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FENCHEL TYPE DUALITY THEOREMS
IN FINITE DIMENSIONAL ORDERED VECTOR SPACES

JOCHEM ZOWE

Summary.

In this paper we consider the minimization problem inf(f(x)—g(x)),
where f and —g are generalized convex functions mapping a convex set
of R® into R™, R™ an ordered vector space. We introduce conjugate R™-
valued functions f¢ and g°, defined on a set of n x m-matrices Y, and
associate with the minimization problem a dual maximization problem
in R™: sup(g°(Y)—f(Y)). For R»=R these two programs were considered
by Fenchel. It is shown that under suitable assumptions the main results
of Fenchel’s duality theorem carry over to this more general case.

It should be noted, that our definition of conjugate functions differs
from the one given by W. W. Breckner and I. Kolumban [2], where the
conjugates of f and ¢ are real-valued functions.

The content of this paper is part of the author’s doctoral dissertation,
written at the University of Wiirzburg under direction of Professor
J. Stoer, to whom I hereby express my gratitude.

1. C-convex functions and their conjugates.

Let R™ be a (partially) ordered vector space and C = {xeR™|z 2 0} its
positive convex cone. To denote this situation we write R™, for R™. We
assume that the order cone C is closed and its interior is nonvoid, that is,

(1.1) C=C and C° +0.
Now C=C implies C=C =C**, where
C* = {ye R™| yTx > 0 for all zeC}

is the dual cone of C' (elements of R™ we always consider as column
matrices). Since C'n— C = {0} for the order defining cone C, we get further-
more (C*)°+ @ from C = C, which will be used in the future. C°+ @ gives
C*n—C*= {0} and thus C* defines a vector space order on R™ as well by
r=yif y—x e C*. We write
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y if y—xeC, x=*yiof y—xeC*,
and
<y if y—xeC°, x<*y if y—xe(C*°.

For example the conical hull

of m linearly independent elements c,,. . .,c,, of R™ is an order cone with
C=C and C°+0. It is known that R™, is an archimedean vector lattice
iff C is the conical hull of m linear independent elements (cf. [1]). In this
case R™, is even order complete.

Let 0+ K < R” be a convex set; we call a function f: K—-R™, C-convex
if
(1.2) fx+(1-2)y) £ Af(@)+(1-1)f ()
for all z,ye K and A€ R, 0<A<1 (cf. [3]). The domain of definition K
of f will also be denoted by K(f). A function ¢ is called C-concave if —g
is C-convex. For m=1, that is, R»=R and C=R+u{0}, condition (1.2)
is just the standard definition of convex functions. In this case we call f
simply a convex function and g a concave function respectively. For the
remainder of this paper we assume f to be C-convex and g to be C-con-
cave. For f we define a family {f,|v = *0} of realvalued functions f, with
domain K(f,):=K(f) by

(1.3) fo@) 1= oTf(x) for xe K(f,) .
For all z,y € K(f) and 0<A<1 the relation
Af @)+ (=2 f(y)—f(Ax+(1-A)y) e C
implies
vT[Af (@) + (1= A)f(y) —f (A + (L-A)y)] > 0
for all v = *0 and thus

fodx+(1=2)y) < Afy(®) +(1=2)f(y) .
Hence,

(1.4) of fas C’-convex, then the functions f,: K(f,)>R are convex.

An analogous result holds for the C-concave function g and the functions
g,(x)=vTg(x), v=*0. In the following we will often state results for
C-convex functions only as the corresponding statements for C-concave
functions are obvious.

Let M be the set of n x m-matrices Y, for which

sup{ YTz —f(2) | x € K(f)}
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exists in R™,. We define
(1.5) fUY) = sup{YTx—f(x) |z € K(f)} for Y e K(f°):=M

and call f¢ the conjugate function of the C-convex function f. Analogously
one defines K(g°) and g°, the conjugate function of the C-concave func-
tion ¢

(1.6) 9°(Y) = inf{YTx—g(x) |z € K(9)} for Y e K(¢°).

For m =1, that is, R®=R, this is just the definition of conjugate functions
given by Fenchel. In this special case Y is an n-vector and we write y for
Y.

Let K (f)? denote the relative interior of K (f), that is, the interior of
K(f) when K(f) is regarded as a subset of its affine hull. Since K(f)!+0
for K(f)+0, we know that K(f°)+ @ due to the following

(1.7) TEEOREM. If , € K(f)’, then there is a Y, such that
J(Yo) = Yo xo—f () -
Proor. See [6].

