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TOPOLOGIES ON THE EXTREME POINTS OF
COMPACT CONVEX SETS

ALAN GLEIT?

Abstract.

Suppose there is a topology on the extreme points of a metrizable
compact convex set whose closed sets are the traces on the extreme points
of a family J satisfying 1-5 below. If the topology satisfies a certain
condition (C 2, below), then the properties of first countability, second
countability and local compactness are equivalent. We give several ex-
amples of collections to which the theorems are applicable.

Introduction.

Let K be a compact convex subset of a locally convex topological
vector space E. Let 7 be any collection of closed convex subsets of K. Let

R=N{T,| 0+T eT}.

It is called the radical of the collection 7. Suppose J satisfies the fol-
lowing conditions:

1. 9,KeJ.

7,7, eI = co(T,Ty)eT.

T.e7 eachaed = NT, eT.
Ext(T)=Ext(K)nT for each T €9, T+ R.
Ext(R)=Ext(K)nR or 9=Ext(K)nR

A

In property 4, Ext(-) are the extreme points of the given set. By property
3 the radical R € 7. Faces obviously satisfy properties 4 and 5. Given
the collection J as above, we define the z-topology on Ext(K) by the
following scheme:

F 2 Ext(K) is 7-closed < F = Ext(K)n7T for some T e€J .

Hence, all 7-closed sets are of the form F=Ext(T) for some 7T € .7,
but the converse need not hold. This paper studies the t-topology. We
prove results similar to those in [5], [7] and [10] with very similar meth-
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ods. We include proofs for completeness and give references to their
origins.

In Section 1 we begin our study. With the help of an auxiliary con-
dition in Section 2 we show that for the z-topology the concepts of first
countability, second countability, local compactness, and local sequen-
tial compactness are all equivalent. In Section 3 we give several examples
of collections 7~ to which the theorems are applicable.

I should like to thank the referee for his many valuable comments.
In particular, the notion of the radical of J is due to him.

0. Notations.

For any net, Greek subscripts, e.g. «, f, denote arbitrary index sets
while Latin subscripts, e.g. ¢, j, n, denote the natural numbers as an
index set, i.e. {x,} is a sequence.

For any set Ac K, A or A~ will be the closure of 4 in the topology
of E.

For convergent nets, p, - ¢ will denote convergence in the topology
of E while p, —, ¢ will denote convergence in the z-topology.

For any set 4 < K, Ext(A) will denote the extreme points of 4.

We denote by Z the set Ext(K)-.

For a function f, we denote by f| A the restriction of f to 4.

1. Preliminary study and several maps.

We let K, E, and J be as in the Introduction. For q € K, we take
T(g) to be the minimal element of 7~ which contains q. (It exists by
properties 1 and 3 of 7.) Following [5], [7] and [10] (the notation is that
of [7]) we define

?D(q) = Ext(K)nT(q) for each g K,
v(p) = {geZ| peD(g)} foreach peExt(K).

We note that @(q) is v-closed for each g € K. Clearly @(q) +0 for q ¢ R.

Lemma 1.1. Let {p,} be a net in Ext(K). If p, - q and D(q)+0, then
.~ P for each p € P(g).

Proor. [6, Lemma 2.3]. Suppose p € D(q) but {p,} does not converge
to p in the 7-topology. Then there is a subnet {ps} and a 7-closed set F
such that p;e F while p¢ F. Let TeJ satisfy F=Ext(K)nT. As T
is closed, ge7 and so T(q)<T. Hence, p € T(9) < T and so peExt(K)nT
= F, which is a contradiction.
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Following [5] and [10] (the notation is that of 5), for each p € Ext(K),
we let

Ap) = N{N | N e (p)}

where A7(p) is the collection of t-neighborhoods of p. An alternate
description of A(p) is provided by the following:

Lemma 1.2. For each p € Ext(K),
A(p) = {q | There is a net {p,} < Ext(K) such that p, -, p while p, — q} .

If the t-topology is first countable at p and the given topology on K is first
countable, one can use sequences rather than nets.

