reductio ad
absurdum) that I" has a vertex W with finite degree. Obviously W4 V.
Let 5* be an Euler chain of I" starting with and directed away from V.
Since d(V,) is infinite and d (W) is finite, 5* has as a starting segment
a closed directed chain =, which includes every edge of I" incident with
W. Then in I'— &(5,) the vertex W is isolated, which is contrary to
hypothesis. This contradiction shows that I" is locally infinite traceable.
Theorem 30 is now proved.

The directed analogue of Lemma 9 is

Lemma 21. If a directed graph has no isolated vertices and is traceable
away from the vertex V., then if any finite set of directed edges whose end-
vertices all have infinite degree in the graph are deleted or added, the result-
ing graph always has an Euler chain starting with and directed away from
Vy which includes every vertex.

Proor. The obvious adaptation of the proof of Lemma 9.

ReEMARK 11. It can be shown that if any enumerably infinite set of
directed edges whose end-vertices all have infinite degree in the original
graph are added, then the resulting graph always has an Euler chain
starting with and directed away from ¥V, which includes every vertex.
This result will not be required in the sequel though.

The directed analogue of Lemma 10 is

Levma 22. If Q is a locally infinite traceable directed graph and Q' is
any graph obtained from 2 by adding a vertex A not belonging to Q and a
positive number B of edges directed away from A towards vertices of 0,
and B—1 edges directed towards A away from the vertices of 2 then ' is
semi-arbitrarily and type 11 traceable away from A and is not traceable
away from or towards any vertex other than A.
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Proor. The obvious adaptation of the proof of Lemma 10, using
Lemma 17 in place of Lemma 8.

ReMARK 12. The directed analogue of Remark 5 holds.

Lemma 11 has no valid directed analogue. In fact there exist locally
finite directed graphs which are type II traceable away from the vertex
X, and which contain cycles of length >2. For example let @ be an
integer >2 and let the directed graph I" consist of the infinite sequence
of distinet vertices X,,X,,X,,... together with one (X, — X,)-edge,
E say, two (X,_; - X,)-edges for i=2,...,a and one (X, ; — X,)-edge
for i=a+1,a+2,a+3,.... Obviously I" contains a cycle of length a
and is locally finite and traceable away from X, and every cycle of I"
includes F and therefore X . Since every cycle of I" includes #, it folllows
from Konig’s Theorem and the structure of I" that every Eulerian sub-
graph of I' is a cycle consisting of # and an (X; - X,)-path whose ver-
tices in order are X,,X,,...,X,. If the edges of such a cycle are deleted
then the remaining graph is a directed path whose vertices in order are
X,,X,,X,,..., which contains no isolated vertices. Therefore by Theo-
rem 29’ we have that I" is type II traceable away from X,. Because
Lemma 11 has no valid directed analogue, therefore a directed ana-
logue of Lemma 12 is irrelevant here.

In consequence there is no close directed analogy to Theorem 19.
We have only the following

THEOREM 31. There is only one category of finite directed graphs with-
out tsolated vertices which are traceable away from a vertex X, and are such
that if the edges of amy Eulerian connected subgraph are deleted then the
remaining graph has no isolated vertex, namely all those having the follow-
ing structure:

(i) Their vertices comprise the set X,,...,X, where n=2.

(ii) Forg=1,...,nand h=2,...,n they contain no (X, - X,)-edge with
h—g>1.

(iii) If »x,, denotes the number of (X, < X;)-edges with g<h then for
k=1,...,n—1 the total number of (X, - X, ,)-edges is

1+ Zi; 1 Z}L k+1 %45

There are only three categories of infinite directed graphs with the above
properties, namely:
1. Al locally infinite traceable directed graphs containing X, .
2. AUl directed graphs having the following structure:
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(1) Their vertices comprise the infinite sequence X, Xy, X,,. . . of distinct
vertices.

(ii) For g,h=1,2,3,... they contain no (X, > X,)-edge with h—g> 1.

(iii) If 2, denotes the number of (X, < X,)-edges with g<h then for
9=1,2,3,... the sum 3, , %, 18 finite, and for k=1,2,3,... the tolal
number of (X, — X,..1)-edges is

1 +2@=1 Zﬁkﬂ Hij -

3. All directed graphs having the following structure:

(1) They contain a finite number of (distinct) vertices X,,...,X, having
finite degree, where n>1, and a locally infinite traceable directed graph Q
not including any of X,,...,X,,.