Thus definition (1.5) makes sense. In general K(f¢) is not a convex
subset of the space of n x m-matrices and therefore f¢: K(f¢)->R™ is not
a C-convex function (unless for example R™; is an archimedean vector
lattice).

2. A pair of dual programs and two duality theorems.

Given a (C-convex function f: K (f)-~R™,, K(f)<R", a C-concave func-
tion g: K(g)-R™y,K(g)<R", and their conjugates f¢ and g¢¢, we consider
the two programs:

P1 Find inf{f(x)—-g(x)| e K(f)nK(g)},
P2 Find sup{g(Y)—f(Y)|Y € K(f)nK(g°)} .

A point zy, € K(f)nK(g) is called an optimal solution of P1, if
f (@) —g(xo) = inf{f(x)—g(x)| x e K(f)nK(g)} .

Optimal solutions of P2 are defined analogously.
For m=1 the above problems were considered by Fenchel [4], who
proved the following duality theorem (see also [5, p.179]):
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(2.1) TarorEM. (2) If K(f)InK(9)! + @ and
p = inf{f(x)—g(x)| x € K(f)nK(g)}
exists, then P2 has an optimal solution y,, and
# = g°(yo) —f(yo) = max{g(y)—f(y)| ye K(f)nK(g)}.
(b) If f and g are closed, K(f))nK(g9°)* + O and
p = sup{g(y)—f°(y)| y € K(f)nK(g°)}
exists, then P1 has an optimal solution x,, and

= f(@o) —g(xo) = min{f(x)-g(x)| xe K(f)nK(g)} .

Note: Here a convex function f: K(f)—>R, K(f) < R", is called closed if
F(@) = lim, inf{f () | [y-=l<e} forall zeRn,

where f(x)=f(x) for € K(f) and f(x)= + o otherwise.
In the following we will try to generalize Fenchel’s Theorem to the
case, that the dimension m of the image space of f and g is greater than 1.
As a first relation between P1 and P2 we get

(2.2) LemmMa. If 2 € K(f)nK(g) and ¥ € K(f)nK(g°), then
go(Y)—f(Y)=f(@)—g() .
Proor. For ¥ e K(f°)nK(g°) definitions (1.5) and (1.6) say that
fo(Y)2 YTa—f(x) forall e K(f)

and
g(Y)S YTe—g(x) forall xe K(g).

Thus we have ¢g°(Y)—fe(Y) =f(x) —g(x) for x € K(f)nK(g).

For the following two propositions we assume that

E(f¥nK(g) + 0, .
(2.3) u = inf{S} existsand peS, where
8 = {f(x)—g(@) | ze K(f)nK(g)}.

Programs P1 and P2 are closely connected with the families {P1,},
{P2,},v2=* 0, of one-dimensional Fenchel-problems:

Plv F"‘nd inf {fv(x)—gv(x) | (AS K(fv)nK(gv)} ’
P2, Find sup{g(y)—f¥) | ye K(f)nK(g,1)}.
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Here f,¢ and g,¢ denote the conjugates of the realvalued functions f, and
g,- Since u € 8§ we have

(2.4) vTp = inf{f () —g,(2) | « € K(f,)nK(g,) }
for all »=* 0 and because of (1.4) Fenchel’s Theorem yields
(2.5) vTu = max{g,°(y) —f,"(y) | y € K(f)nK(g,)} .

Therefore, under assumption (2.3),
(2.6) all sets M, := {y| 9. (y) —f(y) = vTu},v=*0, are non-empty.

Let v;2*0 for i=1,2,...,k If y;e M, and v, = 3% 40, 4,>0,
then we have for yo=2i-“=1l,-yi

inf {yoTw — go,(2) | % € K(gy,)} > Zio1dy int{y;Tx ~g,(@)| 2 € K(g,) }
- z zgv, y’;)
Hence inf{y,Tx—g,,(x)| x € K(g,,)} exists, that is, y, € K(g,,°), and
gvo yo) Zz llzgm (yz) .
Analogously we get y, € K(f,°) and —f,(y,) > -3k A Jof(Y;) and thus
gvo (yo) —f'vo yo) > 1, z[.%f(%) fv (y@)]
= Zz=1}‘zvi-r” = ”o u-.

