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GORENSTEIN MODULES AND RELATED MODULES

HANS-BJORN FOXBY

The finitely generated projective modules over a commutative noe-
therian ring 4 with identity and the Gorenstein modules G over 4
(defined in [16] and below) share the following property:

(PG) Hom (@, @) is projective and Ext*(G,G) = 0 for >0 .

If @ is a finitely generated non-zero 4-module with the property (PG)
(short: G is a PG-module), and if M is any A-module of finite weak
(respectively, injective) dimension, then there is a natural isomorphism

oy HOM — Hom (G,GQM)
(respectively
yu: G@Hom (G, M) —~ Hom (H,M)) ,

where H=Hom (@, G) (H is projective by assumption). This is established
in the first section. In the second section these results are applied to
Gorenstein modules. Here the main result is:

Suppose that G 1s a Gorenstein module and that A is of finite Krull-
dimension. Then for any module M with Supp M < SuppG we have:

weakdim M < oo if and only if injdimG @ M < o and
injdim M < oo if and only if weakdim Hom (G, M) < oo .

This result is well-known (and easy to prove) in the case G= A4, but it is
also an extension and generalization of a result due to Sharp (Theorem
(2.9) of [17]).

In section 3 the natural homomorphism

oy: M ® Hom (G, G) -~ Hom (Hom (M, G), G)

is considered, when @ is a PG-module. This leads to generalizations of
some results due to Auslander and Bridger [1] and Fossum [7]. Finally,
the converse to Sharp’s theorem on existence of a rank 1 Gorenstein
module (see Theorem (2.1.i) of [17]) is proved in the last section.
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NoraTioN. The ring A will always be commutative and noetherian,
while G always denote a finitely generated (f.g.) non-zero A-module. The
endomorphism ring Hom ,(G,G) of G will be denoted by H. Arbitrary
A-modules will be denoted by M and N, and the notation will be the same
as that used in [8] with the following exceptions:

[M,N], = Hom (M,N) (or just [M,N]).
pd M = the projective dimension of M,
wd ,M = the weak dimension of M, and
id 4M = the injective dimension of M.

1. On PG-modules.
There are two natural homomorphisms:

o HO M > [G,G® M] and wyy: G® [G, M]—[H, M],

defined by gy (h@m) (9) =h(g)@m and yy (&) (k) =fh(g) (ct.[11, § 1]and
[6,VI,§5]).

Let @, denote the class of A-modules M such that ¢,, is an isomor-
phism and Tor;(@,M)=0 and Ext!(G,GQM)=0 for all :>0. Let ¥,
denote the class of A-modules M such that v, is an isomorphism and
Ext*(G, M) =0 and Tor, (G, [G,M])=0 for all i> 0.

The homomorphisms ¢,, and y,;, and the classes @; and ¥, will be
studied in this section together with the class of PG-modules.

DErFiNITION. G is called a PG-module if H=[G,(d] is projective and
Exti(@,3)=0 for +> 0 (still @ is f.g. and non-zero). If G is a PG-module
we will define the rank-map r5: Spec4 — R by r4(p) = (rank H )} (cf. [4,
§ 5, n° 2, Theoréme 1. c]).

Now we will give some examples of PG-modules.

ExamprLE 1. If G is projective then Ge@yzn¥,, it is a PG-module,
and 7 is the usual rank-map (by [4, § 5, n° 3], [6,VI, § 5, Proposition 5.2],
and [11, § 1]). In fact, if 4 is a Gorenstein ring of dimension 1 and G is a
PG-module, then G is projective, by Theorem (3.1) of [18].

ExampLE 2. If G is a Gorenstein module (that is id ApGp=depth A”Gp
(<o) for all peSupp@, cf. (3.7) of [16]), then G is a PG-module and
rg(p)=p""(p, @) for all p (by [12, § 2] and [8, Proposition 3.1 (a')]).

Remark that GisaPG-4-moduleiff G, isa PG-4 ,-moduleforallp e Supp ¢
(or just the maximal ones).



GORENSTEIN MODULES AND RELATED MODULES 269

ExamriE 3. If A=4,0 A4, (direct product of rings) and M, is a f.g.
non-zero A,-module, then M =M, DM, is a PG-4-module if and only if
M; is a PG-A;-module for :=1,2. This gives examples of PG-modules
which are neither projective nor Gorenstein.

ExampLE 4. Let 4 be a Cohen-Macaulay local ring with maximal ideal m
and let G be a PG-module of rank 1 (i.e. ro(m)=1). Then it is easy to see
that u3(4)=_pgy(G)u*(G) where s=depth 4 and f,(G) is the minimal
number of generators of G. (Ext®(4/m,4)=Ext?(G¢/mG,G) by induction
on s using Proposition 1.1 below.) This shows that if u%(4) is a prime
number then G is either free or Gorenstein (cf. the remark after Theorem
4.1 in section 4). Furthermore, if 4 is Gorenstein then G=A4.

