ON THE REALIZATION OF CERTAIN MODULES OVER THE STEENROD ALGEBRA

NILS ANDREAS BAAS and IB MADSEN

1.

Let \hat{u} denote the (mod p) Steenrod algebra, p any prime and let Q_j be the unique non-zero primitive in degree $2p^j-1$. In the present note we show that for any string of integers $0 \leq j_0 < j_1 < \ldots < j_q$ there exists a spectrum whose cohomology (as an \hat{u} -module) is isomorphic to $\hat{u}/\hat{u}(Q_{j_0},\ldots,Q_{j_q})$. Here $\hat{u}(Q_{j_0},\ldots,Q_{j_q})$ denotes the left ideal generated by Q_{j_0},\ldots,Q_{j_q} . Previously, Margolis [5] has realized the modules $\hat{u}/\hat{u}(Q_i)$ and $\hat{u}/\hat{u}(Q_0,Q_i)$ by other (and quite complicated) methods.

Let MU denote the Thom spectrum of the universal unitary bundle over BU. It is well-known that

$$\pi_*(MU) = \mathsf{Z}[x_1, x_2, \ldots],$$

where $\deg x_i = 2i$.

For any string of integers $0 < n_1 < n_2 < \ldots < n_q$ there exists a spectrum $MU\langle n_1, \ldots, n_q \rangle$ such that

$$\pi_*(MU\langle n_1,\ldots,n_q\rangle) = \mathsf{Z}[x_{n_1},\ldots,x_{n_q}]$$

and a map

$$\nu \colon MU \to MU\langle n_1, \ldots, n_q \rangle$$
.

The Thom spectrum MU is a ring spectrum and $MU\langle n_1, \ldots, n_q \rangle$ is a "module" spectrum over MU, that is there is a map

$$MU \land MU\langle n_1, \ldots, n_q \rangle \rightarrow MU\langle n_1, \ldots, n_q \rangle$$
.

Further, $\nu: MU \to MU\langle n_1, \ldots, n_q \rangle$ is a "module" map. The induced map ν_* on homotopy groups is just

$$v_*(x_i) = 0$$
 if $i \notin \{n_1, \dots, n_q\}$
= x_i if $i \in \{n_1, \dots, n_q\}$

The construction of $MU\langle n_1,\ldots,n_q\rangle$ is based on ideas of Sullivan and was carried out in detail in [2]. The spectrum $MU\langle n_1,\ldots,n_q\rangle$ appears

Received December 21, 1970; in revised form February 20, 1972.

as representing object for a bordism theory of manifolds with certain cone singularities.

We shall calculate $H^*(MU\langle n_1,\ldots,n_q\rangle; \mathbb{Z}_p)$ as a module over the Steenrod algebra in case all the n_i 's are of the form p^j-1 . The calculation is based on a simple application of the Atiyah–Hirzebruch spectral sequence for a generalized homology theory. If X and Y are spectra (with zero homotopy in negative degrees) then the spectral sequence, denoted $E^r_{*,*}(X,Y)$ is a first quadrant, homology type, spectral sequence with

$$E^2_{*,*} = H_*(X; \pi_*(Y))$$

 $E^{\infty}_{*,*} = E^0 Y_*(X)$,

where $Y_*(X) = \pi_*(Y \land X) \cong X_*(Y)$. We shall only use the spectral sequence in the case where X is the Eilenberg-MacLane spectrum and we write $E^r_{**}(Y)$ instead of $E^r_{**}(K(Z_n), Y)$. If Y is torsion free then

$$E^2_{*,*}(Y) = H_*(K(\mathsf{Z}_p); \mathsf{Z}) \otimes \pi_*(Y)$$

and the spectral sequence converges to $Y_*(K(\mathbf{Z}_p)) \cong H_*(Y; \mathbf{Z}_p)$.

Suppose that Y is connected $(\pi_0(Y) = Z, \pi_i(Y) = 0 \text{ for } i < 0)$ and let $U \colon Y \to K(Z)$ be the map which induces the identity on π_0 . The edge homomorphisms are then

$$\begin{array}{c} h: \ \pi_{*}(Y) \rightarrow H_{*}(Y; \, \mathbb{Z}_p) \\ \chi \circ U_{*}: \ H_{*}(Y; \, \mathbb{Z}_p) \rightarrow H_{*}\big(K(\mathbb{Z}); \, \mathbb{Z}_p\big) \cong H_{*}\big(K(\mathbb{Z}_p); \, \mathbb{Z}\big) \, , \end{array}$$

where h is the Hurewicz homomorphism and χ the isomorphism $H_*(K(Z); Z_p) \cong H_*(K(Z_p); Z)$.

