ON THE REALIZATION OF CERTAIN MODULES
OVER THE STEENROD ALGEBRA

NILS ANDREAS BAAS and IB MADSEN

1.
Let \mathfrak{a} denote the $(\text{mod } p)$ Steenrod algebra, p any prime and let Q_i be the unique non-zero primitive in degree $2p^i - 1$. In the present note we show that for any string of integers $0 \leq j_0 < j_1 < \ldots < j_q$ there exists a spectrum whose cohomology (as an \mathfrak{a}-module) is isomorphic to $\mathfrak{a}/\mathfrak{a}(Q_{j_0}, \ldots, Q_{j_q})$. Here $\mathfrak{a}(Q_{j_0}, \ldots, Q_{j_q})$ denotes the left ideal generated by Q_{j_0}, \ldots, Q_{j_q}. Previously, Margolis [5] has realized the modules $\mathfrak{a}/\mathfrak{a}(Q_i)$ and $\mathfrak{a}/\mathfrak{a}(Q_0, Q_i)$ by other (and quite complicated) methods.

Let MU denote the Thom spectrum of the universal unitary bundle over BU. It is well-known that

$$\pi_\ast(MU) = \mathbb{Z}[x_1, x_2, \ldots],$$

where $\deg x_i = 2i$.

For any string of integers $0 < n_1 < n_2 < \ldots < n_q$ there exists a spectrum $MU\langle n_1, \ldots, n_q \rangle$ such that

$$\pi_\ast(MU\langle n_1, \ldots, n_q \rangle) = \mathbb{Z}[x_{n_1}, \ldots, x_{n_q}]$$

and a map

$$\nu: MU \to MU\langle n_1, \ldots, n_q \rangle.$$

The Thom spectrum MU is a ring spectrum and $MU\langle n_1, \ldots, n_q \rangle$ is a “module” spectrum over MU, that is there is a map

$$MU \wedge MU\langle n_1, \ldots, n_q \rangle \to MU\langle n_1, \ldots, n_q \rangle.$$

Further, $\nu: MU \to MU\langle n_1, \ldots, n_q \rangle$ is a “module” map. The induced map ν_\ast on homotopy groups is just

$$\nu_\ast(x_i) = 0 \quad \text{if } i \notin \{n_1, \ldots, n_q\}$$
$$= x_i \quad \text{if } i \in \{n_1, \ldots, n_q\}$$

The construction of $MU\langle n_1, \ldots, n_q \rangle$ is based on ideas of Sullivan and was carried out in detail in [2]. The spectrum $MU\langle n_1, \ldots, n_q \rangle$ appears

Received December 21, 1970; in revised form February 20, 1972.
as representing object for a bordism theory of manifolds with certain cone singularities.

We shall calculate $H^\ast(MU\langle n_1, \ldots, n_q \rangle; \mathbb{Z}_p)$ as a module over the Steenrod algebra in case all the n_i’s are of the form $p^j - 1$. The calculation is based on a simple application of the Atiyah–Hirzebruch spectral sequence for a generalized homology theory. If X and Y are spectra (with zero homotopy in negative degrees) then the spectral sequence, denoted $E^r_{\ast, \ast}(X, Y)$ is a first quadrant, homology type, spectral sequence with

$$E^2_{\ast, \ast} = H_\ast(X; \pi_\ast(Y))$$
$$E^\infty_{\ast, \ast} = E^0 Y_\ast(X),$$

where $Y_\ast(X) = \pi_\ast(Y \wedge X) \cong X_\ast(Y)$. We shall only use the spectral sequence in the case where X is the Eilenberg–MacLane spectrum and we write $E^r_{\ast, \ast}(Y)$ instead of $E^r_{\ast, \ast}(K(Z_p), Y)$. If Y is torsion free then

$$E^2_{\ast, \ast}(Y) = H_\ast(K(Z_p); \mathbb{Z}) \otimes \pi_\ast(Y)$$

and the spectral sequence converges to $Y_\ast(K(Z_p)) \cong H_\ast(Y; \mathbb{Z}_p)$.