Further basic properties of PG-modules are catalogued in the following:

ProrosrTioN 1.1. Let G be a PG-module.

(i) rg?: SpecA—~Z s continuous (i.e. constant on the connected components
of Spec 4).

(i) A=A4"®Annq, where A'=AnnAnnG, that is A'=A[Ann@Q. Fur-
thermore A,=A',,, for all peSupp @, when p’=p/AnnGeSpecA’.

(iii) @ is a PG-A'-module.

(iv) Ann G=AnnH=AnnAd’' and Ann,,G=0.

(v) AssG=AssH=AssA’'=Ass AnSuppG.

(vi) 2G=2H=2,4"c2zA (Here zM =2 ,M denotes the set of zero-divisors
on the A-module M.)

(vii) GlaG ts a PG-4/(a)-module for all G-regular acA.

(viii)ay,. . .,a,€A is an A’'-regular sequence if and only if it is G-regular.

(ix) depth,G=depth A4’.

(x) gradeg M =grade, M for all f.g. A-modules with Supp M < SuppG.

Proor. For (i) and (ii) confer [4, § 4 n° 4]. However we can give a short
prove of (ii). Remark first that AnnG=Ann H and hence
(Ann@), = Ann ApGp = Ann ApHn =0

for all peSuppG=V(Ann@), since H, is A, free. Next, Suppd4’'=
V(AnnA4')c V(AnnG), and we have proved pe V(Ann@) if and only if
P¢SuppAnnG=V(A4’), and p¢V(4’) if and only if peSuppd’, and
hence

(4'+Anmn@),=4, and (4'NnAnnG), = 4’,n(Ann@), = 0

for all prime ideals p. Therefore A = A’@®Ann@G. The assignment p | p' =
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p/AnnG defines a homeomorphism: SuppG->Spec4’ and 4,=4",, and
hence Gy=G,, is a PG-A4’,-module, i.e. (ii) and (iii) are established.

(iv) is now obvious.

(v) and (vi) AssG=AssHc AssAnSupp G, and hence zG'=zH cz4
(cf. [5, § 1, n° 4, Proposition 8 and 10]). Assume now peAss4nSuppG.
Then zApG,p = zA,pH‘u = zApAp =y, since H, is 4 -free, hence ppeAssApGp n
Ass ApA’”,, and therefore peAss GnAss A’ (by [5, §1, n° 2]).

(vii). We may assume 4 is local (with aem=the maximal ideal). Then
a is 4-regular too (since 2G =zH =zA when A is local). By use of [G, -],
on the exact sequence

O—>G—a:->G—>é—>O,

(here N =N/aN), we get that [G,F;=[G,G],=H is A-projective (free),
and that Ext ;%(@,3)=Ext,{(F,G)=0 for 1> 0 (cf. [14, § 0.1]).

(viii). a@,é2@ if and only if a,¢24’, by (vi), and G/a,G' = 0 if and only if
A'la, A"+ 0, since Ann,G=Ann, A4’. The conclusion follows by an easy
induction on p.

(ix) follows by (viii).

(x) follows by (ix) and Corollary 3.6 of [9].

REeMARK. It is easy to see that a replacement of “PG” by ““Gorenstein’
in the proposition only requires tiny modifications of the proof. This
gives many of the results in [16]. (In particular (4.11) might be proved
in a way similar to (vii).)

The next propositions deal with @, and ¥, when G is a PG-module.

ProrosiTioN 1.2. Let G be a PG-module.
(p) If wd M < o, then M € Dg .
(@) If idM < oo, then M e ¥,.
In particular, if G is Gorenstein, then G € ¥,

We start the proof with a lemma:

Levma 1.3. Let 0-M 1> M—>M,—0 be an exact sequence of A-modules
and let G be a PG-module. Then if two of the modules in the exact sequence
belong to Dy then also the third belongs to Dg. The stmilar statement holds
for V.

Proor. If M,, M, € D (respectively M,, M, € D) then it is a straight-
forward application of the 5-lemma to see that also M, € @ (respectively
M, e Dg).
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Now assume M, M,eD,. From the exact sequencewe get Tor,; (G, M;) =0
for ¢>1 and an exact sequence

0 — Tor, (G, M,;) -~ GRM, -~ GRM, ,
and hence we have a commutative diagram with exact rows

0 -~ [@,Tor, (G, M,)] - [(,GRM,] - [(, GRM,]

My | & My |

0—>H®M1 e H®M2

Therefore [@, Tor, (G, M;)] = 0. This implies Tor, (G, M;) = 0 since
AnnG < AnnTor; (G,M,), by the use of [4, § 4n° 4, Proposition 20].
Now Ext* (@, G M,)=0 for 7> 0 and we have a commutative diagram
with exact rows

0-~[G,GM,]—~[G,GRM,] -~ [G,GRM,] -~ 0

'IJMI] jad WM2] jad ‘PMgI

0->HQM,—— HIM, —— HRM; - 0.