Proor. [10, p. 212]. Let p, -, p and p, - q. Let N e A (p). Then
p, € N eventually. Thus ¢ € N and so g € A(p). Conversely, let q € A(p).
Let %(q) be a neighborhood base at ¢q. Order %(g) x A4 (p) by inclusion.
For each U € %(q) and N € A" (p), choose py xy € UNN. Then pyy py >, P
and p, ny > 4-

CoROLLARY 1.3. Let p € Ext(K). Then ¥(p)< A(p).

Proor. [10, p. 212]. Let g € ¥(p). Then p € @(q). Let {p,} be a net
in Ext(K) converging to ¢g. This always exists for ¢ ¢ Ext(K) and for
q € Ext(K) we may take the constant net. Then p, -, p by Lemma 1.1
and so q € A(p) by Lemma 1.2.

COROLLARY 1.4. Let G < K have interior which includes A(p) for some
p € Ext(K). Then GnExt(K) ¢s a v-neighborhood of p.

Proor. [5, Corollary 7.4]. If not, then there is a net {p,} < Ext(K)—-@G
which z-converges to p. Going to a subnet, we may assume that there is
a ge K and that p, —-q. Then ¢ge Ad(p)cG by Lemma 1.2. Hence
p, € G eventually, which is a contradiction.

Lemma 1.5. Suppose f is an upper semi-continuous real valued convex
SJunction on K. Suppose that f(R)=0. Then, for each ¢>0,

D = {peExt(K) | f(p)2c}

18 T-compact. If K is metrizable, then D is also t-sequentially compact.

Proov. [7, proof of Theorem 3.3], [6 Proposition 4.8]. Let {p,} be a net
in D. Going to a subnet, we may assume p, — ¢. Since f is upper semi-
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continuous, f(g)=c. As f(R)=0, we have that ¢ ¢ R and so ®(q)+0.
Since f|T'(g) is convex and upper semi-continuous, it assumes its maxi-
mum value at some point of ExtT(q)=®P(q) [3, page 7]. Hence, for
some p € D(g), f(p)=f(g)=c and so p e D. From Lemma 1.1, p, —, p.

Let p € Ext(K)—R. We say that the 7-topology is first countable at
p if p has a countable z-neighborhood base. We say that the t-topology
is locally (sequentially) compact at p if p has a v-neighborhood base
of (sequentially) compact sets. Using the above analysis we get the fol-
lowing result.

ProposiTiOoN 1.6. Let p e Ext(K) and suppose K is metrizable. If
A(p) =vp(p), then the following hold:

(1) The t-topology is first countable at p.
(2) The <-topology is locally compact at p.
(3) The t-topology is locally sequentially compact at p.

In fact, if only the relative topology of E s first countable at p, conclusion
(1) still holds.

Proor. Let N e A (p). Find T € I satisfying Ext(T)=Ext(K)—N.
If geT, then &(q)cT(q)<T and so p ¢ D(g). Hence q ¢ ¥(p)=A4(p)
and so T'nd(p)=0.

To show conclusion (1) [5, Theorem 7.6], we let {G,} be a basis for
the relative topology of & at p which is closed under finite unions. Note
that A(p) is the intersection of compact sets and so is compact. Thus,
a trivial compactness argument yields the existence of G, satisfying
A(p)e @, and G,NnT=0. Hence, G, nExt(K) is a z-neighborhood of p
by Corollary 1.4 within N.

For conclusions (2) and (3) [7, Theorem 3.3] we have to specify the
metric we shall be using for K. Let 4(K) be the space of all affine con-
tinuous functions on K. It is a closed subspace of the separable space
C(K). Let {£,| n=0,1,...} be dense in the unit ball of 4(K). For
z,y € K, define

dist (#,9) = 3 2-"1&,(2) —£,)] -

Using local convexity of £ and the fact that each £, is continuous, one
easily shows that dist (-, -) is a metric on K generating the same topology
as the given one.

From above, 4(p)nT =4. Since both are compact,

dist(4(p),T) = 6>0.
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Let
F = {zeZ| dist(2,T)206/2}.

As interior (F)2 4(p), Ext(K)nF is a z-neighborhood of p by Corollary
1.4. Since Ext(K)nF <N, it suffices to show that Ext(K)nF is both
r-compact and t-sequentially compact.

Consider the function defined on K by:

f(x) = dist(z,T) .