(ii) In case n>1 they contain no (X, -~ X;)-edge with h—g>1 and no
edge directed away from any of X,,...,X,_, towards any vertex of Q.

(iii) If 0, denotes the total number of edges in the graph directed towards
X, away from the vertices of Q2 for g=1,2,3,..., and if, for n>g21, %y,
denotes the number of (X, < X;)-edges for h=g+1,...,n, and f denotes
the total number of edges directed away from X, towards vertices of 2, then
8y, %,, and B are all finite for g=1,...,n and h=2,...,n, and if n=1
then f=1+0,, while if n>1 then for k=1,...,n—1 the total number of
(X > X1q)-edges is

L+3% 8+ 20, Dkl %aj s

and B=1+4+6;+...+9, .

If we delete from any of these graphs any finite set of edges such that for
each vertex having finite degree in the graph the number of edges in the set
directed towards it is equal to the number of edges in the set directed away
from it, then the remaining graph is in the same category as the original one.

Proor. To prove the part of the theorem concerning finite directed
graphs we first verify that each graph in the category described has the
properties stated in the theorem. Let I' denote such a graph. It may
easily be verified that I" has no isolated vertex and has an (X; - X,,)-
Euler chain. Let /4 denote a graph which remains after deleting from I’
the edges of an Eulerian subgraph of I'. Obviously A has the same ver-
tices as I" and contains no (X, - X,)-edge with h—g>1. Also 4 is
(X; - X,)-odd because I' is. Therefore if x';,, denotes the number of
(X, < X;)-edges in A for 1<sg<h=n then the total number of
(X; > X,)-edges in A is

1430 0%y -

Math. Scand. 31 — 24
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If n>2 then, since X, is balanced in A4, the total number of (X, - X)-
edges in A is

1 +Z?=2 ”'1j+2?=3 wog—%'1a = 14+ 37 2;';3 %5 s

and so on, for k=1,...,n—1 the total number of (X, - X, ,,)-edges in
Ais
1 +2-°=1 z;b=k+1 “'ij .

Therefore A is in the same category. Hence A does not have an isolated
vertex. We have now proved that each graph in the category described
has the properties stated in the first and the last paragraph of Theorem
31.

Next we show that if I" is any finite directed graph having the proper-
ties stated in the first paragraph of the theorem then I” belongs to the
category described. I" has more than one vertex, also I" does not have a
closed directed Euler chain obviously. Therefore I' has an open Euler
chain starting with and directed away from X, let ¥ denote the ending-
vertex of this chain. Then I" contains an (X; — Y)-path.

Every (X, - Y)-path of I' contains every vertex of I'. For suppose
not (reductio ad absurdum) and let ¥ be an (X, - Y)-path of I" which
does not contain the vertex W of I. Then I'— &(Y) is clearly Eulerian,
therefore by Ko6nig’s Theorem it is the union of a finite set of cycles no
two of which have an edge in common. The union of all cycles of this
set containing W is an Eulerian connected subgraph of I', and if we delete
all its edges from I" then in the remaining graph W is isolated, which
is contrary to hypothesis. This contradiction proves that every
(X; - Y)-path of I'" contains every vertex of I

Let IT be an (X; — Y)-path of I', and let the vertices of II, in order
along II starting from X;, be X,,...,X,, where =2 and X, =Y.
Then the vertices of I" comprise the set {X,,...,X,} and I" contains no
(X, - X;)-edge with A—g>1. I' is (X, - X,)-odd because it has an
(X, - X,)-Euler chain. From this (iii) follows as for 4 above. Thus I"
is in the category described. The part of Theorem 31 concerning finite
graphs is now proved.

To prove the part of the theorem concerning infinite graphs we first
verify that every graph in each of the categories 1, 2 and 3 has no iso-
lated vertex and is traceable away from X, and has the property stated
at the end of Theorem 31.

If a directed graph is locally infinite traceable then it has no isolated
vertex, and by Lemma 21 if any finite number of edges are deleted from
it then the remaining graph is locally infinite traceable.
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Let I" be a directed graph in category 2. It may easily be verified that
I’ has no isolated vertex and is locally finite, and that I"is traceable away
from X,. Let A denote the graph which remains after deleting from I"
a set of edges as described in the last paragraph of Theorem 31. Obviously
A has the same vertices as I' and is locally finite and contains no
(X, > X;)-edge with h—g>1. Also d,,(X;)=1+d;,(X;) and X,,X,,
X,,... are all balanced in A. Therefore if x',, denotes the number of
(X, < X3)-edges in A for 1 <g<h then the total number of (X; - X,)-
edges in A is

I+ zﬁ2 "’17' ’

the total number of (X, — X;)-edges in 4 is

1432 0 w35+ D52 %y — %19 = 1 +25 P

and so on, for k=1,2,3,. .. the total number of (X, - X, ,,)-edges in A is

1+ 3%, PIAWE

Therefore A is in category 2. Hence A does not have an isolated vertex.
We have now proved that each graph in category 2 has the properties
stated in the first and last paragraph of Theorem 31.