Thus ¢y, is an isomorphism, by the 5-lemma, and hence M, € @y.
The proof of the similar result for ¥, is quite the same, but here we

use that if GExt! (G,M,)=0 then Ext'(G,M,)=0 (f N+0 and

AnnN 2 Anng, then [GQN,N]=[G,[N,N]]+ 0, therefore GRQN =+ 0).

The proof of the proposition is now easy.

(). By the lemma it is sufficient to assume that M is flat, and hence
we may use [11, Corollary 1.2] to get the desired result.

(v). Assume M injective and use [6, VI § 5].

ProposiTioN 1.4. If the PG-module G is in ¥4 and Supp M < Supp@,
then
(p) Me®y; ifandonlyif GRIMe¥y,.
(y) MeWy ifand onlyif [G, M]e D

Proor. Since Supp M < Supp@ we may assume that A4 is local (with
maximal ideal m), and hence H is free of rank ¢ =rg(m)?, that is H=®t4
(the direct sum of ¢ copies of 4).
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Proor or (¢). Consider the commutative diagram

1eQ@en

GRQHRM GR[G, GRM]
wa®1yl ~ lw;@M
[H, QM > [H,GQM]

~

where v is the canonical isomorphism (cf. Lemma 1.1.1 of [11]). First,
assume M €@, that is ¢, is an isomorphism. Then yg g, is an isomor-
phism too, by the diagram, and

Tor, (G, [G, GRM]) = Tor,(G, HQM) = @t Tor,(G, M) = 0,

that is GRM € ¥, If, on the other hand, GRM € ¥, then 1,Q¢,, is an
isomorphism, and hence

GRCokerg,, = Coker(1;,Q¢y) = 0,

therefore Coker ¢,, = 0 (as in the proof of 1.3 (y)). Since Tor, (@, [¢,GRM])
=0 we have
GRKergp, = Ker(13Q0¢,) = 0,

that is Kergy, =0 and ¢, is an isomorphism. @ ¢Tor;(G,M)=
Tor,;(G,[G,GR®M])=0, therefore M e D.
The proof of () is similar using the commutative diagram

(6, 6e[e, M1] -2, [q, [H, M]]

], .-

[G®H, M]

P60, 4]

= I [va1x]

HRG, M] ——— [[H, (], M]

~

where o and g are the canonical isomorphism (cf. [6, VI, § 5]).

2. Modules of finite weak and of finite injective dimension.

If G is a Gorenstein module of rank 1 (u"*(p,d)=1 for all peSpecA)
and if A4 is indecomposable and of finite (Krull-)dimension (and hence 4
is Cohen-Macaulay and a homomorphic image of a Gorenstein ring, by
Theorem 4.1 in section 4), then H=[G,G]~ A (see Sharp [17,(3.10.i)]).
In this case we have simply ¢: M — [G,GQM] (respectively v, :



GORENSTEIN MODULES AND RELATED MODULES 273

GRIG, M] —~ M) defined by gy,(m)(9) = g@m (respectively y,, (9Qf) =£(9))-
In [17] Sharp has proved that if M is f.g. with pd M < o (respectively
id M < o), then idGQM < o (respectively pd[G, M] < oo) and ¢,, (respec-
tively y,,) is an isomorphism. We want to prove the following extension
of this:

THEOREM 2.1. Let G be Gorenstein and assume dim G < oo (e.g. dim 4 < o).
Then for any A-module M (not necessarily f.g.)

(p.1) If wd M <oo, then iIdGQM <o and M € Dg;.
(@. i) If idGQM < oo and SuppM < Supp@, then wdM <oo.
(p.1) If idM < oo, then wd[G,M]< oo and M € ¥g.
(p. i) If wd[G, M]<oco and SuppM < Supp@, then id M <.

Proor. (¢.i). Let
O-F, >...>Fy—-~M->0

be a flat resolution for M. Since Tor, (¢!, M)=0 for >0 (by Proposition
1.2 (p)), we have an exact sequence

0->0GQRF, ... >GF, -~ GRM -~ 0.

We have id GQF,;< « for each i, by Corollary 1.2 of [11]. Therefore
idGR M < co.

The proof of (y.i) is similar.

(@.ii). By Proposition 1.2 (y) we have GQ M € ¥ and by Proposition
1.2 we have G € ¥, and hence we may use Proposition 1.4 (¢) and (yp.i)
above to get n=wdHQM =wd[GF,GR M] < oo, and hence wd M <n < oo
(since H is projective).

