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SETS OF DIVERGENCE OF FOURIER SERIES

ANDERS GRENNBERG

1. Introduction.

In 1965 Katznelson and Kahane [7] and [8], showed that to any set &
of Lebesgue measure zero there is a continuous complex-valued function
with Fourier series diverging in Z.

A proof of this is also given in [9,ch.II.3]. Later such real-valued
functions were constructed [2]. From Carleson [3] follows that the Fourier
series of a continuous function can diverge in a set of Lebesgue measure
zero at most.

The purpose of this paper is to construct continuous 2z-periodic func-
tions having bounded Fourier series diverging in some ‘large” set.
Erdos, Herzog, and Piranian [4] have shown that to any set E of
logarithmic measure zero, i.e. Hausdorff measure zero with regard to the
function A(t) = |log#|~1, there exists a continuous function having bounded
Fourier series diverging in F. Here we show that to any « less than
one there is a set K of positive Hausdorff measure with regard to () =¢*
and a continuous function with bounded Fourier series diverging in £.

2. Notation and definitions.

T denotes the circle R/2zZ (where R is the additive group of real numbers,
Z the subgroup of integers). C(T) is the Banach space of complex-valued
continuous functions on T with the norm

Ifll = max,er|f(@)]

S,(f) is the n’th partial sum of the Fourier series of f and S,(f,z) is the
value at the point zeT. The Fourier coefficients of f are denoted f(j).
Define ‘

S*(f:x) = sup,, ISn(f’x) |

S¥*(f, @) = SUP, < | SmF(j)eH |

The set £ <T is a set with divergence for C(T) if and only if there exists an
f€C(T) such that the Fourier series of f diverges at every point of K.

and
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The Fourier series of f is bounded if S*(f,x) is a bounded function on T.
We now introduce a new concept:

The Fourier series of f is strongly bounded if S**(f,z) is a bounded func-
tion on T.

The set E is a set with (strongly) bounded divergence for C(T) if and only
if there exists an feC(T) such that the Fourier series of f is (strongly)
bounded and divergent in E.

In Bari[1,ch.IV], Zygmund [14,ch. VIII], Tandori [13], Erdos, Herzog,
and Piranian [4], and Sladkowska [11, 12] are given examples of sets
with bounded divergence. Examination of these examples shows that
they in fact are sets with strongly bounded divergence for C(T).

Leth 4 be a continuous increasing function in [0, o] such that A(0)=0.
The set £ has Hausdorff 2-measure zero if it can be covered by a countable
set of intervals I;, of length |I;|, such that YA(|I;]) is arbitrarily small.
If this is not possible the set Z is said to have positive Hausdorff measure
with respect to the function k. The set £ has Hausdorff dimension « if
the Hausdorff measure of E is zero with respect to any function A(t) =t
with >« and positive for any f less than «.

In this paper is studied the problem of strongly bounded divergence
for C(T). Theorem 2 shows that there exist sets of Hausdorff dimension
arbitrarily near 1 with strongly bounded divergence for C(T). Theorem 3
gives a necessary condition on a set £ with strongly bounded divergence
for C(T). This condition is also sufficient by Theorem 1. Compare also
proposition 2 in Katznelson [8]. As a corollary to Theorem 3 we find a
necessary condition for bounded divergence without requiring strongly
bounded divergence.

A survey of the question of sets admitting divergence for C(T) and
other spaces is also given in Katznelson [9,ch.II.3].

3. Some lemmas.

LemMA 1. Let the set E be a union of a finite number of intervals on T of
length 2e and with midpoints (x,). If there exists a K > 0 such that

sup, (3,4, 1@, —z,/71) < C(Ke)™?

for an absolute constant C then there exists a trigonometric polynomial P
and positive constants A,, By, A,, and B, such that

(a) |P| < 1,
(b) S**(P,x)<A,logK+B, for allzeT,
(c) S**(P,x)>A4,logK—B, for all zekE.
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Proor. Let
sin kx , ek eikz

px) = Zﬁz'—k— = Z:m2—ﬂ6+2"2—ik-

In Mitrinovié [10, pp. 248, 250] it is shown that

(1) ol < 4 <m+2,

2) lp(x)] < AJl|xz] for0 < |z| < =,

(3) S**(@, x) < 3A[llx] for 0 < |z| S =
A trivial estimate shows that

(4) S*¥(p, ) < Cylogml-t forallzeT.

and
cosl

(5) S**(@, 2) > = STkt > Cylogml-t  for |z] < m-1.

Let I=[(K¢)-'] and m=[e1]. Put
Q@) = 2, p(x—2,) .

