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ON THE SUBDIFFERENTIAL OF THE SUPREMUM
OF TWO CONVEX FUNCTIONS

ARNE BRONDSTED

1. Introduction.

Let (X,Y) be a pair of real vector spaces in duality under a non-
degenerate bilinear function (z,y) — <{x,y), and let f be a convex func-
tion on X with values in ]— oo, + o0]. Suppose that x,€ X is a point
where f has a finite value. Then a point y, € Y is called a subgradient
of f at z,, provided that

Vze X: f(x) 2 f(®o)+<{x—Zg, Yo -

The (possibly empty) set of subgradients of f at x, is called the sub-
differential of f at x, and is denoted of (x,). If of(x,) is non-empty, then
[ is said to be subdifferentiable at x,.

A locally convex, necessarily separated, vector space topology on X
is said to be compatible (with the duality), if the continuous linear forms
on X are the functions  — (x,y), where y € Y. Similarly we may speak
of compatible topologies on Y. All compatible topologies on one of the
spaces X and Y determine the same closed convex subsets of the space,
and, as a consequence, the same lower semi-continuous convex functions
on the space. In particular, one may speak of such sets and such functions
without specifying the topology as long as it is compatible,—which we
shall always assume.

With the preceding in mind we may state that the subdifferential
of (x,) of a function f at a point z, is a closed convex set. Furthermore,
note that if f and g are functions such that f<g and f(x,) =g(z,) < + oo,
then dg(x,)20f(x,). These two facts clearly imply that for any two
functions f; and f, such that f,(x,) =f,(x,) < + o0, we have

o(sup (f1.f2))(%o) 2 cleonv (df;(x,) U 9fa(wy)) 5

where “conv’’ denotes convex hull and “cl” denotes closure (under any
compatible topology). This was noted by C. Lescarret in [1], and it was
asked whether equality holds in general. The question was motivated by
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a theorem of M. Valadier, see [1], stating that if f, and f, are continuous
at x, under some compatible topology, then in fact

A(sup (f1,f2))(@e) = conv (9fy(w,) U ofa(,)) -

(Taking closure of the convex hull of 9f,(x,) and 9f,(x,) is superfluous.
For by a theorem of J. J. Moreau, the continuity implies ¢(Y,X)-com-
pactness of of;(x,) and dfy(x,), whence the convex hull is ¢(Y, X)-compact
and therefore closed.) The answer to the question is negative, however.
In fact, one can merely take X =Y =R with {(x,y) =2y, take fi(x)= —at
for 220 and f,(z)= + oo for <0, and take fy(x)=f;(—x). Then 9f,(0)=
of5(0) =4, whereas 9(sup (f1,f))(0)=R.

By this example, the possibility of describing d(sup (f;,f,))(z,) in terms
of 9fy(x,) and 0dfy(x,) for lower semi-continuous convex functions f; and
f2 is excluded. To compensate, we shall show that the approximate sub-
gradients are of use. For ¢>0, a point y,€ Y is called an e-subgradient
of a convex function f on X at a point 2, € X where f has a finite value,
provided that

VzeX: f(x) 2 f(xo)—e+<{x—,Yo) -

The set of e-subgradients of f at x, is denoted 9,f(x,); it is a closed
convex set, non-empty if f is lower semi-continuous. For functions f;
and f, with fi(z,) =fs(x,) < + o we clearly have

2,(sup (f1,f2))(x0) 2 cleonv (9, f1(xo) U 8.fx())

for any &> 0. Since for any function f

nc>0 0.f (o) = of (%) »
it follows that

o(sup (f1.f2))(xo) 2 ne>0 cleonv (9,f1(x) U 8,fa(x)) -

Our main result states that if f; and f, are lower semi-continuous, then
in fact we have identity.

Concepts and results treated in the notes of J. J. Moreau [2] are used
without reference to the original papers; such references can be found
in [2]. The papers in question are due to J. J. Moreau, R. T. Rockafellar
and the author.

The author is indebted to R. T. Rockafellar for some valuable com-
ments, allowing improvements of an earlier version of this paper.
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2. Main result.

An inspection of the proof of the theorem quoted above due to M.
Valadier shows that if one is satisfied with a weaker conclusion, then a
weaker assumption works. In fact, one has:

Lemma (M. Valadier). Let f, and f, be convex functions on X with
values in ]— oo, + o). Let x, be a point in X such that fi(x,)=/[a(%,) < + oo
and such that the directional derivatives fy'(xy; <) and f,'(xy; +) of f, and f,
at z, are lower semi-continuous on X. Then

d(sup (f1.f2))(xe) = cleonv(9fy(zo) U 8fy(xy)) -

For completeness, we include the proof. Let f,=sup(f;,f,)- Then
clearly

Jo' (@5 +) = sup(fy'(xo; ), fa' (o5 *)) -
Denoting ‘“greatest lower semi-continuous convex minorant’’ by the
symbol A, and using the lower semi-continuity of f,'(zy; ) and f,'(x; ),
we get by conjugation
Jo'(@o; +)* = (Sup(fl’(%; e (@05 )))*
= A(fY (o3 )% 12 (@05 )¥) -
Now, for any convex function f we have
F'@os *)* = 9(of (o) <) »
where (df (%,); +) is the indicator function of 9f(x,). We therefore get
Y(ofo(@); ) = A('/’(afl(xo); *),9(0f o) ; ))
= tp(clconv(afl(xo) U 9fa()) 5 ) )

which gives the desired conclusion. (To obtain M. Valadier’s theorem
from the lemma, use the facts that continuity of f; at x, implies con-
tinuity of f;'(%y; -) as well as o(Y, X)-compactness of 9f;(x,); cf. a remark
in section 1.)

