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SOME REDUCTION FORMULAS
FOR HYPERGEOMETRIC FUNCTIONS

PER W. KARLSSON

1. Introduction.

In certain cases, hypergeometric functions can be expressed in terms
of Gamma functions and elementary functions. Classical examples of
such reduction formulas are the theorems of Gauss and Kummer, by
which the Gaussian hypergeometric function ,F(a,b; c; z) is expressed
for z=1 and for z= —1, c=1+a—b, respectively.

Recently, other formulas of this kind for ,#, and for Appell’s F'; have
been derived by Spiegel [3] and by Lavoie & Trottier [2] using rational
substitutions of the third degree (in trigonometrical disguise) in the
Eulerian integral representation of these functions.

In the present paper, the same method is used to obtain further results
of this kind. Some definitions and results from the theory of hypergeo-
metric functions of several variables are briefly mentioned in section 2.
(Cf. e.g., [1, §§ 37-38].)

2. Preliminaries.

Gauss’s function ,F; and Appell’s function F, are both special cases of
Lauricella’s hypergeometric function ¥, defined by the power series

(2.1) Fy [Z_; By o bn; 255 - .,zn]

) my mp
™. .. 2,

= § . z (a)ml+...+m,n(b1)ml con (b'n)mn )

0 my=0 . (c)m1+...+mn ml! e mn‘ ’
where (a),,=I'(a+m)/I'(a); for convergence, |z,|<1, m=1,2,...,n.
The Fj function is represented by a single integral of Euler’s type,

(2.2) Fy [: by o bns zl,...,zn]
= B(a,c—a)~1 {3 ta-Y(1—t)e-o-1 TI% _ {(1—2,0) "} dt,
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where B denotes Euler’s Beta function. The integral converges for
Rec>Rea > 0; however, these restrictions are of no importance because
of the principle of analytical continuation. Furthermore, it is required
that |arg(l —=z,,)|<n, m=1,2,...,n.

There are n+ 1 independent linear transformations of the F, function:

a;by...,b,;
(2.3) 7y [c_ 10+ sbn zl,-..,zn]
— (l—-z )_aF [G;C—Zmbm,bz,...,bn;;z_l- z2——z1 zn—zl]
1 D |, =2 1oz, " 1-z]’
ete., and
a; by, ..,0,;
(2.4) Fp [c' ! " zl,...,zn]
c_'a/.b “ee b 5 r4 2
= 1—z )b F 2L e A1 n]
m=1{( m) } D[c; z,—1 2y—1

The number of z-variables in the Fj-function is diminished by one if (i)
one of the b-parameters equals zero, (ii) one of the z-variables equals
zero, (iii) one of the z-variables equals unity, or (iv) two z-variables are
equal. Reduction formulas for these four cases are readily derived.

3. The method.

In the integral (2.2) the variable of integration is changed by means of
a (regular) rational substitution which leaves the limits of integration
unaltered or reversed. By such a substitution the form of the integrand
is unaffected, although in general the number of different factors is in-
creased; the number of free parameters (in the exponents) cannot in-
crease. It follows that the integral, with the substitution performed, in
general represents a special F, with a greater number of variables.
This number is found to be somewhat greater than kn, where k& denotes
the degree of the substitution.

These substitutions generally lead to very complicated expressions.
However, there are some special cases which may well be characterized
as “sensible” or “interesting”. Some of these cases, with k£ equal to 3
or 2 and with n=1, are studied in the following sections. (When k=1,
the linear transformations (2.3) and (2.4) are obtained, cf. e.g., [1, § 38].)
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4. First cubic rational substitution.

In (2.2), » is taken equal to unity, and a change of variable in the
integral is effected by the substitution

(4.1) t = (1-y)%(1—y1), y=*1.

As a result we obtain

)

(4.2) B(a,c—a),F, [“b ]

@ §a P11 = TN (1 -y P =<(1 - fy)(1 - pyr)et
X (1= pye)e=a=H(1 = ry1) (1 —ry7)H(1 —r7)Md

where

(4.3) = Hy-1+{(y—-Dy+3)}],
Pz

while r,, r,, r; are defined by
(4.4) 1—2t = (1—-r7)(1—rp7)(1 —737) /(1 —y7) .

The integral in (4.2) represents an F;, with seven variables {y, 3y, p,,p,,
71,79, 75} but only three free parameters. More interesting formulas can
be expected if the number of variables is diminished by imposing ad-
ditional conditions. We first demand that two of the r-variables be equal.
This leads to the conditions

493
(4.53/) Z = —
27(y—1)
that is ’
r=ry=13y, 713=-1%y,
or
(4.5b) 2=0, thatis, r,=7r,=0, ry=9.