Because of (2.5) equality holds and we obtain:

ProposiTioN 1. Let v;=* 0 and /Ii>0 for i=1,.. k. If y, e M,, for
1=1,...,k then yoelll,,0 Jor yo 1= 2¢=1}~zyu Vg 1= Z _ll,;vi
Furthermore

fol@o) = Zkarhefofwd)  and g, °(ye) = a1 AgWs) -
The first part of Proportion 1 basically says that

(2.7) My 2 2A M, for all ;2% 0 and 4; > 0,1=1,...,k.

ProposITION 2. If for every v 2 * 0 we can choose y=1y(v) € M, such that
(2.8) y(XfoiAw) = DiAy(v) forall v;2*0,3, > 0,k >
then there exists a n x m-matriz Y and w € R™ with
y) = Yo and  vTw = foy(v))+vTu = g,°(y(v))

forall vz*0.

Math. Scand. 31 — 20
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Proor. We choose m linearly independent vectors v,,. . .,v,, in C*, which
is possible because of (C*)° & ¢, and define with y,=y(v;) an nxm-
matrix ¥ :=(y;,-. ., Ym) ¥1,. . -,,)"t and an m-vector w by

W= (o) e+ s fan(m)) O -, 0) L4 4T
Then Yv;=y,; and v;Tw=wTv;=f,(y;) +v;Tu for t=1,...,m. Moreover
Yv =3 o0y, and  oTw = 30, 0. f, ys) + 20 00,
forallv = oo+ ... +oweCi= 3T 4w, |4, > 0} < O*.
Clearly, (2.8) and Proposition 1 give
Yv =y(v) and oTw = f(y())+vTu for all vel.

We show next that this is also true for all veC*. Indeed, let »'€C* but
v'¢C. We choose v2¢(()° and A>0 small enough such that v, := Av!+
+(1—Ap2el. By (2.8) and by what has been shown so far we obtain

AYl+(1-2)Y0? = Yo, = y(v,) = Ay(v) + (1 —2)y(v?)
= Ay(v)+ (1 —2)Yo?
and thus Yvl'=y(v?) for all v'eC*. Similarly we get
Jw T (1= wTo? = wTo, = foo(y(v,) +0,7

= }'fvlc(y(vl) ) + (1 - A)fwc(y(vz) ) + vlT:u
Ma(y(@)) + (1= wTo?+ A0 T

and thus (1) Tw={f,.%(y(@") ) + (v*) Tu for all v1 2 * 0. Since y(v)eM,, we have
furthermore vTw=g,(y(v)) for v=* 0.

For the following duality theorem it will be important to know that a
function v—y(v) € M,,v = * 0, exists which satisfies (2.8). The existence,
though, does not follow from Proposition 1. There are examples where
assumption (2.3) holds and thus Proposition 1, but where no function
v—>y(v) € M, exists which satisfies (2.8) (see [6]). However,

(2.9) if in addition to (2.3) either one of the following conditions holds, then

the assumption of Proposition 2 holds:

(a) M, consists of one element only for some vy>* 0.

(b) u=f(x,) —g(x,) for some xq € K(f)nK(g), and f or g is differentiable
at x,.

(c) R™g 18 an archimedean vector lattice.
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Proor. (a): (2.6) shows that M, + @ for all v > * 0. Suppose M, contains
more than one element. Since v, > * 0 we can choose v,=* 0 and 0<i<1
such that vy=4v, + (1 — A)v,. Proposition 1 implies AM, +(1-)M,, M, ,
a contradiction to assumption (a). Thus every M, v =* 0, contains but
one element and equality holds in (2.7). It is easy to see, that (2.8) holds
for voy(v) := {M,}.

(b): See [6].

(c): If Rm, is an archimedean vector lattice, then C is the conical hull
of m linear independent elements. The same is true for C*, that is,

C* = (3L1Aw: | 4 > 0}
where v,,...,v,, are linear independent elements of R™. We choose

Yy €M, for ¢v=1,...,m and define y(v) := 3., Ay, for v=37_,1v,€C*.
Proposition 1 shows that y(v)eM,. Furthermore, (2.8) holds.

We are now able to state our first duality theorem:

THEOREM 1. Assume

(1) K(finK@r+0,

(2) p=inf{S} exists and peS with 8 :={f(x)—g(x) | xeK(f)nK(9)},

(3) for some vy>* 0 there is only one y, such that §,.°(Yo) — £ S (Yo) =V Tp.
Then P2 has an optimal solution Y, and

n=g(Yo)—f(¥o) = max{g*(Y)—f«(Y) | ¥ € K(f)nK(g°)}.