Also the proof of (. ii) is similar.

ReEMARK 1. Assume that G is Gorenstein. For all p € SpecA let the
i'th Betti number of the 4 ,-module M, be denoted by f;(p, M) and put
8(p)=depth 4,. If M is f.g. with pd M < co then for all ¢ we have

Bi(p, M)rg(p) = w®(p, GRM) .
This follows from the corresponding result (cf. [8, Proposition 3.1 (a)]):
If M is f.g. with id M < oo then for all ¢ we have

H{P, M)rg(p) = Bup-1(p, [G, M]) .

COROLLARY 2.2 Let G be Gorenstain and M mnon-zero f.g. with
SuppM < Supp@. Then:

Math. Scand. 31 — 18
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(a) M is projective if and only if GQ M is Gorenstein (and g y="7g"3y)-
(b) M is Gorenstein if and only if [@,M] is projective (and rig an="7g" T3)-

REMARK 2. If G is Gorenstein, Supp M < Supp@, and wd M < oo, then it
is rather easy to prove that Ass M = Ass(GQM), zM =2(GRM), Supp M =
Supp (G®M) and if moreover M is f.g. then the sequence ay,...,a,€4
is a M-regular sequence if and only if it is G® M-regular. If id M < cc we
have a corresponding result.

ReMARK 3. In Theorem 2.1 we may replace “wd” by ‘““pd”. This
follows from results due to M. Raynaud and L. Gruson (Theorem 3.2.6
in “Critéres de platitude et de projectivité’’ Invent.Math. 13 (1971), 1-89)
and C.U. Jensen (Proposition 6 in “On the vanishing of lim®”’ J. Algebra
15 (1970), 151-166). However, R. Fossum informed me that it is easy to
give a simple proof of this in the case in which we are interested, namely :

ProposiTioN 2.3. Assume that G is a Gorenstein module with d=
dim G < co. Then for any A-module M with SuppM < Supp@,

pdM = d if and only if wdM < o .

Proor or “1¥’. Put A'=A/AnnG (cf. Proposition 1.1) and let
Fy,...,Fi_,,F; be free A’-modules in the two exact sequences
(1) 0>-K—->Fy,»>...>Fy->M->0
(2) 0>N->F;->K->0

Here we have Ext!(GQF;G®N)=0 for i>0 and j=0,...,d—1, by
Theorem 2.1 (g.1), since F; is A’-free and wd N < co. From (1) we therefore
obtain

Ext!(GRK,GRN) = Exti+(GRM, GRN) = 0,

since idGQN =d by Proposition 1.1, Theorem 2.1, and [2, Corollary 5.5].
This shows that we get from (2) a split-exact sequence

0—>G®N->G®Fd—>G®K—>O
since Tor, (¢, K)=0. Hence also (again by the Theorem)
0—>HQN >HQF; ~HRK - 0

is splitting that is Ext! (HQK,HQN)=0. Now, since Supp K, SuppN <
SuppH and H is projective, we get Ext!(K,N)=0 that is (2) splits.
Therefore K is projective, that is pd M <d.
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REMARK 4. It is easy to see that the following conditions are equivalent:
(a) G is Gorenstein.

(b) iIdGRM < and Tor,(G,M)=0 for all (f.g.) M with wd M < oo.
(¢) wd[@,M]< oo and Ext'(G,M)=0 for all M with id M < co.

Proor. (Assume (c). Then idG < o by [6, VI §5], and it is easy to see
that Exti(@, M) =0 for all i> 0 and all M with id M < co. Thus it follows
from [12, § 2] that depth ApG,,:depthA,, for all peSupp@.)

If in (c) we consider only finitely generated modules M we get the
following result.

ProrosiTiON 2.4. When A is local, then G is Gorenstein if an only if A
ts Coken-Macaulay and for all f.g. M with id M < oo the following holds:
Pd[G, M] < o and Exti(G, M) =0 for 1> 0.

Proor. By the theorem it is enough to prove the “if”’-part and this
will be done by induction on s=depth4=dimA.

s=0. A is artinian, and hence E = E(4/m) is f.g. (where m is the maxi-
mal ideal) and pd[@, E]< oo, therefore idG < ~ and G is Gorenstein.

Inductionstep s —1—s for s=1. Since there exists a non-zero f.g.4-
module of finite injective dimension (e.g. N=[4/(a,,...,a,),E], where
(ay,...,a,) is a parameter system), we have depthG=s (by [12,§ 2]).
Choose ae M — (m2uzAUuzG) (cf. [4,§ 1, n° 2, Proposition 2]) and write
N =N/aN. We want to see that @ as an A-module satisfies the conditions
in the proposition. Therefore let M be a f.g. A-module with id ;M < oo.
Also id 4 M < o (since

Ext i+ (k, M) =Ext i (m, M) =Ext g (i, M) = 0

for ¢ >id ;M) and hence [@, M] ' =[G, M) is of finite A-projective dimen-
sion, therefore pd [G,M]z<oc by Corollary (27.5) of [13]. Also
Ext ;i(G,M)=Ext (G, M)=0 for i >0, and @ is a Gorenstein 4-module
by the inductive hypothesis, therefore G is a Gorenstein A-module.

