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ON NETS AND FILTERS

J.F. AARNES and P. R. ANDENAES

1. Introduction.

In the theory of convergence classes as described in [3] four axioms are
needed, while the corresponding filter version only needs three. Yet there
is a natural correspondance between the filter axioms and three of the net
axioms. On the basis of this E. M. Alfsen raised the question whether
the fourth net axiom could be deduced from the three other ones. After a
suitable adjustment of the definition of subnet this is indeed the case.
In this paper we give a definition of subnet which meets this purpose.
In addition we shall take time to remove some irregularities concerning
nets and subnets.

Unless explicity stated we use the notation of [3]. A net is a function S
defined on a directed set D. We shall write (S,D) for nets instead of
(8,2) or {8,,neD, z}. If the specification of the domain of a net is not
needed expressions like “‘the net 8, ““T'is a subnet of S”’ etc. will be used.
o denotes the set of non-negative integers with the usual order. If D is a
directed set and neD, we write D, ={peD : p=n}. By # g we mean the
filter generated by the net (8,D), that is the filter with base {S[D,]},cp-
Finally, we occasionally write S(n) instead of S,, for the value of S at neD.

In standard textbooks on general topology (cf. f.ex. [3]) the concept
of a subnet is defined in the following way: Let (S, D) be a net in some
set X. The net (T, E) is called a subnet of (S, D) if there exsists a function
N:E-D such that

(i) T=8oN,

(ii) for each neD there exists mekl such that N(p)=n for each pek,
p=m.

This definition is due to E. H. Moore [4], and we shall refer to a subnet
of this type as an M-subnet.

The main property of any reasonable definition of a subnet is that it
entails that if a net is eventually in a set 4, then any subnet is also
eventually in A. This is of course true for M-subnets. There are, however,
some irregularities in the correspondence between nets/M-subnets and
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filters/subfilters (i.e. finer filters). We have already mentioned the problem
concerning convergence classes. We point out two other inconveniences:

(a) Let S and T be two nets in a set X. It seems reasonable to call
S and T equivalent if they are M-subnets of each other. Then they gene-
rate the same filter. However, two nets can generate the same filter
without being M-subnets of each other.

(b) The usual definition of ultranet (‘‘universal net’ in [3]) involves a
property of ultrafilters: S is an ultranet if for each subset 4 of X, § is
eventually in 4 or in X\ 4. Moreover, an ultrafilter has no proper
subfilters, an ultranet may have proper M-subnets.

For a rather extensive list of papers related to the present subject we
refer the reader to [1].

2. Subnets.

2.1 DerFINITION. Let (S,D) be a net in a set X. The net (7, E) in X is
called a subnet of (S,D) if for each neD there exists meE such that
T(E,] < S[D,].

We first take care of the irregularity mentioned in (a) in the introduc-
tion.

2.2. LEMMA. Let (S,D and (T,E) be two nets in a set X. The following
two statements are equivalent:

(i) T is a subnet of S.

(i) If S is eventually in a subset A of X, then T is also eventually in A.

Proor. Obvious.

We shall say that two nets are equivalent if they are subnets of each
other. Then the above lemma immediately gives the following corollary.

2.3. CoROLLARY. Two nets S and T are equivalent if and only if they
generate the same filter, i.e. S and T are eventually in the same sets.

We now turn to some comments on definition 2.1. Clearly, if 7' is an
M-subnet of S, it is also a subnet in our sense. Thus the standard results
on subnets and cluster points (whose proofs are based on the existence
of M-subnets) carry over (cf. [3, pp.70-71]). The main feature in defini-
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tion 2.1 is, of course, the absence of the function NV in the definition of an
M-subnet. Condition (i) in the latter definition implies that T[E] < S[D],
while our definition impose no constraints whatsoever on the initial terms
of T. The following trivial example exposes this point quite clearly.

2.4. ExaMPLE. Let D=E=w and put §,=7,=0 for n=1 and
Sy=—1,Ty=1. Then evidently S and 7' are equivalent, nevertheless
neither is an M-subnet of the other since 7[E]\ S[D] and S[D]I\T[E]
are both non-empty.