If Y is a ring spectrum then $E_{*,*}(Y)$ is a spectral sequence of algebras over Z_p . If M is a "module" spectrum over the ring spectrum Y then $E_{*,*}(M)$ is a differential module over $E_{*,*}(Y)$ (that is

$$d_r(y \cdot m) = d_r y \cdot m + (-1)^{\deg y} y \cdot d_r m).$$

2.

We first consider the case Y = MU. Then

$$E^{2}_{*,*}(MU) = \mathsf{Z}_{p}[\xi_{1},\xi_{2},\ldots] \otimes E\{\tau_{1},\tau_{2},\ldots\} \otimes \mathsf{Z}_{p}[x_{1},x_{2},\ldots],$$

where $E\{\ \}$ denotes the exterior algebra and bideg $(x_i) = (0,2i)$, bideg $(\xi_i) = (2(p^i-1),0)$ and bideg $(\tau_i) = (2p^i-1,0)$. (If p=2 then τ_i and ξ_i above should be interpreted as ξ_i and ξ_i^2 , respectively.)

J. Cohen in [4] has examined the structure of $E^{\tau}_{*,*}(MU)$: The elements ξ_i all survives to E^{∞} and there are elements $\bar{\tau}_j$ (where $\bar{\tau}_j \equiv \tau_j$ modulo decomposable elements) such that

$$d_{2pj-1}(\bar{\tau}_i) = \bar{x}_k, \quad k = p^j - 1$$
,

where $\overline{x}_k \equiv x_k$ modulo decomposable elements.

This is all easily implied by the remark that $\tau_j \in E^2_{*,0}$ cannot survive to E^{∞} since $H_*(MU; \mathbf{Z}_p)$ is a polynomial algebra with one generator in each even dimension and the fact (Milnor [6]) that the composite map

$$\pi_*(MU) \to H_*(MU; \mathsf{Z}_n) \to QH_*(MU; \mathsf{Z}_n)$$

is zero in dimensions $2(p^j-1)$.

The structure of $E_{*,*}^r(MU)$ is now computed by a standard argument using the comparison theorem for spectral sequences

$$E_{*,*}^{r}(MU) = \mathsf{Z}_{p}[\xi_{1}, \xi_{2}, \dots] \otimes E\{\bar{\tau}_{j} \mid 2p^{j} - 1 \ge r - 1\} \\ \otimes \mathsf{Z}_{p}[\{\bar{x}_{k} \mid k + p^{j} - 1, 2p^{j} - 1 \le r - 1\}].$$

3.

Next we consider $E_{*,*}^r(MU\langle n_1,\ldots,n_q\rangle)$ where all the n_i 's are of the type p^j-1 , say $n_i=p^{ji}-1$. We have

$$E^{2}_{*,*}(MU\langle n_{1},\ldots,n_{q}\rangle) = \mathsf{Z}_{p}[\xi_{1},\xi_{2},\ldots] \otimes E\{\bar{\tau}_{1},\bar{\tau}_{2},\ldots\} \otimes \mathsf{Z}[x_{n_{1}},\ldots,x_{n_{q}}].$$

The map $v: MU \to MU\langle n_1, \ldots, n_q \rangle$ induces an $E^r_{*,*}(MU)$ -module map of spectral sequences

$$v_*: E^r_{*,*}(MU) \to E^r_{*,*}(MU\langle n_1,\ldots,n_q\rangle)$$

which on the E^2 -level is just

$$\begin{array}{ll} \nu_{*}(\xi_{i} \otimes \bar{\tau}_{j} \otimes x_{k}) \; = \; \xi_{i} \otimes \bar{\tau}_{j} \otimes x_{k} & \text{if } \; k \in \{n_{1}, \ldots, n_{q}\} \\ = \; 0 & \text{otherwise} \; . \end{array}$$

Comparing the two spectral sequences via v_* we see that the only non-zero transgressive differentials in $E^r_{*,*}(MU\langle n_1,\ldots,n_q\rangle)$ are $d_{2n_1+1},d_{2n_2+1},\ldots,d_{2n_q+1}$, and that

$$d_{2n_i+1}(\bar{\tau}_j) = \bar{x}_{n_i} \quad (n_i = p^j - 1)$$
.

