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ON CLASSES OF PROJECTIONS IN A
VON-NEUMANN ALGEBRA

TROND DIGERNES

Abstracts.

Classes of projections in a von-Neumann algebra are studied, and
thereby fairly general conditions for unitary implementation (of iso-
morphisms) are obtained. By introducing a relation between classes of
projections we also get a unified proof and generalizations of some results
in the spatial theory for von-Neumann algebras.

Introduction.

Conditions, assuring that an algebraic isomorphism between von-
Neumann algebras be spatial (unitarily implemented), appear in a rather
non-uniform way in the litterature (cf. [3], [4], [6]). In this article we
shall study classes of projections in a von-Neumann algebra from a
quite general point of view and thereby obtain a unitary implementa-
tion theorem for a fairly large class of von-Neumann algebras, the so-
called GD (generalized discrete) algebras. As the name indicates, this is
a generalization of the ‘“classical’” concept of a discrete (type I) von-
Neumann algebra. In fact, any von-Neumann algebra whose commutant
does not have any II,-part is GD. A von-Neumann algebra with II, com-
mutant may, or may not be GD.

Our basic building blocks will be the so-called primitive classes of
projections (as an example, the class of abelian projections is primitive).
We also introduce a relation between classes of projections and show how
this may be used to give a unified proof of some spatial results for von-
Neumann algebras.

1. Definitions, terminology and notation.

&/ and # will denote von-Neumann algebras over Hilbert spaces 5#
and X respectively. All isomorphisms are *-isomorphisms. The letters
E,F will denote projections and P, central projections. Central carrier
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of an element A is denoted by C,. If x € 5, then [/z] denotes the
closure of the linear space

{dz; Aes}

(or the orthogonal projection on this space). By a partition of £ we mean
an orthogonal family {E,} of projections with sum E. The family {&,}
is said to be homogeneous if the elements are pairwise equivalent and
completely disjoint if Cp,Cg;=0 for ¢+j. If {E}; ; is homogeneous and
cardJ =n, we say E =3, ;L is an n-multiple of any of the summands E;.
An arbitrary n-multiple of a projection F is denoted by n-F.

DEriNiTION 1.1. Let & be a property of von-Neumann algebras. A
projection F in & is said to have the property & (relatively ) if the
reduced algebra /5 has the property 2.

The symbol & will also be used to denote the class of projections
having the property 2. Of course, we only consider properties which are
preserved under unitary equivalence. Further we shall confine ourselves
to properties which are ‘“proper’’ in the sense that they persist under
restrictions to central projections (i.e., if ' € & and P is central, then
PE € P).

If n is a cardinal, we denote by n-Z the class of projections which
may be written as n-multiples of elements from &. The projection E is
said to be semi-Z if every nonzero subprojection of £ majorizes a non-
zero P-projection. (Note that if £ is semi-#, E may be written as a
sum of Z-projections, by Zorn’s lemma.) The projection Z is said to be
g—2 if it may be written as a completely disjoint sum of £-projections.
If {P,}is a central partition of the unit such that P,E € 2, we say {P,}
is a P-partition for K.

The following terminology will be used in connection with classes:

DEerINITION 1.2. Lot & and 2 be classes (properties). We say that & is
i) dominated by 2, and write <2, if E€ P, F € 2 and Cgx = Cp im-
plies E<F. We say & and 2 are related if either <2 or 2<KZ.
ii) primative if E,F € & and Cp=Cp implies E~F.
iii) almost primitive if Ry-Z is primitive.
iv) hereditary if E € & and F = E implies F € 2.
v) tnvariant (resp. o-tnvariant) if & persists under orthogonal (resp.
completely disjoint) sums; the meaning of finitely (resp. countably)
invariant should be clear.



ON CLASSES OF PROJECTIONS IN A VON-NEUMANN ALGEBRA 193

vi) homogeneously unique (resp. almost homogeneously unique) if E,F € 2
and n-E=m-F (resp.: and n,m = R;) implies n=m.
vii) symmetric if [Fx] € # implies [ x] € 2.

ReMAREs. If & and 2 are related, then obviously Zn2 is primitve.
Further, & is primitive if and only if #Z<Z. Indeed, suppose E,F € &

2. General conditions for unitary implementation.

We shall make repeated use of the following structure theorem for
isomorphisms, due to Dixmier ([1; 5.1.3.] and [2; 4, th. 3, corollaire]).

THEOREM 2.1. Let ¢: & — Z be an isomorphism. Then there extsts a
von-Neumann algebra & and projections E',F' € D' with Cpy=Cp =1 such
that

JZ{=.@EI, .@:@F,,

and @ may be identified with the mapping TE' — TF', for T € 9. Also,
@ 18 spatial if and only if E' ~F'.