It is obviously continuous. Since R<T, f(R)=0. By Lemma 1.5, we
will be done if we can show that f is convex. So, let z,y e K and 0211
Choose ¢,,t, € T satisfying

f(x) = dist(x,t,) and f(y) = dist(y,t,) .
These exist since 7' is compact. Then

f(Az+ (1 —2)y) = dist(Az+(1-1)y,T)
< dist(Ax+ (1—-A)y, A+ (1 —2)t,)
since At,+(1—A4)t, € T by convexity. Since &, is affine, one easily gets
that
dist(Az + (1 —A)y, M, + (1 —A)t,) < Adist(x,8,)+

+(1—12) dist (y,t,) .
Hence,

fAz+(1-2)y) < M (x)+(1-2)f(y)

and so f is convex.

In the proof of conclusion (1) we could have taken {G,} to be a basis
for all of K. Hence, we have the following.

TaEOREM 1.7. Suppose K is metrizable and A(p)=¥(p) for each
p € Ext(K). Then the following hold:

. The z-topology is first countable.

. The t-topology ts second countable.

. The z-topology is locally compact.

. The t-topology s locally sequentially compact.

B W DO

To show that the converses hold, we will need to introduce additional
hypotheses.
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2. Auxiliary conditions and the main theorems.
Throughout this section we suppose that K is metrizable. The first
auxiliary condition we introduce is:
(C1) If {p,}<Ext(K) satisfy p, - ¢ and p, -, p, then D(q)+0 and
p € D(q).

Lemma 2.1. Suppose K satisfies (C 1). Let D be t-sequentially compact.
Then
D c ¥YD).

Proor. [5, Lemma 7.5]. Let ¢ € D. Then there is a sequence {p,}<D
converging to ¢. Since D is z-sequentially compact, going to a sub-
sequence, there is a p e D such that p, —, p. Then by (C1), p e D(q)
and so g e ¥(p)c ¥(D).

THEOREM 2.2. Suppose K satisfies (C 1). Let p € Ext(K). Then ¥(p)=
A(p) follows from each of the following:

1. The z-topology is first countable at p.
2. The t-topology is locally sequentially compact at p.

Proor. If the 7-topology is first countable at p, then y(p)=4(p) fol-
lows easily from Lemma 1.2, Corollary 1.3 and (C1). For the second
conclusion (see [5, Theorem 7.6]), if the z-topology is locally sequentially
compact, then

A@p) = N{N | N e #(p)}
= N{N | N is a 7-sequentially compact neighborhood of p}
s N{PW@) | NeAN(p)}

by Lemma 2.1. If ¢ & ¥(p), then p ¢ D(q). Let N=Ext(K)—-D(q) e AN (p).
Obviously ¢ ¢ ¥(V). Hence

N{PW)| NeN(p)} s P(p).

The Theorem now follows from Corollary 1.3.

To show that the properties listed in the Introduction are all equiv-
alent, we still have to consider the property of local z-compactness. To
do this, we need to introduce a second auxiliary condition:

(C2) If {p,}<Ext(K) converges to g, then all the 7-cluster points of

{pn} are in &(q).
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The condition (C 2) is a partial converse to Lemma 1.1 and is clearly
stronger than (C 1).

Lemma 2.3. Suppose K satisfies (C2). Let F<Ext(K). Then F is
T-sequentially compact iff F is t-compact.

Proor. [7, Proposition 3.1]. Suppose F is z-sequentially compact.
Let {p,}<F be a net. Going to a subnet, we may assume there is a
g € K such that p, — ¢. Choose a sequence {p, } from the net {p,} satisfy-
ing p, - q. Then {p,}< F is a sequence and so there is a subsequence
{p;} and an element p € F satisfying p; -, p. But then p e D(q)nF by
(C1). Also, p is a limit point of {p,} by Lemma 1.1 and so F is z-com-
pact.

Conversely, if F is t-compact, let {p,}<F be a sequence. Going to a
subsequence, we may assume there is an element ¢ € K such that p, — q.
The net {p,} has a 7-cluster point p € F. By (C 2), p € ®(q). So, Lemma
1.1 yields p, —, p and so F is T-sequentially compact.

ProrosiTiON 2.4. Suppose K is metrizable satisfying (C 2). Then the
Sfollowing are equivalent:

(1) Ext(K) ts v-compact.
(2) For all g Z, D(q)+0.
(3) Etther (a) or (b) holds:

(a) Ext(K)nR=Ext(R),
(b) ZnR=0.