It follows that

$$\begin{array}{ll} E^{\infty}_{*,*}(MU\langle n_1,\ldots,n_q\rangle) \; = \; \mathsf{Z}_p[\xi_1,\xi_2,\ldots] \\ & \otimes \; E\{\bar{\tau}_j \; \big| \; \; p^j-1 \, {\in} \, \{n_1,\ldots\,n_q\}, j>0\} \; . \end{array}$$

The map

$$U_*: H_*(MU\langle n_1,\ldots,n_q\rangle; \mathsf{Z}_p) \to H_*(K(\mathsf{Z}); \mathsf{Z}_p)$$

is therefore an injection with image

$$\mathsf{Z}_n[\chi(\xi_1),\chi(\xi_2),\ldots]\otimes E\{\chi(\bar{\tau}_i)\mid p^j-1\notin\{n_1,\ldots,n_q\},j>0\},$$

where χ is the canonical anti-automorphism of ℓ .

The primitive element Q_j (of degree $2p^j-1$) in \hat{a} is dual to τ_j . Since $\chi(\bar{\tau}_j) \equiv \tau_j$ modulo decomposable elements,

$$U^* \colon H^*(K(\mathsf{Z}); \mathsf{Z}_p) \to H^*(MU\langle n_1, \dots, n_q \rangle; \mathsf{Z}_p)$$

maps Q_{j_1}, \ldots, Q_{j_q} $(n_i = p^{j_i} - 1)$ to zero so that U^* factors to give an epimorphism

$$\nu^* : \ell/\ell(Q_0, Q_{j_1}, \ldots, Q_{j_q}) \to H^*(MU\langle n_1, \ldots, n_q \rangle; \mathsf{Z}_p)$$
.

The two vector spaces have the same dimension and U^* is therefore an isomorphism. This proves

Theorem A. Let $0 < i_1 < \ldots < i_q$ and set $n_i = p^{j_i} - 1$. There is an isomorphism of left \hat{u} -modules

$$\hat{u}/\hat{u}(Q_0,Q_{j_1},\ldots,Q_{j_q}) \cong H^*(MU\langle n_1,\ldots,n_q\rangle; \mathbf{Z}_p) .$$

Let L be the \mathbb{Z}_p -Moore spectrum, (L is the cofiber of a map of degree $p: S^0 \to S^0$) and write $MU_n\langle n_1, \ldots, n_q \rangle$ for $MU\langle n_1, \ldots, n_q \rangle \wedge L$. Then

$$\pi_*(MU_p\langle n_1,\ldots,n_q\rangle) = \mathsf{Z}_p[x_{n_1},\ldots,x_{n_q}]$$

and again there is a MU-"module" map

$$v_p: MU \to MU_p\langle n_1, \ldots, n_q \rangle$$

which on homotopy is ν_* composed with reduction modulo p. Let

$$U_p: MU_p\langle n_1, \ldots, n_q \rangle \to K(\mathbf{Z}_p)$$

be a map which induces the identity on π_0 . Arguing as before we get

THEOREM B. There is a left a-module isomorphism

$$\hat{u}/\hat{u}(Q_{i_1},\ldots,Q_{i_q}) \cong H^*(MU_p\langle n_1,\ldots,n_q\rangle;\,\mathsf{Z}_p)\;.$$

REMARKS:

- (a) The spectrum $MU_p\langle n_1,\ldots,n_q\rangle$ is again a representing object for a bordism theory of manifolds with singularities. In fact one just adds one more singularity to the singularities determining $MU\langle n_1,\ldots,n_q\rangle$, namely the manifold consisting of p distinct points.
- (b) Let $0 < m_1 < \ldots < m_r$ be a string of integers not all of the form $p^j 1$. In order to compute even the additive structure of $H^*(MU\langle m_1,\ldots,m_r\rangle)$ one would need more precise information on the structure of $E^r_{*,*}(MU)$, than provided by Cohen [4].

REFERENCES

- J. F. Adams and A. Liulevicius, The Hurewicz homomorphism for MU and BP, Preprint. The University of Chicago, 1970.
- N. A. Baas, On bordism theory of manifolds with singularities, Preprint Series 1969/70, No. 31, University of Aarhus.
- N. A. Baas, Bordism theories with singularities, 1-16, Proc. of Adv. Study Inst. on Algebraic Topology, Aarhus 1970.
- 4. J. M. Cohen, The Hurewicz homomorphism on MU, Invent. Math. 10 (1970), 177-186.
- 5. H. R. Margolis, Periodic spectra, Preprint, North-Western University, 1970.
- 6. J. W. Milnor, On the cobordism ring Ω^* and a complex analogue, Part I, Amer. J. Math. 82 (1960), 505-521.
- D. Quillen, On formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
- 8. D. Sullivan, Geometric topology, Seminar notes, Princeton University, 1967.

AARHUS UNIVERSITY, DENMARK