From this example one may perhaps get the impression that definition
2.1 is only an adjustment of the definition of an M-subnet necessary to
take care of the case of different initial terms in the two nets in question.
This is not so. The next example will reveal more clearly the role played
by the function N.

2.5. ExampLE. Let (S, ) be a sequence in a set X. Let F be the set of
all functions f:w—w and put H=w x F. F is given the usual pointwise
order and E the product order, that is (m,g)=(n,f) if m=n and g=f.
We now define 7: E->X by

Then evidently the two nets S and 7T are equivalent, because for each
new we have (with an arbitrary f e F)

T[E@,pl = Slw,] -

T is also clearly an M-subnet of §, (it is trivial to verify that N:E—-w
given by N(n,f) =n does the job). But § is not an M-subnet of 7'. Indeed,
suppose that this is the case. Then there is a function N:w—F satisfying
(i) and (ii) in the definition of an M-subnet. (Actually, condition (i) will
not be needed.) Put N(n)=(m,,f,) and let (p,g)eE be given. By condi-
tion (ii) there exists nyew such that (m,,f,) = (p,g) if n=n,. In particular
we have f, =g for n 2n,. But this immediately yields a contradiction,
for if we define g:w—w by

g(n) = fn(n)+ 1,
the inequality f, > ¢ is impossible for each new.
We include some remarks on subsequences. In [3] (7,w) is called a

subsequence of (S,w) if T' is an M-subnet of 8. In this case we shall say
that 7' is an M-subsequence of S. If the function N is strictly isotone,
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that is N,,> N, if m >n, we call T an ordinary subsequence of S. We shall
use the following definition: (7, ) is called a subsequence of (S,w) (or,
more generally, of the net (8,D)) if 7T is a subnet of S. Clearly, a subse-
quence in this sense need not be an M-subsequence, cf. example 2.4. This
also means that we have to abandon the notation {8, } for subsequences.
At this point the reader may possibly feel a shiver of disgust at our
tampering with the definition of the almost sacrosanct concept of an
ordinary subsequence. We therefore hasten to point out that our defini-
tion only serves to remove some purely formal nuisances. For practical
puposes it is quite immatrial which one of the three definitions one
uses, and thus one can stick to ordinary subsequences. This statement is
made precise in our next proposition.

2.6. ProproSITION. Let (T',w) be a subsequence of (S,w). Then there exists
an ordinary subsequence U of S such that T and U are equivalent.

Proor. There exists mew such that 7[w,]< S[w]. Now, fix zeT[w,,].
If T-[x] is infinite, so is S-1[x] since 7' is a subnet of S. In this case we
put N, =8-1x]. If on the other hand 7'-![x] is finite, we put N, = {p}
where p is the first member of S-1[x]. Then

N=U{{N,:xeTl[o,]}

is an infinite subset of w Let n, be the kth element of N (in the order
induced from w) and put U,=8,,. Then clearly (U,w) is an ordinary
subsequence of 8. Furthermore, we observe that Ulw]=7T[w,,], and if
z is in this set, then the sets U-[x] and T'-![z] are both finite or both
infinite. Now, let pew, p>m, be given. For any of the finitely many
ze€T[w,]\T[w,] we necessarily have that T-![x] is finite, but then
U-[x] is also finite. Thus, for sufficiently large kew we must have
Ulw] < T[w,], and we have proved that U is a subnet of 7'. In the same
way we show that T is also a subnet of U, and the proof is complete.

3. Ultranets.

We now turn to the investigation of ultranets. If § and 7' are two
nets in a set X such that 7' is a subnet of S, but S is not a subnet of 7', we
call 7' a proper subnet of S.