Proor. (1) = (2). Suppose Ext(K) is r-compact. Let ¢ € Z and find
a sequence {p, } < Ext(K) converging to q. Then {p,} has a t-cluster point
p € Ext(K). By (C 2), p € D(q) and so the latter set is non-empty.

Not(3) = Not(2). By condition 5 of the defining properties of 7, we
must have that Ext(K)nR=0 and ZnR+d. Let ge ZnR. Clearly
D(q)=0.

(3) = (1). Let {p,} be a net in Ext(KX). By going to a subnet, we may
assume that p, — q for some q € Z. If ¢ ¢ R, then &(q)+ 9. If q € R, then
(a) must hold and again @(q)=Ext(K)nR+d. So, in either case, we may
find p € @(q). But then p, -, p by Lemma 1.1 and so Ext(K) is r-com-
pact.

Putting Proposition 1.6, Theorem 1.7, Theorem 2.2, and Lemma 2.3
together yields our main result.
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THEOREM 2.5. Suppose K is metrizable satisfying (C 2). Then the fol-
lowing are equivalent (for a fixed p € Ext(K)):

1. The t-topology s first countable (at p).
2. The t-topology is locally compact (at p).
3. The z-topology is sequentially locally compact (at p).

Further, the t-topology is first countable for each p € Ext(K) if and only if
the t-topology is second countable.

Finally, we may consider an alternate topology on K if the family 7~
satisfies properties 1-4, R+0, and the first possibility for property 5,
ie.

Ext(K)n R = Ext(R).

One may then define the 7,-topology on Ext(K)—R by the following
scheme:

F ¢ Ext(K)—R is 74-closed
<> F = T n (Ext(K)—R) for some TeJ .

We then define @, and y, as follows:

Do(q) = T(g) n (Ext(K)—R) forall ge K—R,
Dolq) =9 forall ge R,
vo(p) = {g€Z| peDyg)} for all p e Ext(K).

By making the obvious modifications, the results of section 1 all hold
for the 7,-topology. The condition (C 2) becomes:
(C2) If {p,}cExt(K)—R converges to g, then all the z,-cluster
points of {p,} are in D(q).
The results for section 2 hold if we make the obvious modifications. The
final result is the following.

THEOREM 2.6. Suppose K is metrizable satisfying (C 2),.Then the fol-
lowing are equivalent (for a fixed p € Ext(K)—R):

1. The t,-topology is first countable (at p).
2. The t4-topology is locally compact (at p).
3. The t4-topology is sequentially locally compact (at p).

Fugrther, the z,-topology is first countable for each p € Ext(K)—R if and
only if the vy -topology is second countable. Last, Ext (K)— R is t,-compact
if and only if Rn(Ext(K)—R)-=0.
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3. Applications.
All spaces in section 3 are real.

ExampLE 3.1. Choquet simplexes (see [10]).

We let K be a Choquet simplex in an letvs E. We take J =set of all
closed faces. Here R =(. Effros [4] showed that conditions 2 and 3 hold.
The z-topology on Ext(K) is called the structure topology. (C 2) holds
for the structure topology of a metrizable K [10, Proposition 2.2]. Hence,
Theorem 2.5 holds for a metrizable Choquet simplex [10, Theorem 2.4
and Proposition 2.7].

ExampLE 3.2. Stmplex spaces (see [7]).
We let ¥V be a simplex space, i.e. an ordered Banach space whose
dual is an L-space. We take

K =Py(V)={feV*]| |Ifl<1, fz0}

considered in the weak* topology of V*. We take J =set of all weak*
closed faces which include zero. Here R={0}. Effros [4] showed that
conditions 2 and 3 hold. The 7,-topology on Ext(K)— {0} is called the
structure topology or the hull-kernel topology of the maximal ideal space
of V (see [4]). (C 2), holds for separable simplex spaces [7, Corollary 1.5].
Hence, Theorem 2.6 holds for a separable simplex space [7, Theorem 3.3
and the remark following it].

ExamprLE 3.3. Conjugate L-spaces (see [5]).

