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CHARACTERISTIC CLASSES OF »-MANIFOLDS
IMMERSING IN Rn+¢

MARTIN BENDERSKY

1. Introduction.

Let f,: X, — BO(r) be a sequence of fibrations with mapsg,: X, > X,
such that the usual diagrams commute. For such a situation Lashof
defines the concept of an X-structure on manifolds [7], and proves a
Thom-isomorphism for the bordism groups of such manifolds. (The re-
quired Thom spectrum is 7'(yX) =%, yX, the pullback of y -~ BO.) Many
of the usual classes of manifolds may be described in terms of X-struc-
tures, e.g. U, SO, Spin, etc., as well as some more esoteric classes of mani-
folds. For example, Hirsch’s theorem reduces the study of manifolds
which immerse with codimension k to an appropriate X-structure
(Hirsch [6], Wells [11]).

In this paper we study X-characteristic classes modp, i.e. the group
H*(X)=lim _H*(X,; Z,). In particular we are interested in those char-
acteristic classes which go to zero by the normal map of all n-manifolds
(by normal map I mean the lift of the Gauss map of M — BO(r)). It is
shown in theorems 2.7 and 3.4 that some assumption on the cohomology
of H*(Z)=lim_, H*+"(TX,) through dimension s, implies that the set of
relations looks like the set obtained in Brown and Peterson [2] through
dimension s. This result implies that restricting the class of manifolds
to those which immerse with codimension k, will not introduce any new
relations among characteristic classes below dimension k.

Of course for k=mn, we obtain the result that there are no new relations
through all dimensions. This is consistent with the immersion theorem
of Whitney [12]. We remark that using a theorem of R. L. Brown [4],
one can prove that there are no new relations among manifolds which
immerse with codimension n—x(n), where «(n) is the number of 1’s in
the dyacdic expansion of n. This is weaker than the conjecture concern-
ing immersions of manifolds in this codimension.
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2. (i,/(Qy)-Free modules.

Let p be a prime, G, the mod-p Steenrod algebra. In this section we
consider spectra whose cohomology is a free G,/(Q,)-module, where (Q,)
is the two-sided ideal generated by the Bockstein operation. As is well-
known, 6,(Q,) is generated by all #%, where I is an admissable sequence
[6]. (For p=2, we use the convention £*=8q%). Let I=(iy,%,,...) be
admissable, then N(I)=2(p—1)3,;1, and exc(I)=pi, — 3N(I) are defined.

Lemma 2.1. Let MU (k) be the Thom space of the canonical bundle over
BU(k) and U, € H*(MU(k)), the Thom class, then

(@10, | exoD) sk
form a linearly independent set of elements in H*(MU(k)).

Proor. In Milnor [8], a basis {#F}, for 4,/(@,) is defined. (Here
R=(ry,ry,...) is a sequence of non-negative integers almost all of which
are zero.) Let [(R)=3Xr,. It follows from Brown and Peterson [2] that

span{P! | exc(I) <k} = span{PE| I(R)<k}.
(The correspondence is defined by sending I=(iy,%,...) to R(I)=
(71,73, - .), T =13 — p"**1.) Hence, we need only show that {#F | (R)<k}

are independent. By the splitting principle, one may consider U,=
Ty Xy ... X (%; are two-dimensional classes). Then

1) PR(z)=0 (R)>1
=(@)P* i r;=0%

and the product formula;,
2) gR(ab)=2R1+R2=R'?R1(a') P2(b)

imply the lemma.

We may now extend 2I(U,) to an additive basis of H*(M U(k)), which
we denote by {x;}.

Let Z be a spectrum such that H*(Z) is a free module over 6,/(Q,)
through dimension s on generators {u;}. Assume that H*(%Z) is also of
finite type, then

LemMa 2.2. BX(ZAMU(k)) is a free module over l,[(Q) (through di-
mension 8+ 2k) on generators u,Qc;. If H¥(Z'; Z) has no p-torsions, then
there exists maps

Sy & A MU (k) - S™)BP
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(where BP is the Brown-Peterson spectrum [3]), such that F =TIf;; induces
an isomorphism on mod-p cohomology through dimension s+ 2k.

Proor. Because MU(k) has only even cohomology, @, acts trivially
on H*(MU(k)), therefore H*(Z AMU(k)) is a module over G,/(Q,).

Since {«,;} is an additive basis, it follows from the Cartan formula, and
the connectivity of MU(k), that u;®«; freely generates B*(ZAMU(K))
for * <s+2k.

H*(MU(k); Z) has no torsion, so it follows that A*(Z AM U(k)) has no
p-torsion if H*(Z) hasn’t any. Therefore the maps fi; exist by Brown
and Peterson [3], and the lemma follows.

Let 2*: H¥(Z) - Hom(m,(%); Z,) be the dual of the Hurewicz map,

i.e.
W] = f*e) € Z,, for [flemy(®), o e HXZ).

CoroLLARY 2.3. Suppose (Z) satisfies the assumptions of Lemma 2.2.