3.1. DerFiNITION. A net S is called an ultranet if it has no proper subnets.

The simplest examples of ultranets are, of course, those corresponding
to trivial ultrafilters: If xeX we define §%:{1}»>z by 8%(1)=x. Then,
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(giving {1} the only possible order), 8 is evidently equivalent with any
of its subnets. We call S% a trivial ultranet. It should be noted that each
subnet 7' of 8= is also an M-subnet, but usually §% is not an M-subnet of 7'.
Thus ultranets may have proper M-subnets.

3.2. ProPOSITION. Each net S has a subnet T which also is an ultranet.

Proor. Let & denote the family of all subnets of S. & is not empty
since Se . If T,,T,e ¥ we write T, >T, if T, is a subnet of T',. Then
> is a partial order on &. Let {(T';, E%)};.; be a chain in &. We put

E = (£, : meB, iel}
and order £ by defining

B, = B, i T;>T;and T|[B,] < T[E,].

Given E',,, and Efmj and supposing T',>>T; we can find m, € B such that

m; zZ m; and T,-[E"mj,] < T,[E,].

This means that B/, . = K, E"mj,gE’fmj, thus > directs £. We now
define 7* : E—~X by

T*(Eim,-) = Ty(m;) .
For E?'mng’imz_ we then have T*(Efmj)eTi[Eim'.]. Thus 7*>T" for all
tel, that is T* is an upper bound for the chain {T';} since T'* is clearly a
subnet of S. Thus Zorn’s lemma applies and there exists a maximal
element 7' in &. T is then clearly an ultranet, and the proof is complete.

The above proof illustrates clearly how we may adopt ultrafilter proofs
to obtain corresponding statements about ultranets. We give another
typical example. If an ultranet S in a topological space X has a cluster
point x, then S converges to x. For there exists a subnet 7' of S converging
to z. Since S is an ultranet S is also a subnet of 7', and the result follows.

We now give a characterization of ultranets showing that they are
identical with the universal nets in [3].

3.3 ProposiTiON. A net S in X is an ultranet if and only if for each
subset 4 of X, S is eventually in either A or X \ 4.

Proor. We first assume that there exists a subset 4 of X such that
8§ is frequently in both A and X \ 4. Then §|8-1[4] is a proper subnet
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of §, and thus § is not an ultranet. Conversely, let (7',E) be a proper
subnet of (§,D) and assume that § is eventually in 4 or X \ A4 for any
A <X, Since T is a proper subnet of § there exists meZ such that S is not
eventually in 7[E,]. Then S is eventually in X\7[X,], that is
S[D,1nT[E,]=0 for some neD. This is obviously absurd since 7T is a
subnet of S.

4. Convergence classes.

In [3] convergence classes are defined in the following way: Let X be
a (non-empty) set. A class € of ordered pairs (S,z) where S is a net in X
and z a point in X, is called a convergence class for X if it satisfies the
conditions listed below. For convenience we write S—(%) or lim, ., S,
=z(%) if (8,x)e¥, SHx(¥) if (S,x)¢¥.

(a) If (S,D)is a net and 8, == for each ne D, then S—x(%).

(b)y If S—a(%), then T—z(¥) for each M-subnet 7 of S.

(c)y If S+x(¥), then there is an M-subnet 7' of S such that U-+z(%)
for any M-subnet U of 7.

(d) Let D be a directed set, let E™ be a directed set for each me D, let
F=DxX{Em™: meD} and for (m,f)eF let R(m,f)=(m,f(m)). If

]jmmeDﬁmneEmS(m’n) = x(%) ’
then SoR-x(%).

If we change (b)y; and (c)y; by replacing M-subnets by subnets the resulting
axioms are labelled (b) and (c), respectively.

In the definition of a convergence class of pairs (&, ) where & is a filter
on X we require:

(A) F~x(¥) (here F, is the filter with base {x}).

(B) If #F>2(¥) and ¥>F, then ¥—~ux(¥).

(D) Let D be a directed set and suppose that #,—S,(%) for each neD.
Let # 4 be the filter generated by the net S thus defined and suppose
that & g—x(%). Then

lim infneD g’n = Umc—:D nngm‘ga—n g 27(%) P

These axioms were given to us by E. M. Alfsen (oral communication).
Another set of axioms for convergence classes using filters can be found
in [2].