We have already seen (Proposition 1.2) that wd M < oo implies M P,
if G is a PG-module. If @ is Gorenstein, then also another nice class of
modules is contained in @;, namely the class of f.g. modules of finite
G-dimension (for definition see [1, Chapter 3] or [14, § 3.2]).

ProrosiTioN 2.5. If G is Gorenstein and M is f.g. with G-dim M < oo,
then Medg.
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Proor. By induction on d=G-dim M.

d=0. Tor;(M,N)=[Exti{(M,A),N]=0 for ¢>0 and N injective
([6, VI § 5]), and hence Tor;(M,N)=0 for >0 if id N < oo, in particular
Tor,; (@, M) =0 for i > 0. Now we want to show Exti(G¢, GQM)=0 for > 0.
Assume A4 local with maximal ideal m and use induction on s=depth 4:

8=0. G is injective and therefore (again by [6, VI § 5]) Ext!(G,GQM)=
Exti(G,[[M,A],G])=[Tor,(G,[M,A]),G]1=0 for i > 0, since G-dim[M,A]
=0.

Inductionstep s— 1 — s for s= 1. We have depth M =s=1, by Theorem
(4.13.6) of [1]. Choose aem—(2MUzA) and write N =N/aN. Then

is exact (since Tor4,(G,M)=Tor4,(G,M)=0 and G-dim;M =0) and
hence also

Ext (G,GQ M) —=— Ext(G,GQ M) ~ Ext (G,GR s M)

is exact. Now Ext (G,M® ;M)=Ext; (G,GRzM)=0 for >0, and
hence Ext /(G,G®Q M)=0 for i >0, by Nakayama’s lemma.

It still remains to show that ¢,, is an isomorphism. Let F,—~F,—~M—0
be exact with F,, F, f.g. free. Since both Ker (F,—~F,;) and Ker(F,—~M)
are of G-dimension zero, it is easy to see that the rows in the commutative
diagram

[G, GRF,] - [G, GRF,] -~ [(, GQM] - 0
'PFII e *PFOI ~ L2
HQF, —— HRF,——— HQM -0
are exact and therefore ¢,, is an isomorphism, by the 5-lemma. Now the

proposition is established in the case d=0.
The inductive step is easy using Lemma 1.3.

3. Some remarks on duality with respect to a PG-module.
In this section @ is a PG-module, and we will use the following notation:
M* =[M,F], E' =Exti(-,Q), L;=EEFE.
Let
co.>P(M)>... > P(M)>M -0

(Py(M)=M,P_o(M)=0,...) be a fixed projective resolution for M
(with each P,(M) f.g. if M is f.g.) (cf. p. 51 of [1]) and define
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D(M) = Coker(Py(M)* - P;(M)*),
QM) = Ker(P;_y(M) > P;_o(M)) .

ProrositioN 3.1. There is an exact sequence
0 > B'D(M) - MQH - M** -~ E*D(M) - 0,
where 03,2 (mQk)(f)=hf(m) for f: M->G and h : G-G.

Proor. This is well-known in the case G=A4, cf. Proposition 1 of
(14, § 3.1] (or (2.1) of [1]), and the proof is similar using that Ei(P*)=
0 for ¢+> 0, if P is f.g. projective.

It is now possible to define concepts like “k-torsion free with respect
to G” and ‘“‘G-dimension with respect to G’ and to prove many analogues
to the results in [14, Chapitre 3] and [1, Chapters 2-4], if Ge¥. (Here
we use the isomorphisms

M*@H —~[M, GRQH] -~ [M,[H, G]] - (MQH)*.)

In particular, if 4 is local then @ is Gorenstein if and only if each f.g. M
has finite G-dimension with respect to G (the analogue to Theoréme 3
of [14] and Theorem (4.20) of [1]). We have furthermore that Q%(M)
is k-torsion free with respect to @, if ¢ is Gorenstein (the analogue to a
part of Theorem (4.21) of [1]). A result in the opposite direction is the
following:

ProrosiTioN 3.2. If G is Gorenstein and k=0 is an integer, then the
following are equivalent:

(i) A, is a Gorenstein ring for all peSupp G with depth 4, <k (that is
A'=A[Ann G is a Gy-ring, cf. Proposition 1.1 (ii) and [10, 3.16
Definition.])