Let I' be a directed graph in category 3. Obviously I has no isolated
vertex. It follows from Lemmas 21 and 22 that I' is traceable away from
X,. Let A denote a graph remaining after deleting from I" a set & of
edges as described at the end of Theorem 27, and let Q- denote
02— (6nQ2). By Lemma 21 Q- is alocally infinite traceable directed graph.
Obviously A has the same vertices as I' and X,,...,X, have finite
degree in A, and if n>1 then A contains no (X, - X;)-edge withh—g > 1
and no edge directed away from any of X,,...,X,_; towards any ver-
tex of 2-. Furthermore d,,(X;)=1+d,,(X,), and if n>1 then X,,..., X,
are balanced in 4. Therefore if ¢, denotes the total number of edges in
A directed towards X, away from the vertices of Q- for g=1,...,n,
and if n>g=1 then »';;, denotes the number of (X, < X;)-edges in A
for h=g+1,...,n, and ' denotes the total number of edges directed
away from X, towards vertices of Q2-, then ¢',, »',;, and §’ are all finite,
and if n=1 then p’'=1+4’y, while if n>1 then the total number of
(X; - X,)-edges in A is

1 +6’1 +2;"=2 %'U y
the total number of (X, - X;)-edges in A is, if n> 2,

140" 4+ 37 o gy +0'a+ 2 g #gj— 1y = 1 +20 8+ 20 py
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and so on, for k=1,...,n—1 the total number of (X, - X,,,)-edges in

Ais , ,
1+ 3%, 6+ 3%, Dk % -

Therefore A is in category 3.

It has now been proved that each graph in each of the categories 1,
2 and 3 has no isolated vertex and is traceable away from X, and has the
property stated in the last paragraph of Theorem 31, so & fortiori it has
all the properties stated in the first paragraph of Theorem 31.

To prove Theorem 31 it remains to show that if I' is any infinite
directed graph without isolated vertices having the properties stated in
the first paragraph of the theorem then I belongs to one of the catego-
ries 1, 2, 3. Clearly &(I') is enumerably infinite.

One of the following three possibilities holds: (a) d,(X,) is infinite,
(b) I' is locally finite, (¢) d(X,) is finite and I" has a vertex of infinite
degree.

If (a) holds then I' is traceable away from and towards X,, so by
Theorem 30 (B), I" is in category 1.

Suppose that (b) holds. Then the set of vertices of I" is enumerably
infinite. Let 5% =V, B, V,,E,,... be an Euler chain of I" directed away
from V,, where V;=X,. For j=2,3,4,... let X; denote the vertex of I"
with smallest suffix in Z* different from each X,,...,X; ;. Clearly
X,=V,, and X,,X,,X,,... is an infinite sequence of distinct vertices
constituting the set of vertices of I', and furthermore for each jz=2,
I’ contains an (X; -~ X;)-edge with 1<¢<j—1.

I' contains no (X, - X;)-edge with #>g+ 1= 2. For suppose that this
is not true (reductio ad absurdum) and let @ be the smallest positive
integer such that I" contains a (X, - X;)-edge where b>a+ 1. Then let
¢ be so large that the chain 5=V, E,,V,, K,,...,V, contains every edge
of I' incident with every one of X,,...,X,, and let I', denote the graph
whose vertices and edges are V,,E,,V,y, E,,...,V,. In I'— &(EF) the ver-
tices X,,...,X, are isolated, therefore = is open, that is V,+V,, and I,
is (V; > V,)-odd. The graph I', contains a (V, - V )-path.

