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A REDUCIBILITY ARISING
FROM THE BOONE GROUPS

CARL G.JOCKUSCH, JR.1

If B is a set of numbers and e is a number, let ¢ Z denote the eth
function partial recursive in B under some fixed formalism. If ¢ B(n) is
defined, let Q,B(n) denote the (finite) set of numbers % such that the
membership or non-membership of % in B is used to compute ¢B(n).
The purpose of this paper is to study special cases of Turing reducibility
given by reductions where @,?(n) is recursively bounded as a function
of » in some sense. Specifically, for sets 4 and B, we say that 4 is
bounded-search reducible to B (4 <,B) if there is a number e and a re-
cursive function f such that A(n)=¢B(n) and |Q,P(n)|=f(n) for all .2
(We are identifying sets with their characteristic functions and writing
|@| for the cardinality of @.) This reducibility is of interest because the
arguments of [1] show that for every recursively enumerable (r.e.) set
A there is a finitely presented group G, such that 4 and the word prob-
lem of G, are mutually bounded-search reducible when the latter is
coded as a set of integers.3

It is natural to inquire whether bounded-search reducibility coin-
cides with either truth-table reducibility (<) or Turing reducibility
(<) on the r.e. sets. A negative answer for the case of truth-table
reducibility follows from work of Lachlan on a reducibility introduced
by Friedberg and Rogers [4, p. 124] called weak truth-table reducibility
(L)t To define 4 <,B in the terminology of this paper simply re-
place “|QB(n)|” by ‘“max@Q/PB(n)” (i.e. the greatest element of
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? This terminology was suggested by T. G. Mclaughlin. The question of the relation-
ship of this reducibility to other reducibilities was raised by W. W. Boone.

3 In footnote 4 of [1] it is claimed that the arguments there in fact yield truth-table
reducibility. As pointed out in [2], this claim is not justified since the given arguments
seem to suffice only for bounded-search reducibility and not for truth-table reducibility.
The existence of truth-table reductions is proved by different arguments in [3].

4 The formal definition of <, given by Friedberg and Rogers applies only to r.e. sets.
Our definition (which is equivalent to Robinson’s [6]) may be applied to arbitrary sets.
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Q2E(n)u{0}) in the definition of 4 <,, B. Clearly <,, is weaker than
(i.e. implied by) <, and Lachlan showed [5, p. 26] that <., is strictly
weaker than < on the r.e. sets. In view of Lachlan’s result, the ques-
tion now becomes whether <., coincides with either < or <, on the
r.e. sets. We shall obtain negative answers to both questions by showing
that <,  is not transitive on the r.e. sets, whereas it is clear that <,
and <. are transitive.

In order to be able to assert the failure of transitivity for <,, in a
strong form, it is convenient to introduce yet another reducibility. We
write 4 <, B if A<,,B and, moreover, the bounding function f for
|Q3(n)| may be taken to be constant with value 2.

In notation, we shall generally follow [7]. In particular let ¢, denote
the ith partial recursive function, and let {(:,-) be a fixed recursive
pairing function for the natural numbers. The characteristic function of
aset A1is 1 on 4 and 0 on the complement of 4. Lower case italic letters,
such as a,e,n, are reserved as variables for natural numbers.

THEOREM . There are r.e. sets A, B, C such that A<, B, B<C,
but A£,,C.

Proor. The sets 4, B, C are obtained by a standard finite-injury
priority argument. To insure that 4 <, B we define a partial recursive
function p such that
(1) domain(y) = B

(2) (Vn)[ned < neB and y(n)eB].

For each n let L,={(n,): ¢<n}. To insure that B< C we arrange
that for all »
(3) neB < L,nC 0.

To insure that 4 £,, C we must satisfy for each pair (e,?) a correspond-
ing requirement denoted R, ;. The requirement R, ; asserts that there
is a number n (=n(e,t)) such that if ¢,C(n) and ¢,(n) are defined and
1Q.C(n)] < py(n), then A(n)=+¢,C(n). The number n(e,7) will be obtained
as the limit of a sequence of recursive approximations. Rogers’ termino-
logy [7] of “moving markers” is helpful in describing the process of
approximation and so for each e,i we introduce a “marker” A, ; such
that at (the end of ) each stage s> (e,), 4, ; is associated with a unique
number (denoted n(e,?,s) and called the position of A, ;) which may be
thought of as the present candidate for n(e,7). The position of A, ; will
be allowed to change, but only finitely many times. The last position
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of A, ; is then the desired n(e,t). Each number will be the position of
at most one marker over the entire construction, that is

(4) n(e,1,8) = n(a,b,t) only if (e,i) = {(a,b).

We shall also have —tags which may be associated with numbers during
the construction. A number is given a —tag if it is desirable to keep it
out of C to satisfy some R, ;5. (Actually in visualizing the construction
it is convenient to imagine two separate copies of the natural numbers,
the “A-list” and the “C-list”, with the positions of the markers A, ;
lying in the A-list and the —tags lying in the C-list.) The priorities of
the construction are such that a number given a —tag for the sake of
requirement R, ;y can be enumerated in C' only for the sake of require-
ments R,y with <a,b) <{e,2). A number k in the A-list is called free
(at some time during the construction) if £ has not been the position of
any marker and has not been enumerated in 4 or B, no element of L,
has been enumerated in C or given a —tag, and k¥ has not been placed
in the domain or range of y. Let 4¢,C¢ denote the finite sets of numbers
enumerated in 4,C respectively by the end of stage s.