(ii) G is a k'th syzygy (that is G =Q%( M) for a suitable £.g. M)

(iii) G is k-torsion free with respect to A
(iv) For all £.g. M with Supp M < Supp G the following holds:
If M s k-torsion free with respect to G then M is a k'th syzyg.

CoroLLARY 3.3. If G is a Gorenstein module of finite G-dimension with
respect to A, then A'=A[Ann G is Gorenstein ring (and G is projective).

PROOF OF THE PROPOSITION. Since a k-torsion free module always is a
k'th syzygy, and since the converse of this also holdsif 4 is a G;,_,-ring (cf.
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[1, Theorem 4.21]), it is enough to show the equivalence of (i), (iv), (ii),
and (i).

(i) implies (iv). Assume M is k-torsion free with respect to G (that is
EiD(M)=0 for 1<i =<k, and hence Ei(M*)=0 for 1 <i<k—2). We have
an exact sequence

0> MQH — Py(M*)* > ... > P, _,(M*)*

where each P,(M*)* is a Gorenstein module (or zero). Therefore M is
a b,-module (as defined in [10, Definition 4.3]) and hence a k'th syzygy
(by Satz 4.2 und 4.6 of [10]).

That (iv) implies (ii) is obvious, since @ is of G-dimension zero with
respect to G (because ;%= 1y, is an isomorphism, by Proposition 1.2, and
Ei{(@)=Ei(G*)=0 for > 0) and hence @ is k-torsion free with respect to
G for all k.

(ii) implies (i). Assume 4 is local with depth 4 <k and use induction on
d=depth 4 to prove that 4 is Gorenstein:

d=0. @ is injective and a submodule of a (f.g.) free A-module F (since
G is a kth syzygy, k> 0). Therefore F=GPDM for a suitable M, that is
G is projective and hence A is self-injective, that is A is Gorenstein.

Inductionstep d —1 —d for d 2 1. Assume G =Qk(M), choose aem —zA
and write N = N/aN =N®A/(a). Since

Tor4, (Q{(M),A) = Tor4,,,(M,A) = 0
for ¢> 0, we have an exact sequence
0GP y(M) > ... > Py(M) ~ QM) > 0.
Therefore G is a (k—1)th syzygy as an A-module and hence 4 (and
thereby A) is Gorenstein by the inductive hypothesis.

ProposiTION 3.4. Let g=0 be an integer and assume grade M =g and
SuppM < SuppG (or just gradegM =g). Then there exists a natural
homomorphism a2 which can be included in an exact sequence

0—>Ea—1Ea(M)+E¥z+1DQo(M)—>M®H 247, L,(M)—~Eo+2DQo(M)~0 .
REmARK. Now it is not hard to state and prove the analogue to Proposi-

tion 7 of [7]. In particular EX( M QH)=EL(M)if M isf.g. with grade M =+
and SuppM < Suppd.

Proor oF THE PROPOSITION. Let 0—-G—Q°—. .. be an injective resolu-
tion for G and consider the double complex:
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P_,(M)®[G,Q1]
=[[P_,(M),G],@1] for —(g+1)<p=0
0 otherwise.

Kra =

The two corresponding spectral sequences have initial terms I,** and
I1,**:

Tor_,(M,E%(G)) for —g<p=<0 and ¢=0

I,P? = { some kernel for p= —g—1’ and ¢=0
0 otherwise.

In particular

MeH for p=0 and ¢=0

1,7 = { Ker(P,,;(M)~P,(M))QH for p=—g—1 and ¢=0
0 otherwise.
E,E/(M) for p=20 and ¢= —9¢g

lIgpq = EpDQg(M) fOI‘ pgo and q: —g_.l

0 otherwise.

Now the desired exact sequence follows by use of the usual technique.

Next, we will consider Cohen-Macaulay modules (i.e. non-zero f.g.
modules M such that depth a,My=dim M, for all peSupp M, cf.
Chapitre IV B of [15]). First two easy lemmas.

Lemma 3.5. Assume that M is a Cohen-Macaulay module and that A,
18 Cohen-Macaulay for all p € Supp M. Then:

(i) The map gpr: SuppM—~Z defined by gy(p)=grade, M, is contin-
uous. In particular, g ts constant (on Supp M) if A s local.

(ii) There exist Cohen-Macaulay modules M,,..., M, such that
M=MD...®M, and such that gy is constant on SuppM, for each 1,
1<si1=p.