Let €T and let , be the nearest midpoint of one of the intervals in E.
From the conditions on E it follows that

(6) e [T=2, [ < Osup, 3, ales—x, |7 < OKe)™?
(1), (2), and (6) together give

Q@) = lp@—2,)+2,, 440 9@ —2,)| < A+AC*Kel < C,
In a similar way (3), (4), and (6) together give

S**(@Q, z) < S**@, z—2,)+ 3, 44 S¥¥(p, x—2,) < C;logK +Cs.
If |x—z,| < ¢ £ m™! we have by (5) and (6)

S**(Q, ) 2 8**(p, x—x,) -2, .4 S* (@, 2z—2,) > C;logK—C,.
Letting P(x) =C,~'Q(x) we note that the polynomial P satisfies conditions
(a), (b), and (c) where the constants are nonnegative and independent of
K and e.

LeMMA 2. Given &, 0 < <1, there exists a set E<T satisfying

(a) E has positive Hausdorff measure with respect to the function t*,0<¢t.
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(b) There exist two sequences (¢,)y and (K,)? such that lim, ,  e,=0
and limsup,,_, K, = oo and for every n the set K can be covered with a finite
number of intervals of length 2e, with midpoints x,* such that

max, >y .y, @7 — 2" < C(Kpe,) ™t
where C is indepenent of n.

RemARK. The set E thushas ““property L”’, which is a concept introduced
in the theory of Kronecker and Dirichtlet sets (see Kahane [6, p.90]).
The lemma is proved by modifying a construction described in [6, p. 94].

Proor. Let & < f < 1. It is possible to construct a function % such that

(1) O<h(t)=¢,
(2) R(t)t* is decreasing in ]0,x].
(3) & is constant in some intervals [«;,f;], where «;>0,5,>0,

. _ . 19 _
hmi_»o(xi—-(), llmi_>°°(xi ﬂi—‘x"

For the explicit construction of % see [5].
We define for all positive integers n the number 1, as the greatest real
number A such that
h(m2-%) = 2-" .,

Then for all » and %, ¥ <n we have from (2) that
(4) Ay SAp— k/ﬂ
and by (3) (since for each ¢, 2 *¢[«;,8;] for at most one n)
lim sup,,_, o (Ag1—4,) = .
We define the set £ as a Cantor-type (symmetric perfect) set:
E={&|z=na32e2" (,=0or 1).
Let x4 be a measure on E such that if

x=m37¢e2™™
then

([0, 2]) = 327,
If the interval I of length |I| satisfies

a2~ < (I < n27

-

we have

(8) pl) £ 3200127 = 2271 = 2h(m-27"4) < 2h(|1))
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Let a union of intervals I;, cover K. From (1) and (5) it follows that

215017 2 AL 2 32u)) 2 3uE) > 0.

This implies that the Hausdorff measure of £ with respect to the func-
tion ¢* is positive, which proves (a).
Letting
&y = 271 and K, = 2nnh
we have
lim

nscofpn =0 and limsup, K, = .

Now, for some =, let {;} be the set of midpoints of the covering intervals
of length 2¢,.
For k41 we have

2 — 2| = 7|3y ek, 1)27H]

where ¢,(k,l)= —1,0, or 1, and is different from zero for at least one i.
This together with (4) gives

max; > 1kl — 2|t < O31o2020-i < 02037 | 20-1p0 < (2%
= C(Kngn)_l
where C is independent of n, which proves (b).

LeMMA 3. If the set B has properties as in lemma 2 there exists a sequence
of trigomometric polynomials R, and positive constants C; and C, such that

(a) ZI;.O-—-I | Byl < o0,
(b) S**¥R,,x)<C; for all x and k.
(c) limsup,_, S**(R;,z)>Cy,>0 for xek.

Proor. To the set £ in lemma 2 there is a sequence (¢,, K,),” such that
&, > 0 and limsup,_, K, =00. We can, if necessary by taking a subse-
quence, assume that 3(log K,)~! < co. For any n the set Z can be covered
by a finite union £, of intervals of length 2¢, and such that (b) in lemma
2 holds. We have

E=NYE,, E,2E,>E > ....

For every n we construct the polynomial P, as in lemma 1 with ¢=¢,
and K=K,. Let

R, = (logK,)'P, .
This gives (a) and

S**(R,, x) < A;+ By(logK,)* < C, for all x and £k,
which is (b).
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If xe £, we have by (c) in lemma 1 that

S**(Ry, ) > Ay— By(log Ky)™!
and
limsupy_, o S**(Ry, x) > Cy > 0

which is (¢). (It also follows that liminf, __ S**(R,, )= 4,>0).

4. Main results.

THEOREM 1. If for a set E < T there exists a sequence of trigonoretric
polynomials P; such that

(a) E}";l ”lel <oo,
(b) sup;S**¥(P;x)<C for all x€eT,
(c) limsup; . S**(P;x)>0 forxek,

then K s a set with strongly bounded divergence for C(T).

Proor. (Compare Katznelson [8], [9, p. 56]). Let
Pyx) = 3_31iC,feims, j=1,2,3,...
Let (NV,)?° be a sequence of integers such that for all j greater than one

N:"’-M]' > ‘Nj—1+M]""1 .
Let

f@) = 372,677 Pya) .