Having established this preliminary result, we shall then pass to the
main result:

THEOREM. Let f, and f, be lower semi-continuous convex functions on X
with values in ]—oo, + o], and let x, be a point in X such that fi(x,)=
Sol@y) < + 00. Then

d(sup (fvfz))(xo) = ns>0 clconv(@Jl(xo) u 3&fz(xo)) .
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Proor. By a remark in section 1, we shall prove that o(sup (fy,fs))(x,)
is contained in

cleonv (9,f1(2o) U 0,f5(%,))

for each £> 0. So, let ¢ > 0 be fixed. Clearly, there is no loss of generality
in assuming x,=o0 and f;(0)=fy(0)=¢. For i=1,2 we put
gi(x) = sup{(z,y) | y € 8,fi(0)}

for z € X, i.e. g; is the support function of 9, f;(0). So g, is lower semi-
continuous, convex and positively homogeneous. Being convex and
positively homogeneous, g, equals its directional derivative g,'(0; -) at o.
Invoking also the lower semi-continuity of g,, this has two consequences.
Firstly, we may apply the lemma to g, and g,, thereby obtaining

d(sup(gy,9,))(0) = cleonv(dg,(0) U dg,(0)) .

Secondly, it follows that g, is the support function of dg,(0), whence
99,(0) = 0,f;(0). Consequently

d(sup (93,95))(0) = cleonv (0,f(0) U 2.f5(0)) -
We shall complete the proof by proving the inclusion

(1) o(sup (f1.f2))(0) € (sup (9:,92))(0) -
In other words, we shall prove that for any y e Y,

(2) Vaze X: sup(fy(@).fol@) 2 e+<z,9),
implies

(3) Va e X: sup(g,(2).95(x)) 2 <z.9) -

Suppose for a moment that (2) = (3) has been proved when y=o, and
let y, € Y be arbitrary. Let

ﬁ(x) = fi(x) —<{x,Y), Gi(x) = gs(x) =<2, Yo

for x € X, i=1,2. Then f; fulfils the same assumptions as f;, and an
easy calculation shows that we also have

gi(x) = sup{(z,9) | y € d,fi(0)} .

Therefore, it follows that (2) = (3) is valid for f; and §; when y=o.
But this means that (2) = (3) is valid for f; and g; when y=y,. In con-
clusion, it suffices to prove (2) => (3) when y=o.

So, assume that (2) holds for y=o0, and consider an arbitrary z, € X.
Since g,(0)=g,(0)=0, there is nothing to prove for x;=0. Therefore,
let z,+o0. Suppose that f;(A,x,)<¢ for some A;€]0,1], +=1,2. Then,
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since f;(0)=¢, we have f;(x) <e for all € Jo,A,xz;] by the convexity of f;.
But this clearly contradicts the assumption. Hence, we have either
fi@)=e for all z € [o,z,], or fy(x)=¢ for all z € [o,2,]. Assuming that
fi(@) = e for all z € [0,2,], it then follows that the epigraph of f,,i.e. the set

epif; = {(x,r) e X xR | fi(x)=r},
has no points in common with any of the segments
I, = [(0,0),(x,e—n71)],

where n € N. Since f, is lower semi-continuous and convex, epif; is closed
and convex. Hence, by a standard separation theorem, there exists for
each n € N a closed hyperplane in X x R strictly separating epif;, and
I,. In other words, for each » € N there exists y, € Y and ¢, € R, such
that

(4) Yte[0,1]: He—n1) < {xp,y,)+Cp s

(5) VeeX: (x,y,)+c, < filz).

By setting t=0 in (4), it follows that 0<c,. Since f,(0)=e¢, (5) then
shows that y,, € d.f,(0). From the definition of g, we thereby get

(6) SupneN<x17yn> é gl(xl) .

On the other hand, by setting =1 in (4) and z=o0 in (5), it follows that
—n~1l<(x,,y,> which implies

(7) 0 é supneN(”l:yn> .

Combining (6) and (7) we get 0<g,(x,), whence 0=<sup(g,(x,),g,(2,)) as
desired.

We would like to point out that it is possible to give a (slightly more
direct) proof which avoids use of the notion of directional derivative.
This becomes clear when one notes that the lemma is only used for
positively homogeneous functions. The lemma seems, however, to be of
independent interest, and for that reason we have preferred to put it in
the foreground.

3. Remarks.

We note that the lemma and the theorem are easily extended to any
finite family of functions f;.

Regarding the possibility of extending the results to infinite families,
note that for an infinite family (f,);.; we need not have

(8) Jo'(@g; *) = supsifi(,; ),
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where f, denotes the supremum of the function f;. With the additional
condition (8), the proof of the lemma still works. On the other hand, if
(8) is not fulfilled, then the proof shows that the lemma does not hold.
The condition (8) is not sufficient to make the proof of the theorem work
for an infinite family.

AppEnDUM. The author’s attention has been called to M. Valadier’s
paper [3], in which the theorem of M. Valadier quoted in section 1 above
is obtained as a special case of a more general result.
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