From the definition of primitivity we then get:

COROLLARY 1. Let & be a primitive property and suppose ' and HB'
belong to the class P. Then every isomorphism ¢: & —~ & is spatial.

If ¢: o/ > % is an isomorphism and E' € /' and F’'e€ %’ are such
that ¢(Cp)=Cp, then also the mapping ¢ZF: AE' -~ AF' from g
to #p is an isomorphism [6; p. 331]. From theorem 1 we then get:

COROLLARY 2. Let ¢: &/ — % be an isomorphism. If there exist parti-
tions {E';} and {F';} of the units in ' and B’ respectively such that
@(Cg,)=Cy, and such that ¢+ is spatial for all i, then ¢ is spatial.

Proor. Let 9, E' and F’' be as in theorem. We have E'=3 E’; and
F'=3F'; and ¢”*%% is given by TE';~TF';, for T €2, from Dy,
to Dy, Since ¥ %" is spatial, we have E';~F’; and so

E =3E,~3F,=F.

Math. Scand. — 13
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3. The unitary implementation theorem for GD (generalized discrete)
algebras.

In this section we shall study von-Neumann algebras whose commu-
tants may be decomposed into primitive constituents, the so-called
generalized discrete algebras. We give a precise definition of this concept:

DeriniTION 3.1. Let &/ be a von-Neumann algebra and let & be a
primitive, homogeneously unique (resp. almost primitive, almost homo-
geneously unique) property. Suppose that for each cardinal n (resp. for
each cardinal n» = R,) there exists a maximal central projection P, such
that o', belongs to the class n*Z and suppose Lu.b.{P,}=1. In either
case we say & is generalized discrete (abbreviated GD) with respect to £.
The family {P,} is said to be a characteristic family for .« (with respect
to ).

REMARK. If the family {P,} exists, it is unique and the P,’s are or-
thogonal; this follows from the homogeneous uniqueness of & and the
maximality of the P,’s.

In the next proposition we discuss some properties of the classopera-
tions Z > 0—Z and & - n+-Z and the relation <, introduced in sec-
tion 1.

ProrosiTION 3.1. Let & and 2 be classes of projections and let n be
a cardinal. Then

i) 22 < 0—-P<o—2 <=d-P<LI<=>P<Lo— 2.

In particular, if P is primitive, so 18 6 —P.

i) n (6 —P)=0—(n-P).
In particular, if P is almost primitive, so is o — 2.

ili) <2 => n-P<Ln- 2.
In particular, if P is primitive, so is n+P; and if P is dominated by
the property ‘‘properly infinite”’, then P is almost primitive.

iv) If & is homogeneously unique (resp. almost homogeneously unique) so
is 0 — 2.

Proor. i) We prove <2 = ¢—P<Ko—2. Let E€6—P, Feo—-2
with O, <Cp and let {P,} (resp. {2,}) be a P-partition (resp. 2-parti-
tion) for E (resp. for F). If R, ;=P,Q;, then {R,} is a P-partition for
E and a 2-partition for F. We have

ORO‘BE = RaﬂCE é 'RaﬁCF = ORaﬂF
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and so R B <R F, since #<2. But then
E=3R,E<3IR,F =F

and so 0 —Z<c— 9.

The other implications are either obvious or quite analogous to the
one just proved.

ii) We prove n-(6—Z)co—(n-#). Let E€en-(6—%). Then E=3 E,
where E;~E; and E; e 0—2. Let {P,} be a common Z-partition for all
the Z /s (this is possible since the E,’s are equivalent) and set F, =
S P,E,. Then F_ en-Z? and the Fs are completely disjoint. But
E=3_F, and so K € 6—(n-%), that is

n(c—P)co—(nP).

The proof of the converse inclusion is quite analogous.
iii) Suppose <2 and let E=n-E,, F=n-F, with Cy=<Cp, where
E,e P, Fye 2. Then

OEo = OE é OF = CFO
and so Ey<F,. It follows that
E=nE,<nF,=0F.

Now let 2 denote the property ‘“properly infinite” and suppose Z< 2.
Then 2=K,-2 [2; p. 298] and so

Ry P LRy 2=2.

But ;- Z< 2 and it follows that R)-Z=(R;-?)n2 is primitive.
iv) Suppose £ is homogeneously unique (resp. almost homogeneously
unique) and let {£,};.; and {F,;};.x be homogeneous families from ¢ — %

with
Em Ei = zkeK Fk

(vresp.: and such that card JZR,, card K 2,). Let {P,} and {Q,} be
P-partitions for the E;’s and the F,’s respectively. If R, ,=P,Q;, then
{B.s} is a P-partition for the E;’s as well as for the F)’s. Since SR ,=1,
there is a nonzero element R, in the family {R,;}. We have

ZieJ RoEi = ZkeK RoFk

and so cardJ =card K since RyE, R F, €% and the sums are homo-
geneous.