Suppose that Y is connected ($\pi_0(Y) = \mathbb{Z}$, $\pi_1(Y) = 0$ for $i < 0$) and let $U: Y \to K(\mathbb{Z})$ be the map which induces the identity on π_0. The edge homomorphisms are then

$$h : \pi_\ast(Y) \to H_\ast(Y; \mathbb{Z}_p)$$
$$\chi \circ U : H_\ast(Y; \mathbb{Z}_p) \to H_\ast(K(\mathbb{Z}); \mathbb{Z}_p) \cong H_\ast(K(Z_p); \mathbb{Z}),$$

where h is the Hurewicz homomorphism and χ the isomorphism $H_\ast(K(\mathbb{Z}); \mathbb{Z}_p) \cong H_\ast(K(Z_p); \mathbb{Z})$.

If Y is a ring spectrum then $E^r_{\ast, \ast}(Y)$ is a spectral sequence of algebras over \mathbb{Z}_p. If M is a “module” spectrum over the ring spectrum Y then $E^r_{\ast, \ast}(M)$ is a differential module over $E^r_{\ast, \ast}(Y)$ (that is

$$d_i(y \cdot m) = d_{i+1}y \cdot m + (-1)^{\deg y} v \cdot d_{i+1}m).$$

2.

We first consider the case $Y = MU$. Then

$$E^2_{\ast, \ast}(MU) = \mathbb{Z}_p[\xi_1, \xi_2, \ldots] \otimes E\{\tau_1, \tau_2, \ldots\} \otimes \mathbb{Z}_p[x_1, x_2, \ldots],$$

where $E\{\}$ denotes the exterior algebra and $\bideg(x_i) = (0, 2i)$, $\bideg(\xi_i) = (2(p^i - 1), 0)$ and $\bideg(\tau_i) = (2p^i - 1, 0)$. (If $p = 2$ then τ_i and ξ_i above should be interpreted as ξ_i and ξ_i^2, respectively.)

J. Cohen in [4] has examined the structure of $E^r_{\ast, \ast}(MU)$: The elements ξ_i all survives to E^∞ and there are elements $\overline{\tau}_j$ (where $\overline{\tau}_j \equiv \tau_j$ modulo decomposable elements) such that
\[d_{2p^j-1}(\bar{x}_j) = \bar{x}_k, \quad k = p^j - 1, \]

where \(\bar{x}_k \equiv x_k \) modulo decomposable elements.

This is all easily implied by the remark that \(\tau_j \in E^{2, *}_0 \) cannot survive to \(E^\infty \) since \(H_*(MU; \mathbb{Z}_p) \) is a polynomial algebra with one generator in each even dimension and the fact (Milnor [6]) that the composite map

\[\tau_*(MU) \rightarrow H_*(MU; \mathbb{Z}_p) \rightarrow QH_*(MU; \mathbb{Z}_p) \]

is zero in dimensions \(2(p^j - 1) \).

The structure of \(E^{r, *}_*(MU) \) is now computed by a standard argument using the comparison theorem for spectral sequences

\[
E^{r, *}_*(MU) = \mathbb{Z}_p[\xi_1, \xi_2, \ldots] \otimes E\{\bar{\xi}_j \mid 2p^j - 1 \geq r - 1\} \\
\otimes \mathbb{Z}_p[\{\bar{x}_k \mid k \equiv p^j - 1, 2p^j - 1 \leq r - 1\}].
\]

3.

Next we consider \(E^{r, *}_*(MU^{n_1, \ldots, n_q}) \) where all the \(n_i \)'s are of the type \(p^j - 1 \), say \(n_i = p^{j_i} - 1 \). We have

\[
E^{2, *}_*(MU^{n_1, \ldots, n_q}) = \mathbb{Z}_p[\xi_1, \xi_2, \ldots] \otimes E\{\bar{\xi}_1, \bar{\xi}_2, \ldots\} \\
\otimes \mathbb{Z}[x_{n_1}, \ldots, x_{n_q}].
\]

The map \(\nu: MU \rightarrow MU^{n_1, \ldots, n_q} \) induces an \(E^{r, *}_*(MU) \)-module map of spectral sequences

\[\nu_*: E^{r, *}_*(MU) \rightarrow E^{r, *}_*(MU^{n_1, \ldots, n_q}) \]

which on the \(E^2 \)-level is just

\[\nu_*(\xi_i \otimes \bar{\xi}_j \otimes x_k) = \xi_i \otimes \bar{\xi}_j \otimes x_k \quad \text{if} \quad k \in \{n_1, \ldots, n_q\} \]

\[= 0 \quad \text{otherwise}.
\]