Utilizing the conditions (4.5a) in (4.2) we find the reduction formula

3a;¢c—b,20—-1,b,14+a—c, 1 +a—c;

wo) By [0S

Y3y, — 39, p1s Pz]
o T(@)'(2a+c) a,b; 4y®
= =9 S rGare [c; 27( _1)]

provided that the y-plane is cut along the real axis from —oco to —3
and from 1 to +oco. In particular, the variables p,,p, both disappear if
we take c=a+1; then, for y in the cut plane,
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3a;14+a—0b,2b—1,b; N
(4.7) Fy [3a+1; Y, %y,—ay]
a,b; 4y°
= (1-y) %, F, [ . m] .
a+1; 27(y—1)

The ,F, in (4.7) is a power function multiplied by an incomplete Beta
function.
Next, with 2=0 in (4.2) we obtain another reduction formula

3a;c, —1,14a—-c,14+a—c;
(4.8) Fb[&%+c %s%pDPJ
I'(a)I'(2a +¢)
= (-9 5o m
3I'(3a)I'(c)

the y-plane must be cut as described above.

A consideration of the equations p,;=0, p,=p,, p,=y, ete., shows
that a further decrease in the number of variables occurs when y is equal
to —3 or 0. (Only trivial results are obtained with ¢c=a+1 in (4.8) or,
equivalently, b=0 in (4.7).)

With y= —3, we have p,=p,=%y= —2, and (4.8) becomes

3a;c, 1+2a—2c; 2
(4.93) F1[ a;c, 1+2a—2c; _3,_2] — 4a I'(a)I'(2a+c)

2a+c; 3IBa)(e)

Application of the linear transformation (2.3) yields

3a;2¢c—1,14+2a-—2c; aI’(a)I’(2a,+c)
(4.9b) ﬂbwm £ﬂ=6 3I'(3a)T(c)
and
3a;c,2c—1; o] ena %)F(Qaﬁc)
(#.9¢) [2a+c; -5 5] = (&) 3I'(3a)I(c) ’

while (2.4), when applied to these three results, yields

c—a;c, 14+2a—2c; s 2] _ 4c_aI’(a)I’(2a+c)
(4.9d) ow b = O T
c—a;2c—1, 14 2a—2c; 1 oae F(a)F(2a+_(:)
(4.9¢) F [2a+c; -3 _%_ =9 I'a)I'(c) ’
c—a;c, 2c— 1 . enace I'(a)I'(2a+c)
(+.90) [2a+c, i —2J =& I'(3a)I'(c)
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From these six reduction formulas for Appell’s F;, twelve reduction for-
mulas for the Gaussian function ,¥, are readily obtained by taking ¢
equal to 0, } or a+ .

Finally, let y=0. In this case, the variable z need not satisfy any ad-
ditional condition. From (4.2) we then obtain the following formula,
where ¢=exp2ni/3 and z has been set equal to (3;

3a;14+a—c,1+a—c,b,b,b;

(4.10) F, [2“0;

66t et
I'(a)I'(2a+c) [a,b; C3]
© 8I'3a)I'(c) * *le; )

The {-plane must be cut along straight lines from 1, £ and &% to ensure
that {3 is not a real number greater than unity.

By taking 6=0 or {=0 in (4.10) we obtain a result similar to (4.9a)
and lending itself to similar linear transformations; for brevity, u=
3-texpin/6:

3a;14+a—c,1+a—c; ] I'e)I'(2
(4.11a) Fl[ a;l+a—c, 1+a—c ee?| = (@) I'( aﬂ’
2a+c; i 3I'(3a) I'(c)
(411b) F, [3a; 3c—-2,1+a—c; 1, _8" _ 3tz g-inar2 F(a)F(2a+_c),
2a+c; ] 3I'(3a) I'(c)
(41lc) F, [Sa; l1+a—c, 3c—2; —32,/,; _ gara ginare I'(a) 1’(2a,+c)’
2a+c; ] 3I'(3a) I'(c)
(4.11d) F, [c_a; Lta—c l+a—c; 1 _ guol@Ta+c)
2a+c¢; ] I'(3a) I'(c)
c—a;3c—-2,1+a—c; 2
(4.11e) F, [2a+c; g, ——e]
= 33(a—c)/2gin(c—a)/8 ML") ,
I'(3a) I'(c)
c—a;l4+a—c,3c—2; 2
(4.11)  F, [2a+c; —e,e]
= 33(a—c)/2gin(a—c)/é W
I'(3a) I'(c)

With c= %, Watson’s formulas [4] for ,#, are obtained; c=a+1 leads to
trivialities.
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5. Second cubic rational substitution.

Results similar to those obtained in the preceding section are found
by application of the rational substitution

(5.1) t = 1¥(1—-27)/(1-2), x*1.
Insertion in (2.2) yields
(5.2) B(a,c—a),F, [:fb; z]

= 2(1—2)~ {; 241 — 7)c-2-1(1 — 7)Y (1 — §ar)(l — py 7)1 x

X (1= 7)1 (1 =1y 7)1 =1y7)*(1 —157) " d7,

where now

(5.3) Bl -1 (14 31— o))
y 2

and

(5.4) l—2zt = (1-r7)(1=ry7)(1 —137) .

Again, the integral represents an F, with seven variables {x,3x,p,,P,,
71,73, 73}, but only three free parameters. Conditions for diminishing the
number of r-variables are

(5.5a) 2z = ZaX(l—2),
that is,
7'1=1'2=%x, rg = -3,
or
(5.5b) 2=0, thatis, r =r,=17,=0.