Proor. For prime ideals p and q, » < q, we have
dimApMp+ dimAq (A/p)g = dimAqu
(see [15] or [16, (2.3. iii)]). This gives
grade ApM p = dim ApA p—dim A»M p = dim Aqu —dim AqM ,=grade AqM a0

by §1.4 Lemme 4 of [14]. Now the first assertion follows by the ‘‘con-
nected spectrum principle”’, see [4, § 4, exercise 14], or [17, (3.7)].
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Let X,,...,X, be the connected components of Supp M
Spec(4/Ann M), and let A/Ann M =A4,®...DA, be the corresponding
direct product decomposition (see [4,§4] or [17,§1]). We have now
M=M®...®M, where M, is an A;-(and A-)module. For all ,j,
1<4,j<p, and all p e X; we have (M;),=M, and (M,),=0 if i+j,
therefore M is a Cohen-Macaulay 4-module of constant grade g,,, on
Supp M,=X,.

The assumption on the ring in the above lemma is in particular satis-
fied if there exists a Gorenstein module G with Supp G 2 Supp M, and the
conclusion reduces in this case the study of Cohen-Macaulay modules to
the study of Cohen-Macaulay modules of constant grade g (that is

gu(p)=g for all peSupp M).
We have the following well-known lemma.

LemmA 3.6. Let G be a Gorenstein module, let M be a non-zero £.g. module
with SuppM < Supp@, and let g be a non-negative integer. Then M 1is
Cohen-Macaulay of constant grade g if and only if E{(M)=0 for i4g.

Proor. See Lemma 3.3 of [8].
The following result is expected from Proposition 3.4 of [8]:

ProrositioN 3.7. If G is Gorenstein and M is Cohen-Macaulay of con-
stant grade g and Supp M < Supp@, then oy?: MQH—>L,(M) is an iso-
morphism.

Proor. Assume 4 local of depth d and divide into two cases.

g=0. See the proof of Proposition 4 of [14, Chap. 3]. In fact, M is of
G-dimension zero with respect to @, in particular E‘D(M)=0 for all
1>0.

g>0. We have depth Q29(M) =d since depth M =d —g. Hence E*DQ9(M)
=0 for ¢>0 by the first case.

The following example shows that there exists in general a f.g. module
M such that oy’ is an isomorphism and such that M is not Cohen-
Macaulay.

ExamprLE 3.8. If G € P is a PG-module with Supp G =Spec 4 then the
following two conditions are equivalent:
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(a) Both 4 and G are Cohen-Macaulay of (the same) dimension less
than 3.
(b) M* is either Cohen-Macaulay or zero for all f.g. M.

Proor. We may assume A is local.
(a) implies (b). The sequence

0~ M* — Po(M)* - P,(M)*

is exact, therefore depthM =min{2,n}, n=dim 4 =depth P;(M)*, and
hence M* is Cohen-Macaulay (of dimension n).

(b) implies (a). H*=G** is Cohen-Macaulay, therefore A and G are
Cohen-Macaulay. Assume n=dim 4 > 3 and choose an 4-regular sequence
ay,a5,a3€m=the maximal ideal of A. Write M =A4/(a,,a,5,a;) and
K =0Q*M). Then grade M =3 and hence E{(M)=0 for i<2 (by Propo-
sition 1.1 (z)) and

0> Py(M)* - P(M)* > K*—~0

is exact. This shows that the G-dimension of K* with respect to @ is less
than 2. By Proposition 3.4 we have that

E*D(K) -~ HQM - Ly(M) = 0

is exact, and hence EY(K*)=E*D(K)+0. Therefore the G-dimension of
K* with respect to G is 1 by the analogue to Theorem (4.13. a.iv) of [1].
Hence depth K*=mn—1 by the analogue to Theorem (4.13.b) of [1]. Since
K is a submodule of a free module, it is 1-torsion free with respect to G.
Therefore 0—~KQH—~K** is exact and hence K**=+0, that is grade K*
=0. This shows that K* is not Cohen-Macaulay because depth K*
=n—1<n=dim K*, contradicting our assumption.

We end this section with a remark concerning Gorenstein modules
and local cohomology. Assume A local with maximal ideal m,n =depth 4.
Let H,2 be the dth derived of the local cohomology functor (that is
H,2=lim; Ext?(4/m/, ), cf. [9, Th. 2.8]). It is easy to prove that ¢ is
Gorenstein if and only if G is Cohen-Macaulay of dimension ¢ and H, %)
is injective (cf. Proposition 4.14 of [9] for the case G@=A4). Let now G be
Gorenstein. Then H, ™(G)=@rE, when r=rgm)=p"(m,d) and E=
E(A4/m). Let o;:H,»G)—~E be the ith projection, that is z=(p,(),.. .,
o.(x)) for all xzeH "(G) (after the identification H, "(G)=®rE). The
natural homomorphism

Ey™: @rH M) - [[M, G, E]
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is defined by
EMn(xl" M) xr) (7) = EQsz"(V) (xi)’ Y€ [M1 G] .