Comparing the two spectral sequences via \(\nu_* \) we see that the only non-zero transgressive differentials in \(E^{r, *}_*(MU^{n_1, \ldots, n_q}) \) are \(d_{2n_1+1}, d_{2n_2+1}, \ldots, d_{2n_q+1} \), and that

\[d_{2n_i+1}(\bar{x}_j) = \bar{x}_{n_i} \quad (n_i = p^j - 1).
\]

It follows that

\[
E^{\infty, *}_*(MU^{n_1, \ldots, n_q}) = \mathbb{Z}_p[\xi_1, \xi_2, \ldots] \\
\otimes E\{\bar{\xi}_j \mid \ p^j - 1 \notin \{n_1, \ldots, n_q\}, j > 0\}.
\]

The map

\[U_*: H_*(MU^{n_1, \ldots, n_q}; \mathbb{Z}_p) \rightarrow H_*(K(Z); \mathbb{Z}_p) \]

is therefore an injection with image
where χ is the canonical anti-automorphism of \hat{a}.

The primitive element Q_j (of degree $2p^j - 1$) in \hat{a} is dual to τ_j. Since $\chi(\tilde{\tau}_j) = \tau_j$ modulo decomposable elements,

$$U^* : H^*(K(Z); Z_p) \to H^*(MU\langle n_1, \ldots, n_q \rangle; Z_p)$$

maps Q_{i_1}, \ldots, Q_{i_q} ($n_i = p^{j_i} - 1$) to zero so that U^* factors to give an epimorphism

$$v^* : \hat{a}/\hat{a}(Q_0, Q_{i_1}, \ldots, Q_{i_q}) \to H^*(MU\langle n_1, \ldots, n_q \rangle; Z_p).$$

The two vector spaces have the same dimension and U^* is therefore an isomorphism. This proves

Theorem A. Let $0 < i_1 < \ldots < i_q$ and set $n_i = p^{j_i} - 1$. There is an isomorphism of left \hat{a}-modules

$$\hat{a}/\hat{a}(Q_0, Q_{i_1}, \ldots, Q_{i_q}) \cong H^*(MU\langle n_1, \ldots, n_q \rangle; Z_p).$$

Let L be the \mathbb{Z}_p-Moore spectrum, (L is the cofiber of a map of degree $p : S^0 \to S^0$) and write $MU_p\langle n_1, \ldots, n_q \rangle$ for $MU\langle n_1, \ldots, n_q \rangle \wedge L$. Then

$$\pi_* (MU_p\langle n_1, \ldots, n_q \rangle) = \mathbb{Z}_p[x_{n_1}, \ldots, x_{n_q}]$$

and again there is a MU-"module" map

$$v_p : MU \to MU_p\langle n_1, \ldots, n_q \rangle$$

which on homotopy is v_* composed with reduction modulo p. Let

$$U_p : MU_p\langle n_1, \ldots, n_q \rangle \to K(Z_p)$$

be a map which induces the identity on π_0. Arguing as before we get

Theorem B. There is a left \hat{a}-module isomorphism

$$\hat{a}/\hat{a}(Q_{i_1}, \ldots, Q_{i_q}) \cong H^*(MU_p\langle n_1, \ldots, n_q \rangle; Z_p).$$

Remarks:

(a) The spectrum $MU_p\langle n_1, \ldots, n_q \rangle$ is again a representing object for a bordism theory of manifolds with singularities. In fact one just adds one more singularity to the singularities determining $MU\langle n_1, \ldots, n_q \rangle$, namely the manifold consisting of p distinct points.

(b) Let $0 < m_1 < \ldots < m_r$ be a string of integers not all of the form $p^j - 1$. In order to compute even the additive structure of $H^*(MU\langle m_1, \ldots, m_r \rangle)$ one would need more precise information on the structure of $E^r_*, * (MU)$, than provided by Cohen [4].
REFERENCES

AARHUS UNIVERSITY, DENMARK