Then {h*(u,Q«;)} form a linearly independent set in
Hom(n*(.%” A MU(k)), Zp) Jor x<s+2k.

Proor. Each u;Q«; is equal to f;;(Z"¢91), where 1 € H%BP). Fur-
thermore, each f;; maps to a different factor in [JS™“?BP. Hence,
since A*(Z7%91)+0, and F is an equivalence (through s+ 2k) mod the

class of finite groups of order prime to p, the elements A*(u;Qw;) are
linearly independent, and the corollary is proven.

COROLLARY 2.4. Let
wi®oy € H¥(Z A MU(K)|0) ,
where MU(k)[@=MU(k)u{+}, then h*(u;,Qx;)*0 for »<s+2k.
Proor. Consider gof: MU(k) -~ MU(k)/9 -~ MU(k), where f is the in-
clusion, and g| M U(k) is the identity, §(+ ) = * =the base point of M U(k).

Smashing with & gives maps f=1Af, g=14g. Clearly gof=id. We have
the commutative diagram

Hom(ny(% A MU(K)|0), Z,)) —~— Hom(m,(% » MU(k)), Z,,)

],,. [,,1.

H*(% A MU(K)|0) ——L—— HXZ » MU(k))
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with 2%, (u;Qx;) 0, g*(1;Qx;) = u;Qx,. But f*og*=1, so g* is injective
and the result follows.

REMARK. All the results remain true if MU(k) is replaced by
SMU(k), and U, is replaced by 2U,. All results are then true through
dimension s+ 2k+1.

We shall apply 2.4. to the Thom spectrum 7'X, so we assume for the
remainder of this section, that 7'X satisfies the assumption of Lemma
2.2. (For example MU (all p) and M SO (odd primes) with s=o0). We
assume 7'X is oriented for p<2.

Let Y be a space, and ®%: H¥(X x Y) - H¥(TX A Y|0D) the Thom iso-
morphism of the bundle yXxY -~ XxY (ie. @* is cupping with
UR1e H¥(TXAY[0). We then have the composite 1=~h*o®u,

A:H¥X x YY)~ H*TX A Y|0) > Hom(n, (TX A Y|0),Z,,) .

LemMma 2.5. Suppose 0 € HY(X) vanishes on all n-dimensional X-mani-
folds. If x € H*9(Y), then

AO0Rx) = 0.

Proor. One may proceed by remarking that 1 is the evaluation of
characteristic numbers Stong [9]. For completeness, we indicate another
proof.

Let 0,00 =0Q«| X Then we have the fibration

By o —> X;x ¥ —% K(n,Z,).

There are maps {;: By, —~ By, o,. Hence {Eyg.}=Eyg, form a struc-
ture on manifolds. Clearly Mm% X x Y lifts to By, if and only if

g*(0®«)=0 (which is the case if § vanishes on all n-manifolds). We then
have the diagram:

74 (TByg,) —— ny(TX A Y]0) -
H*(TE0®4) H.(TX A Y]0)

|

Hy(Byg,) —— Hyo(X x ¥) 222 H (K(n; Z,))
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By assumption on 6, F (which is the forgetful functor) is onto for
* <n. Also, the bottom composite is zero (because

Eygu—XxY > K(n,Z,)

is a fibration). Therefore 0=ydual(;)=A(0Q«).

We now define

Y, = MU(k) if k is even
= SMU(4(k—1)) if kisodd.

Let U, € H*(Y,) be the Thom class if k is even or X(Thom class) if &
is odd. Then Lemma 2.1. implies

{21(U,) | exc(I) < 3k}

is a linearly independent set in H*(Y,).

In Brown and Peterson [1], a right operation of 4, on H*(X) is defined.
Namely, if « € G, and U € H¥(TX) then zx is the unique element such
that (xx)U U =c¢(x)(xu U) where ¢ is the canonical antiisomorphism of the
Steenrod algebra. Since ¢(@,) = — @, it follows that H*(X) is a free right-
module over 4,/(Q,) if H*(TX) is a free left-module. (If u; are right
G,[(Q,) generators for H*(X) then u,uU are left 4,/(Q,) generators of
H*TX).)

The following is essentially proven in [1] in a different form.

LeEMMA 2.6.

M0x®y) = A0Q«y) where 0 € H¥(X), y € H¥(Y}), «x € G,/(Q) -

Proor. For fen,(TXAY,[0) we have

MOx@y)[f] = f*[(0x®y) U (U;®1)]

+f*[(0xuUp)Qy] = +f*[e(x)(0U Uy) Q7]
+fH(OVU)Ray] = £f*[(0@ay) U (Ux®1)]
+A(0Qxy) ,

where we have used Lemma 6.2 in [1].