Every (¥, - V,)-path contained in I, includes each of X;,...,X,.
For suppose not (reductio ad absurdum) and let 1" be a (V; — V,)-path
in I', which does not contain X, for some d such that 2<d<b. Now
I',— &(7) is Eulerian, therefore by Konig’s Theorem it is the union of a
finite set of cycles no two of which have an edge in common. The union
of all cycles of this set containing X, is an Eulerian connected subgraph
of I', and if we delete all its edges from I" then in the remaining graph
X ; is isolated, which is contrary to hypothesis. This contradiction proves
that every (V,; - V,)-path contained in I', includes each of X,,...,X,.
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Let IT denote a (V, — V,)-path contained in I',. Then X, e I, and I"
contains an (X; — X,)-edge, namely F,. Therefore X,,...,X, all lie
between X, and V, on II. Hence I' contains no (X; - X;)-edge with
3 <d <b. Therefore @ > 2 and b = 4. Consequently every edge of I" directed
away from X, is an (X; - X,)-edge. It follows that I' contains an
(X, - X,)-edge. Therefore X,,...,X, all lie between X; and V¥, on II.
Hence I' contains no (X, - X,)-edge with 4 <f<b. Therefore a =3 and
bz 5. This reasoning can be repeated indefinitely, showing that a =>4,
@25, a26,..., whereas a is finite. This contradiction proves that I"
contains no (X, - X;)-edge with A>g+122.

I’ is traceable away from X, and locally finite. Therefore d (X;)=
1+d;(X,) and X,, X3, X,,... are balanced, and 3. ,%,, is finite for
g=1,2,3,.... Furthermore the number of (X; - X,)-edges in I" is

1 +Z§i2 xlj H

therefore the number of (X, — X;)-edges in I' is

1 +z;'12 "17"*'2;13 Moy — 1y = 1+ 237 Z}’i3 i

and so on. Thus I' is in category 2 if (b) holds.

Suppose that (c) holds, and let £*, p, B, and E** be defined analog-
ously to the part of the proof of Theorem 19 where (iii) is assumed. By
the obvious directed analogy of the reasoning there, using Lemma 21
in place of Lemma 9, we have that V,,...,V,, are the only vertices of I'
having finite degree in I" and that if p=1 then I' is in category 3 with
n=1.

In what follows p>1 will be assumed.

By the obvious directed analogy of the corresponding part of the
above mentioned section of the proof of Theorem 19, using Lemma 20
in place of Lemma 8, we define 5’ and have that V,+ 7V, and that if
I', is the graph whose vertices and edges are V,,E,,...,V,, then I, is
(Vy— V,)-odd and contains a (V; - V,)-path 1" which includes all of
V..., V,. Again let the vertices of 7" in order along ¥ be X,,...,X,,
where X; =V, and X, =V, and 2Zn=<p.

I' contains no (X, - X;)-edge with A—g>1. For let I',— &(¥)=9,
then @ is Eulerian, and therefore &(®)u &(E’) is the set of edges of an
Eulerian subgraph of I', say 4, since &(®P)< &(F) and S(E)nE(E')=0.
The set &(P)uUS(E’) contains every edge of I' incident with each of
X,,...,X, except £, and the edges of 1. Suppose that E is an (X; —~ X;)-
edge of I"' with —k > 1 (reductio ad absurdum). Then if ¥ is replaced in
&(A) by the set of edges of 1 lying between X, and X; on ¥, the result
is the set of edges of an Eulerian subgraph of I', say A+. In I'— &(A+)
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the only edges incident with X,,...,X, are E,, E, and the edges of ¥
lying between X, and X, on 7 (if £> 1) and those lying between X, and
X, on ¥ (if I<n). Therefore X, ,,,...,X;_; are isolated in I'— &(A+).
By Lemma 20 this is contrary to hypothesis. This contradiction proves
that I' contains no (X, -~ X;)-edge with A—g > 1.

Let r, &%** I' and £ be defined analogously to the corresponding
part of the proof of Theorem 19. By Lemma 21, 2 is a locally infinite
traceable directed graph, and also £ includes every vertex of I'" except
X;,...,X, and every edge of I" except all those which have one of X,
...,X, as end-vertex. I' contains no edge directed away from any of
X .., X, towards any vertex of 2 by a reasoning analogous to the
corresponding part of the proof of Theorem 19, using Lemma 20 in
place of Lemma 8. Hence I" satisfies (ii) of category 3.