Proor. Assumptions (1) and (2) are exactly condition (2.3). Because
of (3), M, contains but one element and (2.9) (a) implies that there is a
function v—y(v)e M,,» = * 0, which satisfies (2.8). Let ¥ and w be chosen
as in Proposition 2. We want to show

YTe—f(x)+p = w s Yo' —g(z')

for all zeK(f) and 2'eK(g). If we assume YTZ—f(%)+ufw for some
ZeK(f), that is, 2:= w— (Y T&— f(%) +u)¢C, then the compact convex
set {z} and the closed convex set C can be strictly separated; hence there
exist 0%ve R™ and xeR such that

Tz < x <0vT¢ forallce(.

C being a cone we get vTc >0 for all ceC and consequently » = * 0. Now
0eC and thus vTz <x <vT0=0. Hence

vTw—oTy < vTYTE—vTf(E)
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or
[o(y(©) < y(0)TE—fy(%)

by construction of ¥ and w. This contradicts

[ (y(v)) = sup{y(v)Tz—f,(z) | x € K(f,)} .

Hence w—u is an upper bound for {YTx—f(z) | x € K(f)}. Let w' —pu
be any upper bound and v = * 0. Proposition 2 then shows that

oW — 1) > sup(UTY Te—f,(2) |z € K(f,)} = f(y(0)) = vT(w—p)
and consequently vT(w'—w)> 0 for all veC*, that is,
w-weC** =0 =C.

Hence w—pu is the least upper bound and this yields YeK(f¢) and
f(Y)=w—p.

Analogously one shows YeK(g?) and ¢g%(Y)=w. For Yo=Y we get
g°(Y o) —f°(Y,) =u. Together with Lemma (2.2) this proves the theorem.

ReMARK. Assumptions (1) and (2) of Theorem 1 guarantee M, +¢& for
all »=* 0. Condition (3) is.needed to show the existence of a function
v->y(v)eM, which satisfies (2.8). Therefore (3) can be exchanged for
instance by (2.9) (b) or (c).

Since R with its natural order is trivially an archimedean vector lattice
our theorem generalizes part (a) of Fenchel’s duality theorem.

But notice, that Theorem 1 does in general not hold without condition
(3) or a similar condition. A counter-example is given in [6].

THEOREM 2. Assume

(1) pu = sup{S} exists and ueS,8:= {g%(¥Y)—f«(Y)| YeK(f)nK(g)}.
Furthermore assume that for some vy>*0

(2) fo, and g, be closed,

(3) K(foVinK (g, +0,

(4) 9u) — o) <V for all yeK(f,$))NK(g,s).

Then P1 has an optimal solution x, and
# = f(@o) —9(xo) = min{f(x)—g(x) | e K(f)nK(g)}.
Proor. For YeK(f°)nK(g°) we have

v fUY) = v T sup{¥YTx—f(2) | = € K(f)}
> sup{v," YTz —f,(2) | =€ K(f,,)}
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and similarly

v79°(Y) < inf{p,TY Tz —g,(2) | x€ K(g,)},
that is,
Yoy € K(fo,2) N K(9y)
o fY) = fo(Yvo) and  v,7g(Y) < go’(X) -

Together with xe S this gives

voTu = sup{v,Tg%(Y) —v,Tf(Y) | ¥ € K(f)nK(g°)}
< sup{g,,*(Yve) —fo,(Yo) | Y € K(f9)NK(g)}

and (4) shows

VT = sup{g, °(Y) —fo(¥) | ¥ € K(f,,O)NK(9y0)} -

Because of (2) and (3) part (b) of Fenchel’s duality theorem yields the
existence of an wx,eK(f,)nK(g,)=K(f)nK(g) such that v,Tu =
fuo(xo)—.%o(xo) or

Vo (f (o) —g(2o) — ) = 0.

Lemma (2.2) shows that f(x,) —g(x,) —u€C and since C=C=C**, we
have for all veC*

vT(f (@) —g(x) — ) > 0.

If we interpret f(xz,) —g(x,) —p as a linear form l(u) on R™ by [(u):=
wT(f (xy) — g(xy) — u), then 1 is positive on C* and vanishes for a v,e(C*)°.
By continuity we get I=0 or f(x,) —g(x,) =p. Together with (2.2) this
proves Theorem 2.
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