With (5.5a) inserted, (5.2) yields the reduction formula

2a;1—a,2b—1,b,1+a—c, 1 +a—c;
(5.6) Fp [aic. @ a6 TG L S, — 32, py, Pz]
I'(a)I'(a+c) a,b;
=(1-2)* —————" Za(1—2x)] .
(1-2) 2I'(2a)[(c) * 1[0; el x)]

In particular, when c=a+1,

2a;1—a,20—-1,0b;
x

(5.7) Fp [2a+ 1;

, 3, ——3x]

a,b;

= (1-x)8,F, [

2722(]1 —
at1; Tx*(1 x)].
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These two results are valid in that domain of the z-plane which contains
the origin and is bounded by the inverse image of the real axis from 1 to
+ oo by the mapping # - 272%(1 —x)/4. This boundary consists of a cut
from —oo to —% and a curve through %, symmetric with respect to the
real axis and with {x : argz= + 4n} as asymptotes.

When (5.5b) is inserted in (5.2), we obtain

:l1—a, —1,14a—c, 1+a—c;
(5.8) 7, [2a, a, —1,1+a—c,14+a—c;
a+c;

z, $x, Pl:’pz]

" I'@)I'(a+c)

=0 P eare)

provided that the z-plane is cut along the real axis from £ to + .

A further decrease in the number of variables occurs when x is equal
to —} or %, and in the degenerate case x =0 (section 6).

When z= —3}, we have p,=p,=3%x= —4%, and the following results,
analogous to (4.9a)— (4.9f) are obtained from (5.8); they were given by
Lavoie & Trottier [2] and are stated here for the sake of completeness:

2a; 1—a, 14+2a—2c; ] I'(a)'(a+c)
(5.99) N —b -] = @,
a+c; i 2I'(2a)I(c)
2a; 3¢—2, 1+ 2a—2c; ] I'@) (a+c
e R[] b—| = @it
a+c; ] 2I'(2a)I(c)
2a;1— —-2; T
(5.90) 7, [ a;1l—a,3c—2; 13| = 30 I’(a)]’(a+c)’
a+c; ] 2I'(2a)I'(c)
—a;l—a, 1+ 2a—2c; T
(5.9d) F, [c @ AT AT 11| = (3)xc-9 MQ’
a+c; i I'(2a)I'(c)
c—a;3c—2,14+2a—2c; ] I(a)(a+c)
5.9 F -3 3 =30 ——— 7
(5.9) ! [a+c; ‘ * %_ I'(2a)I(c)
—a:1— —_9. b
(5.9%) F, [c a; a, 3c—2; _1, —1] = gy F(a)I‘(a+i) .
a+c; i I'(2a)I(c)
For =%, we find that p,=3xz=1, p,= — 2. Since unity appears, it is

easier to insert in (5.2) than in (5.8). The results are analogous to those
found in the other cases; only three formulas are stated, because (2.4)
proves to yield nothing but trivial restatements:
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2a0;1—a,l+a—c; 1 _ e T(@I'(c—a)l(2c)
(5.102) [20; 5 _2_ =3 2I'(2a)I'(2¢ — 2a)T (c)’
20;3c—2,14+a—c; 1 asa I'(a)I'(c—a)I'(2c)
(5.10b) Py [20; —% -8 =3 ’ 2I'(2a)T'(2c— 2a)T(c)’
2a;1-a,3c—-2; 1 I'(@)(c—a)I'(2c)
(8.10c) ! [20; vi| = 2I'(2a)I"(2¢ — 2a)I'(c)”

Again, formulas for ,F, are obtained by assigning a special value to
@ or ¢. In particular, one of Spiegel’s results [3, equation III] is obtained
by taking c=a+ % in (5.9d).

6. Quadratic rational substitutions.

When =0, the substitution (5.1) degenerates to a quadratic substi-
tution. The result is

2a;1+a—c,b,b;

RV N e

- 1, C: —C]
I'a)(a+c a,b;
LTI o)
2I'(2a)I'(c) c;
where we have set z={?%; the {-plane must be cut along the real axis
from —oo to —1 and from 1 to +occ. For b=0 or (=0, (6.1) reduces to
Kummer’s theorem.
One further quadratic substitution seems to be worth consideration,
viz.,

(6.2) = t(l-z7)/(1-2), x+1.

By methods similar to those used above it can be proved that (6.2)
yields the reduction formula

a;l1—a,l+a—c, 20—1; x
(6.3) FD[ + . 2.1']

c; 11—

,b
= (1-2)%,F, [Z

b

; 4x(1-—:1:)] , Rex<i.

A perhaps more elegant formula is obtained by an application of the
linear transformation (2.3) and introduction of é=z/(1—x):
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64) Fyp [Z.; 2(c—b)—1,2b—-1,14+a—c; Ny 52]
_ oa a,b; 4¢ ]
(1+§) 2F1 [O; (1+§)2 ’ |§l<1-

When b=1% and c=1, (6.4) degenerates to a special case of one of the
known quadratic transformations of ,#; [1, p. 7].
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