By (a) the series is uniformly convergent and f continuous.
I N,—M;<p<q=<N;+M; then

sup,, o [8,(f,x) =8, (f, x)| = S**(Pj, x) .
It follows that
limsupm,n»oolsn(fr x)"Sm(f’ x)l Z limsupjemS**(Pjv x) >0

for e E, which menans that ¥ is a set with divergence for C(T). By (a)
and (b) we have for any » and zeT

S**(f, x) < 322,|1Pyll+ 2sup; 8**(Pj, ) < €y < 0.
Thus the Fourier series of f is strongly bounded.
THEOREM 2. Given «, 0<x <1, there exist a set B > T having positive

Hausdorff measure with respect to t* and with strongly bounded divergence
for C(T).
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Proor. Follows from lemmas 2 and 3 together with theorem 1.

Remark 1. We even have a function feC(T) such that S**(f,z)<C,
for all x and limsup,, 5, [S,(f;%) —Sy(f,2)| 2 Cy> 0 for xek.

REMARK 2. By modifying lemmas 1 and 2 it is possible to construct a
set ¥ with divergence for C(T) having positive Hausdorff 2-measure for
any function A such that

lim, o, h(t)/tlogt = —oo.

5. Necessary conditions for bounded divergence.

THEOREM 3. If the set E < T is a set with strongly bounded divergence
for O(T) there exists a sequence of trigonometric polynomials P; such that

@) S4llFll < oo,
(b) limsup;_,.,S8*(P;,x)>0 when z€ck,
(c) sup;S8**¥(P;x)<C for all x.

REeMARK. If the set & only admits bounded divergence (but not strongly
bounded) we have instead of (c)

(¢') sup;8*(P;,x)<C for all x.

Proor. Let feC(T) such that the Fourier series of f diverges in £ but
sup,, |S,(f,z)| <C in T. We define the function ¢ such that

(1) nmsupm.n—)oo ISn(f, x)—'Sm(f’x)l = (p(x) .

Then ¢(x) > 0 for ze . (From Carleson’s result mentioned in the introduc-
tion it follows that @(x) is zero a.e. Also 0 < ¢(x) < 2C everywhere.)
Let K, be the the Fejér kernel and V,, the de la Valleé-Poussin kernel

Vo =2Ky,n—K,
Since V, and K, are summability kernels we have
If = Varfll = max,|f@) - Vysf@)| >0 as n— oo

(where » denotes convolution). Choose a sequence of natural numbers
(A,)7 such that

Ai1>20,+1 and ||f=V, +f|| < 2771,
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Let P,=(V,,.,—V,)«f. Then
IPall = 1V —Fll+ I = Virfll < 27
P, is a trigonometric polynomial of order 24,,,+1 and
P,(j) + 0>2,+2 = |jl S 22,0+1.
Also D°||IP,|| < oo, which is (a).
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8;(P,) is a linear combination of four Fejér kernels convoluted with
8;(f). Since these are positive and §;(f) is uniformly bounded we have for

all j and »
(2) IS;(P,, )| < 6C.

It is no restriction to assume f(0)=0. Since we have strongly bounded

divergence of the Fourier series of f we have for all n
32 f(j)ete| < € and 352 f(j)ei=| < C .
Since feC(T) the conjugate function f exists and has Fourier series
3;—i sign(j) f(§) et .
The functions f° and f-¢ defined by
fo = Hf+if) and £ = Yf—if)
have Fourier series
Sisof ()™ and 3 o f(j)et .

Their partial sums are bounded by the constant C' and f=f%+f-2.

Py(@) = ZjcoPa(i)e+ Zjso Pu(f)e’® = P+ P,
By the same arguments that led to (2) we have for all j and »

1S;(P2)ll < 6C  and  ||84(P,~0)|| < 6C.
If £ <1 we have for any n
SLP.(j)eii = 8y(P,Y, @) — (P2, )+ 8y(Pp 0, x) — Si(Pp?, @)

which gives
S**(P,, x) < 24C .
Thus (c) holds.
Given a positive ¢ there is a K such that

Su(f, ©) —Sy(f, )
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can be written as a linear combination of at most four partial sums of
polynomials of type P, plus a polynomial with norm less than ¢ for all M
and N greater than K. (1) then implies

limsup,_, ., S*(P,, x) = 1p(z)

For details of this, see [5].
Since ¢(x) >0 for xe E we have (b), which completes the proof.

ReMARk. We can also prove that
limsupn——»oo‘g*(Pn’ x) = 61imsupm,k—>oﬂ ]Sm(f’ x)—Sk(f’ x)l = 6(])(27) .

CoroLLARY. Let E; be sets with strongly bounded divergence for C(T).
Then

E= U;’ZIEJ
18 a set with strongly bounded divergence for C(T).
Proor. Modification of theorem II. 3. 3. in Katznelson [8].
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