We let V be a Banach space whose dual is an L-space. We take K = unit
ball of V* considered in the weak* topology. We say that p € K domi-
nates q € K, written ¢<p, if p=q+r with ||p||=|lg||+ |I7]-

A nonempty subset H of K is a biface if:

1. H is convex and symmetric.
2. If £+ 0 is in H then z/|| is in H.
3. If pe H and ¢<p, then ge H.

We take J =set of all weak* closed bifaces of K. Here R={0} which
is not a subset of Ext(K), and so condition 5 holds. Effros [5] showed
that conditions 2, 3, and 4 hold. The r-topology on Ext(K) is called
the structure topology. (C2) holds for separable conjugate L-spaces
[6, Lemma 7.1]. Hence, Theorem 2.5 holds for separable conjugate L-
spaces [5, Theorem 7.6 and Theorem 7.7].
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ExampLE 3.4. L-ideals (see [2]).

We take V to be a Banach space and K to be the unit ball of V*
with the weak* topology. A map e from V* to V* is an L-projection if
it satisfies:

1. e?=e,
2. |lpll=llepll+llp—epll forall pe V*.

A subspace of V* is an L-ideal if it is the range of an L-projection.
We take 9 to be the collection of intersections of weak* closed L-ideals
with K. We note that R= {0} which is not a subset of Ext(K) and so
condition 5 holds. Alfsen and Effros showed that conditions 2 and 3
hold for J [2, Proposition 3.14 and (3.13)]. The z-topology on Ext(K)
is called the structure topology. Hence, Proposition 1.6 and Theorem
1.7 hold for the structure topology if V is separable. If V* is an L-space,
then the structure topology described in Example 3.3 is the same topology
as that described by the L-ideals [2, page 9.13]. Fairly strong conditions
(to appear elsewhere), but which include Example 3.3. are sufficient to
insure that (C 2) holds for this topology.

ExawmpLE 3.5. Parallelizable faces (see [9]).

Let K be a compact convex set in a locally convex topological vector
space E. Let F be a closed face of K. We let F’ be the union of all faces
disjoint from F. If face (x) is the smallest face which includes z € K,
then

zeF' < face(x)nF = 0.

It is always true that K =co(FuF’) [1, Corollary 1.2]. Thus, for each
x € K, there are points fe F, f' € F' and 0=« =1 satisfying

(3.1) z = of +(1—)f’.

The face F is said to be parallelizable if F’ is a face and if for each z € K,
the coefficient « in the above decomposition is unique. We let 7 be the
collection of all closed parallelizable faces in K. Clearly, 7, has proper-
ties 1, 4 and 5. Unfortunately, it need not have property 2 and only
satisfies property 3 for downward filtered families [9, Proposition 8].
Thus, if 7 <, is such that J,KeJ and if T,,Ty€ .7 imply that both
TinTyand co(T,uT,) are in , then J satisfies all of our conditions. If it
does, the z-topology on Ext (K) is called a facial topology. So, Proposition
1.6 and Theorem 1.7 hold for any facial topology of metrizable sets K.
We do not know of any nice conditions which insure that (C 2) is satis-
fied.
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ExampLE 3.6. Split faces (see [1], [8]).

Let K be a compact convex set in an lL.c.t.v.s. E. Let F be a closed face
of K. F is said to be a split face if F’ is a face and the elements f, f’,
and « in the decomposition (3.1) are all unique. Hence, split faces are
parallelizable faces but the converse is not true (take, for example, any
closed edge of a rectangle). We take J to be the set of all closed split
faces of K. Alfsen and Andersen [1] showed that J satisfies conditions
2 and 3 and the others are clear. The t-topology on Ext(K) is called the
facial topology. So Proposition 1.6 and Theorem 1.7 hold for the facial
topology of metrizable sets K. Fairly strong conditions (to appear else-
where) are sufficient for (C 2) to hold and, so, for Theorem 2.5 to hold.
As a special case we cite the following:

THEOREM. If the facial topology of a metrizable set K 18 Ty, then the
properties of first countability, second countability, local compaciness, and
local sequential compactness for the facial topology are equivalent.

Since every closed face of a simplex is split, this example already
includes Example 3.1 (and via it, Example 3.2). This theorem covers
more than just the previous examples as there is a metrizable compact
convex set with a 7', facial topology which is not a simplex [1, Theorem
6.4].
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