The homomorphism &, is an isomorphism (by induction on ») and we
have natural isomorphisms for all ¢ and all f.g. M :

@rH, (M) ~ [E*-YM), E] and &rTHM) = Er{(M)"

where Ti'=[H i, E] and ~ denotes completion with respect to the
m-adic topology. (Cf. Theorem 6.3 of [9] for the case G=4.)

If 4 (or G) is complete, then Proposition 6.6.8 of [9] gives a natural
homomorphism «,: @r2M—~L, (M), where ¢=dimM. Therefore
grade M =n—1 (cf. Proposition 3.4). The homomorphism «,, is an iso-
morphism if M is Cohen-Macaulay, by the exercise p. 94 of [9] (cf. Propo-
gition 3.7).

4. On the existence of a rank 1 Gorenstein module.

It is well-known that if 4 is Cohen-Macaulay and a homomorphic
image of a Gorenstein ring B, then there exists a Gorenstein A-module ¢
of rank 1 (see Sharp [17, Th. 3.9]). It turns out that if the conditions on 4
are satisfied and 4=4,...®4, is a decomposition of the Cohen-
Macaulay B-module 4 in constant grade Cohen-Macaulay B-modules 4;
(cf. Lemma 3.5), then G'=@Extz%(A4,,B) has the desired properties
if g;=grade 4,. In fact, if 0>~B—~@°—. .. is a minimal B-injective resolu-
tion for B, then

0 — Ext 5%(4,, B) >[4, @5 > [4;, @ g~ ...

is a minimal 4;-injective resolution for Ext z%(4,, B) (cf. Lemma 3.6 and
[2, Lemma 2.1]).

Let R be a commutative ring with identity and let M be an R-module.
We will now catalogue some simple properties of ‘‘the principle of ideal-
ization” (introduced by Nagata on p. 2 of [13]):

(0) The cartesian product R x M has a structure of a commutative
ring with identity (addition is componentwise and multiplication
is (r,2) (r',2")=(rr',ra’ +1'x)).

(1) rezRuzM if and only if (r,0)ez(R x M); and if so:

(Rx M)/(r, 0) (Rx M) = (R[(r))x (M[rM) .

(2) Spec(Rx M) = {p xM ;p e SpecR}
(3) R x M is noetherian if and only if R is noetherian and M is f.g.
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(4) If S is a multiplicative system in R then S x M is a multiplicative
system in Rx M, and

(r, 2)[(s, y) > (r/[s, (sz—rYy)[s?)
defines an isomorphism
(Sx M) (Rx M) - (81R)x (S1M) .
(5) If R is noetherian local with maximal ideal m and M is f.g., then
Anng, y(mx M) = (AnnmnAnn M) x (0:m),, ,
and hence
UM x M, Rx M) = ug®(m, M)+length(AnnmnAnn M).

Now assume G is a rank 1 Gorenstein module. Then 4 is Cohen-
Macaulay. We want to prove that 4 x @ is Gorenstein. By (4) above we
may assume 4 local, and by (1) dimA4 =0, therefore 4 x G is artinian
by (2), and u4, %4 x@)=1 by (5). Hence 4 x G is Gorenstein by (2.8)
of [3]. We have now obtained:

THEOREM 4.1. A necessary and sufficient condition for the existence of
a rank 1 Gorenstein module is that A is Cohen-Macaulay and a homomorphic
vmage of a Gorenstein ring.

That this condition is necessary has recently been proved independently
by Idun Reiten (“The converse to a theorem of Sharp on Gorenstein
modules”’, Proc. Amer. Math.Soc. 32 (1972) 417-420).

ProrositioN 4.2. If A is artinian and local with maximal ideal m, then
the following are equivalent:

(a) @ is a Gorenstein module of rank 1 (that is G=E(A|m)),

(b) A x G is a Gorenstern ring (that is a QF ring),

(e) w(m,G)=1 and Ann, G=0.

Proof. (a)=> (b) is proved above. (b)=- (¢) follows from (5) above,
since Ann @+0 implies Ann GnAnnm=$0. For (¢) — (a) note that
pi(m,@)=p4,(m,[G,E]), when E=E(A[m) (cf. [6, VI, §5]). Therefore
Bo(m,[G,E])=1 and hence [G,E]=A4/Ann[G,E]=A[AnnG=A4 is free.
Therefore ui(m,@)=0 for > 0.

From this we get the following analogue to (2) and (3) in Theorem (4.1)
of Bass [3] (cf. also (3.12) Remark of Sharp [16]).
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CoroLLARY 4.3. If G is a PG-module and A 1is local, then the following
are equivalent:

(i) G 1s Gorenstein of rank 1.

(i) (@y,- . .,a,)G ts an irreducible submodule of G for all parameter systems
(ay,...,a,) of G.

(iii) G is Cohen-Macaulay of dimension d and u?(m,qd)=1.
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