Since X;,...,X, have finite degree in I, therefore all of d,,x,,f are
finite. Because I' is traceable away from X, we have that d,.(X,)=
1+d,/(X,) and X,,...,X,_, are balanced in I. Therefore by (ii) of
category 3 the total number of (X; - X,)-edges in I" is

146,437 0%,
consequently the total number of (X, - X,)-edges in I" is

L0y 4+ 37 o sy +0p+ g sty — 2010 = 1+ 271 0+ D71 g 45
and so on, for k=1,...,n—1 the total number of (X, - X, ,)-edges in
I'is
1 +Zi-“=1 6i+22'c=1 z?=k+1 "ij >
and g=1+4+6;+...+9,. Thus I' is in category 3 also if p>1. Hence if
(c) holds then I'is in category 3. This completes the proof of Theorem 31.

For Theorem 20 there is again no very close directed analogy, we have
only the following

THEOREM 32. There are only three categories of directed graphs without
1solated vertices which are type 11 traceable away from a vertex X :
1. Al locally infinite traceable directed graphs containing X, .
2. All directed graphs having the following structure:

(1) Their vertices comprise the infinite sequence X,,X,, X, . . . of distinct
vertices, all having finite degree.

(ii) They contain no (X, > X;)-edge with 1 <h<g or with h—g>1.

(iii) If %, denotes the number of (X, - X,)-edges for 1=2,3,4,... then
2% 18 finite, and for j=2,3,4,... the number of (X;_, > X;)-edges is
Lo +oe50+ 20+ ...
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3. All directed graphs having the following structure:

(1) The contain a finite number of vertices X,,X,,...,X, having finite
degree, where n 21 and X,,. .., X, are distinct, and a locally infinite trace-
able directed graph 2 not containing any of X,,...,X,.

(ii) In case n>1 they contain no (X, > X;)-edge with 1<h<g=n or
with h—g > 1, and no edge directed away from any of X,,...,X,_, towards
any vertex of Q.

(iii) If o, denotes the total number of edges directed towards X,; away from
the vertices of 2 for i=1,...,n, and, in case n> 1, x; denotes the number of
(X; > X,)-edges, and B denotes the total number of edges directed away
from X, towards vertices of £2, then dy,...,0,,%s,...,%,,p are all finite,
and if n=1 then f=1+06,, while if n>1 then for j=2,...,n the number of
(X;y = X;)-edges 1s

1464 .+ 01 +2+ ... +x,

and f=14+6;+...+6,.

If we delete from any of these graphs any finite set of edges such that for
each vertex having finite degree in the graph the numbeer of edges in the set
directed away from it is equal to the number of edges in the set directed to-
wards it, then the remaining graph is in the same category as the original
one.

Proor. Theorem 32 follows directly from Theorems 29" and 31.

Of course Theorem 32 can also be proved directly, using the preceding
part of the paper, without assuming Theorem 31.

The directed analogue of Theorem 21 is

THEOREM 33. If we delete from a directed graph which is semi-arbitrarily|
type I[type 11 traceable away from a vertex any finite set of edges such that
for each vertex having finite degree in the graph the number of edges of the
set directed towards it is equal to the number of edges of the set directed away
from it, then the remaining graph is semi-arbitrarily[type I[type 11 trace-
able away from that vertex.

Proor. For type II traceable directed graphs this follows directly
from Theorem 32. For semi-arbitrarily and for type I traceable directed
graphs the proof is the directed analogue of the proof of Theorem 17
for semi-arbitrarily traceable and type 1 traceable undirected graphs,
using Lemmas 14, 15, and 16 in place of Lemmas 2, 3 and 4, and using
Theorems 27 and 28 in place of Theorems 15 and 16.
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The directed analogue of Theorem 22 is

THEOREM 34. If a directed graph is type I[type 11 traceable away from
the vertex V, then it is semi-arbitrarily/semi-arbitrarily and type 11 trace-
able away from and towards every vertex of infinite degree in the graph if
and only if the degree of V, is infinite.

Proor. Let I' denote the graph. If d.(V,) is finite then d,(V;)=
d.r(Vy)+1, and therefore I" is not traceable from any vertex other than
V.

Suppose that d.(V,) is infinite. Then it follows from Theorems 28/29
that every cycle of I' contains a vertex having infinite degree in I
Let W be any vertex having infinite degree in I'.

By Lemma 17 I' is traceable away from W and towards W. It now
follows from Theorem 27 that I' is semi-arbitrarily traceable away
from W and towards W. Furthermore if I"is type II traceable away from
V4 then it now follows from Theorem 29’ that I" is also type II traceable
away from W and towards W. Theorem 34 is now proved.

The directed analogue of Theorem 23 is

THEOREM 35. Suppose that the directed graph I' is type 1 traceable
away from the vertex V, and has no isolated vertices.