We now give the construction.

Stage 0. Do nothing, i.e. no numbers are to be enumeratedin 4, B or C;
no markers or —tags are to be positioned, and y is to be left completely
undefined.

Stage s+1. Associate the previously unused marker A,,, where
{a,b)=s, with the least free number.

Now ask whether there is a number {e,i) <s such that R, ; requires
attention, that is ¢,C’(n) and @,(n) are each defined in at most s steps
(where n abbreviates n(e,,s)) and |Q,C°(n)| < @;(n), n & A%, and ¢,%(n) =
If no such (e,?) exists, proceed directly to stage s+ 2 without taking
further action. Otherwise, take {e,i) minimal such that R, 0 requires
attention, let n=mn(e,1,s), and attack R<e, iy a8 follows:

Case 1. p(n) is not yet defined. Define y(n) to be the least free num-
ber k such that k= ¢,(n). Enumerate »n in B (to preserve (1)) and (n,0)
in C (to preserve (3)).

Case 2. y(n) is already defined. When the construction is complete,
it will be clear that y(n) = ¢,(n). Assuming this for the moment, it follows
that

Lyl = p(n)+1 > @i(n) 2 |Q
where @ =Q,%(n). Hence L,,,—Q=+0, and we let ¢ be the least element

of L,,—@Q. For the sake of R, iy, enumerate n in A and associate
a—tag with each element of Q—C?®. Also enumerate p(n) in B (to pre-
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serve (2)) and ¢ in C (to preserve (3)). In addition define yy(n)=yp(n)
(to preserve (1)) and finally enumerate y(n) in 4 (to preserve (2)).

In either Case 1 or Case 2 the markers A, , for (a,b) <{e,i) retain
their positions while the markers 4, , for {(e,i)<{a,b)<s are to be
moved to distinct free integers. This completes the construction.

Observe first that if y(n) is defined, where n is the position of any
marker, then yp(n) became defined through Case 1. To prove this, assume
that (k) was defined through Case 2, so k is in the range of y. Let s+1
be the stage where k first enters the range of y. Clearly Case 1 applies
at stage s+ 1, and &k cannot be the position of any marker through the
end of stage s+ 1. After the end of stage s+ 1, k is not free and again
it cannot become the position of any marker. Thus k is never a marker
position, and the observation is proved. It follows from this and (4) that
if n=mn(e,?,s) and y(n) is defined, then y(n) = ¢,(n), as needed for Case 2.
Also it follows that Case 2 can apply to a marker position n only after
Case 1 has applied, and so n must have already been enumerated in B
when Case 2 applies. From this and the parenthetical remarks in the
construction it can easily be seen by induction that (1), (2), (3) hold
stage-by-stage and so are valid. It remains only to show that 4 £,,C,
or equivalently that the requirements R, i are satisfied. For this one
must show in particular that each marker 4,, moves only finitely
many times. Since 4, , moves only when some R, ; for (e,i) <{a,b) is
attacked, it suffices to prove the following lemma to show that the mar-
kers come to rest.

LeMMA. Each requirement Ry, sy is attacked only finitely often.

Proor. Assume inductively that there is a stage s,> {e,?) such that
no R, y, with {a,b) <{e,1) is attacked at any stage s 2 s,. By the remark
before the Lemma, A, ; does not move after stage s,. If n=n(e,1,s,),
R<e’ &y can be attacked only when (if ever) y(n) first becomes defined
or n is first enumerated in A. This completes the proof of the Lemma.

To show that R, ;, is satisfied, let n=n(e,7,s,) where s, is in the proof
of the Lemma. Assume that ¢,°(n) and ¢,(n) are defined, and |Q,°(n)| £
Pi(n).

First assume that n ¢ 4. Then, if ¢,C(n)=4(n)=0, R, iy requires
attention from some stage on, and so some R<a, By with {a,b) = (e,t) is
attacked infinitely often in contradiction to the Lemma. Now assume
n € A. Suppose n is enumerated in 4 at stage s,. From (4) and the fact
that no marker position can be in the range of y (by the argument just
after the construction) we see that R,y is attacked at stage s,. Putting
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C,=C" we claim that no element of Q,“}(n) (=() is enumerated in C
during or after stage s,. For stage s, itself, this follows from the choice
of C. At stages s+1>s,, if R<a, vy is attacked then (a b)>{e,i) by the
proof of the Lemma. It follows that L, , ysNQ=0 because A4, , first
occupied n(a,b,s) after s,. Similarly, L 5 5nQ=2 if y(n(a,b,s)) is
defined. Hence no element of @ enters C at stage s+1 and the claim is
proved. It follows that ¢,C(n)= @, *(n)=0. On the other hand, A(n)=1
since n € 4 and so R ; is satisfied. This completes the proof of the
Theorem.

The fact that bounded search reducibility is not transitive shows that
there is no corresponding degree concept. Presumably the transitive
closure of the new reducibility also differs from Turing reducibility.

It might be of interest to study the bs-complete sets, that is r.e. sets
B such that 4 <., B for every r.e. set 4. In particular one might con-
sider whether the bs-complete sets coincide with either the w-complete
or T-complete r.e. sets.
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