THEOREM 2.7. Let H*(T'X) be as in Lemma 2.2, then through dimension
8, all relations among X-characteristic classes are given by

z2pj>n—iHi(X)yj .
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Proor. If 62 € H%(X) is a universal relation for n-dimensional X-mani-
folds, then with k=n—gq, A(0UU;)=0 by Lemma 2.5. Let 0=3v;
g € ly[(Qy), {vs} a right G,/(Q,) basis for H*(X), then by Lemma 2.6

0 = AZvo;®Uy) = AZv;@x;Uy)

But, as long as dim(v,Qx,;U,)=n=<s+(n—gq), this can only happen if
zx¢=zj.¢’1f, and exc(l;) > #(n—gq) by Corollary 2.4.

We have now reduced the theorem to [2, Lemma 4.2], and the result
follows for ¢ <s.

Now consider the cobordism of all oriented manifolds which immerse
in codimension k£ Euclidean space (Wells [11]). The Thom space of this
structure is given by 7X,®=8r-%kMSO(k). For p=+2, H*(TX®) is a
free module over &,/(Q,) through dimension =<k, and H*(TX®; Z)
has no p-torsion. In a similar way, one can form 7'X,*9=S2r-2k M U (k).
This is the cobordism of weakly, almost complex manifolds which im-
merse in codimension 2k, with a complex normal bundle. Then
H*(TX®) is a free G,/(Q,) module through dimension 2k. Hence we have

THEOREM 2.8. Among oriented (complex) manifolds which immerse in
codimension k Euclidean space (with a complex structure on the mormal
bundle) there are no new relations among the normal characteristic classes
in dimension k, for modp cohomology. (p odd for SO-manifolds; all p for
U-manifolds).

Proor. The relations given in 2.7. agree with the universal relations
given in [2].

3. Relations among Stiefel-Whitney classes.

In order to obtain results similar to Theorem 2.8 for Stiefel-Whitney
classes of SO- and O-manifolds, we must study spectra Z such that for
*<s8, H¥Z) is of finite type and

CoxprrioN 3.1. H *(&) is a module over G, on generators {u;} and {f;}
subject only to the relation @,8,=0 where §; are integral classes.
M80 and MO are examples of such spectra for p=2 [10].

Since we are interested in the prime 2, all cohomology in this section
shall be assumed to have Z,-coefficients, and ¢ will denote the algebra
of Steenrod squares. We remark that all results have modp analogous
for oddp.
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DEriniTION 3.2. Let R, be the Z,-vector space contained in H*(K(Z,,q))
spanned by the image of Sq' or some higher order Bockstein, 4,,. The
generators of this vector space were characterized by Brown and Peter-
son [1].

Let {x;} € H¥(K(Z,,q)) be the additive basis consisting of monomials
in the Sq’(¢)’s such that exe(l)<gq.

LeMMA 3.3. H*(Z AK(Zy,q)) is a module over G generated by {u;Q@x,}U
{B:Qa;}. There are maps fi;: ZAK(Zy,q) -~ S™K(Z,) realizing the classes
u; Qi and maps

gis: & A K(Zy,q) ~ S™K(Zyri)

realizing the classes p,Q«; for «; ¢ R,.

T =T11fsyx I19:; induces an isomorphism on cohomology through dimen-
810N S+¢.

Proor. That {u;Qux;}U{f;@«;} generate, is similar to 2.2. Let f;; be
the maps realizing the u;®«;’s. Then 3.1. implies that F=T[]f;; induces
an injection in cohomology onto the free 4-module generated by u;®cw;.

Let h;; be the maps of

Z A K(Zy,q) > S™DK(Zy)
realizing f,Q«;, &; ¢ R,. Then
Sql(f;®x;) = B;@8q ey, Sqla;e R, .
If Sq'«;=0, then one may lift to a map
Git X A K(Zy,q) > S"DK(Zy)
where r is determined by
Op; =0, l<r, 00, +0.

(If 6,x;= 0 for all /, then we have a lift to S™(K(Z)). But H*(K(Z,,q): Z)
has only torsion elements, and we infer that «; € R,). Since d,x; € R,
we have: The map G'=[]g,; induces an injection in cohomology onto
the G-module spanned by {8;®«;} for all ¢,j. Therefore T'=F x G' induces
an isomorphism in cohomology through dimension ¢+g¢, which proves
the lemma.

One may then proceed as in section 2.
LemwMa 3.5.
A HYX x K(Zy,n—q)) ~ Hom(m,(TX A K(Z,,n—q)/0), Z,)

satisfies A(0Q:"~2) =0 if 62 vanishes on all n-manifolds.
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THEOREM 3.6. Through dimension s, all relations among X-manifolds
are given by:
22i>n-iHi(X) Sq’ + piar-i |

where a® ("% e R,,_,.

Since these relations coincide with the relations for all SO- or O-mani-
folds we obtain:

THEOREM 3.7. Among oriented (unoriented) manifolds which immerse in
codimension k Buclidean space, there are no new relations among Stiefel—
Whitney classes in dimension =k.

It should be remarked that our results are interesting only in the meta-
stable range (that is k> }n). Because one can show that there are never
any relations among modg-characteristic classes of n-dimensional X-mani-
folds below the middle dimension for any X.
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