Then if 5 is any closed directed chain of I', there exists an Euler chain of
I starting with and directed away from V, which has E or a rotation of E
as a segment.

If £ is any open (W, — W,,)-chain of I then either I" has an Euler chain
starting with and directed away from V, which has 5 as a segment, or
Wi+V,and W, £V, and W, and W, both have finite degree in I', and the
edges of I'— &(E) which are not accessible away from V, in I'— &(E)
together with their end-vertices form a (W, — W,)-path, and E’ being the
chain of this path starting with W, , I' has an Euler chain starting with and
directed away from V, which has as a segment a rotation of the closed di-
rected chain E,E' starting with a vertex of & which does not belong to E'.

Proor. The proof of the first part of Theorem 35 is the obvious
directed analogue of the proof of the first part of Theorem 23.

To prove the second part, suppose that = is an open (W, - W, )-chain
of I If I'— &(F) has a (V; - W,)-chain, 5, say, then 5,5 is a chain
of I' starting with and directed away from V,, therefore I" has an Euler
chain starting with and directed away from ¥V, which has 5,5 as a
segment.
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Suppose that I'— &(Z) has no (V; - W,)-chain. Then of course I" has
no Euler chain starting with and directed away from V; which has &
as a segment. By Lemma 18 the number of edges not accessible away
from V,; in I'— &(E) is finite, therefore by Lemma 15 I'— &(5) has a
chain starting with and directed away from ¥V, which includes all but a
finite number of the edges of I. Among all the chains of I'— &(ZE) start-
ing with and directed away from V, let 5, be one with the property that
the number of edges of I'— &(Z) not contained in it is minimal. The
chain Z is infinite and includes every vertex having infinite degree in I".

By Lemma 18, I'— &(E) has a (W, — W,)-chain, say Z’. No vertex
of 5’ belongs to 5, because I'— &(Z) has no (V; - W,)-chain. Therefore
every vertex of 5 is different from ¥, and has finite degree in I', be-
cause 5, includes V,; and every vertex having infinite degree in I'. It
follows from this and Theorem 28 that &’ is simple.

Let I'— &(E)— E(E')— E(Ey)=A. In I'- E(E,) every vertex which
has finite degree in I" is balanced, therefore, since no two of 5,E', 5,
have an edge in common and =,Z5’ is a closed directed chain, every
vertex which has finite degree in I" is balanced in 4. Also &(A) is finite.

A is Eulerian. For suppose not (reductio ad absurdum), then &(A)+@
and so by Lemma 16, /A contains a directed path ¥ of length =1, neither
of whose end-vertices is balanced in 4. The two end-vertices of 1" have
infinite degree in I'— &(Z) because every vertex having finite degree in
I' is balanced in A. By the directed analogue of the reasoning used in
the proof of Theorem 12, 5, can be augmented into a chain of I'— &(X)
which includes the edges of ¥, which is contrary to the definition of Z.
This contradiction proves that A is Eulerian.

&(A)=0. For suppose not (reductio ad absurdum), then, since A is
Eulerian, by Konig’s Theorem A is the union of a finite number of cycles
and possibly isolated vertices. No cycle of A contains V,, because if a
cycle of A contained ¥V, then £, could be augmented by prefixing the
vertices and edges of this cycle, which would be contrary to the defini-
tion of Z;. Therefore by Theorem 28 every cycle of A includes a vertex
having infinite degree in I". Each such vertex is included in Z,. Conse-
quently 5, can be augmented into a chain of I'— &(X) which includes
all the edges of 4. But this is contrary to the definition of Z,. This con-
tradiction proves that &(A)=0.

Therefore &(I') — &(5) — &(5,) = &(&’). Consequently in I'— &(Z) every

~y

edge not belonging to 5’ is accessible away from V,. In I'— &(Z) no
vertex of &’ is accessible away from ¥, because I'— &(Z) has no
(Vy — W,)-chain. Therefore the edges of I'— &(Z) which are not accessi-

ble away from V, in I'— &(E) are precisely the edges of =Z’. It was shown
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above that £’ is simple, so its edges together with all their end-vertices
form a (W, — W,)-path.

E,E5" is a closed directed chain of I', and no vertex of E’ is accessible
away from V, in I'— &(&). Therefore by the first part of Theorem 35,
I" has an Euler chain starting with and directed away from V; which has
as a segment a rotation of Z,5’ starting with a vertex of Z which does

not belong to E’. Theorem 35 ir now proved.
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