We obviously have a correspondence between (a) and (A), (b)y and
(B), and finally between (d) and (D). However, (c)y is not deducible
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from (a), (b)y and (d). This is shown by the following rather trivial
example: Let X be a set with more than one point and let € consist of
all (8,z) such that S, =« for all n. Then (a), (b)) and (d) are trivially
satisfied. Now, let z,yeX, x=+y, and define a sequence (S,w) by S,=y,
S,=z for n2=1. Then S+x(%), but clearly any M-subnet 7' of § must
have an M-subnet U such that U—z(%). Thus (c)y is not satisfied.

Our next goal is to prove that (c) follows from (a), (b), and (d). On the
basis of this fact it seems natural to take (a), (b), and (d) as axioms for a
convergence class. To see that #-convergence is then a topological con-
vergence we can repeat the proof of the corresponding thecrem in
[3, pp. 74-75] almost verbatim.

We start with a lemma which is the net analogue of the statement that
to a given family {#} of filters on a set X, N, %, is the finest filter
coarser than every %

4.1. Lemma. Let & be a family of nets in a sat X. Then there exists a
net T in X satisfying:

1) S is a subnet of T for every Se&.

2) If every Se ¥ is a subnet of some net R, then T is also a subnet of R.

Proor. Let & =g o % and define
E={Fu2):FeF,xcF}.

We then direct ¥ by (G,y)= (F,z) if G<F. Now define the net (7, E)
by T(F,x)=x. Clearly T([Ey n]=F, thus # =F. For any Se& we
then have %3> %, and we conclude from lemma 2.2 that S is a subnet
of 7. Similarly, if § is a subnet of R for every Se&, we have Zp=
N Fg> Fp, and it follows that 7' is a subnet of R.

If & is the family of all nets § in X such that S—x(%), we write S,
for the net 7' constructed in the previous lemma. Our next lemma requires
(a) and (d), but not (b)

4.2. LEMMA. Let D be an index set and let {(S™, E™)},..p be a family of
nets such that Sm—x(%) for each meD. Then there exists a net T, such that

1) T,~x(¥) ,
2) 8™ is a subnet of T, for each meD.

Proor. Direct D by the trivial order, m=n for all m,neD. Using
(a) we then have
limmeD lim,neEm Sm(n) = x(%) .
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(d) then ensures the existence of a net 7,=80o R such that T,-x(%)
(where S(m,n)=8m(n)). The domain of T, is the directed set F=
Dx X{E™:meD} and T (m,f)=8(m,f(m))=8m(f(m)) for (m,f)eF.
But then, given (m,,f,)eF, we have

Sm[Emfo(m)] < T,[F (mo,fo)] :

(Remember that for any me D we have m =m,.) This means that S™ is
a subnet of 7', and the lemma is proved.

We now let {(S™,E™)} above be the family & of all nets § such that
S—x(%). It then follows from lemmata 4.1 and 4.2 that S, must be a
subnet of 7T',. Using (b) we obtain the following important result:

4.3. CoroLLARY. S,—2(%).

Translating into filter terminology this corollary states that
Ngoer® > 2(%)

hence, speaking informally, the natural candidate for the neighbourhood
filter at x does really converge to z.

4.4. PROPOSITION. (a), (b), and (d) imply (c).

Proor. We have used (a), (b), and (d) to derive corollary 4.3. From (b)
and the first part of lemma 4.1 we then infer that S — 2(%¥) if and only
if 8 is a subnet of S,. To prove (¢), assume that S -- z(%). Then S is not a
subnet of S,. From lemma 2.2 it follows that there exists a subset 4 of X
such that S, is eventually in 4 while S is frequently in X \ 4. Then the
subnet 7'=8|S-1[X \ 4] is eventually in X\ 4 and so is any subnet
U of T. Then U cannot be a subnet of S,, and according to the above
remark we infer that U + 2(%). This proves (c).
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