We now state the unitary implementation theorem for GD algebras.
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THEOREM 3.1. Let o and % be GD algebras with respect to the primitive
(resp. almost primitive) property P, with characteristic families {P,} and
{Q,.} respectively. Then, if ¢: o — R is an isomorphism such that o(P,)=
Q,, for all n, @ is spatial.

Proor. i) Suppose &£ is primitive. Then, for any cardinal n, also n-Z
is primitive (proposition 3.1, iii)). By theorem 2.1, corollary 1, each ¢p,
is spatial, and by corollary 2, ¢ itself is spatial.

ii) Suppose £ is almost-primitive. For any cardinal » > R, we obviously
have n-Zcn-(8y*?), and we are back in the primitive case. The theo-
rem follows.

To obtain conditions for generalized discreteness, we shall need the
following lemma, due to Dixmier.

Lemma 3.1. Let {E;};.; be a homogeneous family in sZ. Then there is a
central projection @ tn o and a homogeneous family {F,};.x such that

i) JeK,
ii) FiNEtQ’ iEJ,
iii) if we put Fo=Q -3, g Fy, then Fo<F) (strictly).

Furthermore, if card K > R,, we may suppose Q=3 g F,. [2; IIL1,
Th. 1, corollaire 2].
As an intermediate result we now get:

LEMMA 3.2. Let P be a hereditary property and let o/ be a semi-P
von-Neumann algebra. Suppose one of the following two conditions is ful-
Jilled:

i) & is primitive.

ii) 2 s finitely invariant.

Then there 1s a central partition {P,} of the unit in o and a corresponding
Jamily {n,} of cardinals such that s/ p belongs to the class n,- 2.

Proor. i) Suppose £ is primitive. Let E be a Z-projection and let
Q,F, and {F,};.x be as in lemma 3.1, constructed with respect to the
one-element family {£}. Since Fy<F,;, we have F; e Z by heredity of
2, and since F is not equivalent to F), we have Op > Cp, (strictly),
by primitivity of 2. Set P=Cp,—Cp,. Then PF;=0 and so

PQ =P = P(Fo+2yex Fr) = Dpex PFy .

{PF}i.x 18 a homogeneous family of &-projections and so &/ belongs
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to the class n-% where n=card K. We may now repeat the argument
for &/;_p (which is semi-#), and the lemma follows by transfinite in-
duction.

ii) Suppose £ is finitely invariant and let E, @, F, and {F,};.x be
as above. If card K < X,, then &/, belongs to the class &. If card K 2 &,
we may suppose @=3, F, and so o/, belongs to n-Z, where n=
card K. The proof is now completed as in part i).

CorOLLARY. A finite projection is o-countably decomposable.

Proor. Let € denote the property ‘‘countably decomposable”. Then
any von-Neumann algebra &7 is semi-%, since every non-zero projection
in &7 majorizes a nonzero cyclic projection. Also, the property € is ob-
viously finitely invariant and hereditary. Now, if &7 is finite, then all
the »,’s in lemma 3.1 must be finite. The corollary follows.

The following lemma clarifies the relationship between primitivity and
homogeneous uniqueness. We omit the proof, since it is identical with the
proof of a corresponding lemma in Dixmier [2; p. 239], concerning abe-
lian projections.

LeMmA 3.3. A primitive subclass of the class of finite projections s
homogeneously unique.

In particular, the property “having a generating and separating vector”
is homogeneously unique when restricted to finite von-Neumann algebras.
We now give a sufficient condition for generalized discreteness:

THEOREM 3.2. Let &7 be a von-Neumann algebra (resp. such that &/’ is
properly infinite) and suppose L' is semi-P where P is

i) primitive, homogeneously unique and hereditary (resp. ¢') almost prim-
itive, almost homogeneously unique, finitely invariant and hereditary).
Then & is GD with respect to o — 2.

Proor. i) Suppose the unprimed conditions are fulfilled. Then, by
proposition 3.1, it follows that ¢— is primitive and homogeneously
unique. By lemma 3.2 there is a central partition {P,} of the unit such
that o/'p belongs to n,* & for some cardinal n,. Set

Pn = E{P«x; na=n}'
Then &'y belongs to o—(n*P)=n:(c—%) and P, is maximal with
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respect to this property (by homogeneous uniqueness of o—2). It fol-
lows that {P,} is a characteristic family for 2/, with respect to o — 2.

i') Suppose &’ is properly infinite and the primed conditions are ful-
filled. Then ¢ — £ is almost primitive and almost homogeneously unique
(proposition 3.1). As in part i) we obtain families {P,} and {n,} such that
&/’ p belongs to n,- 2. If n, is finite, then the elements of the homogene-
ous partition in &/'p are properly infinite (Indeed, let & be a properly
infinite von-Neumann algebra and suppose E,+ E,=1, E,~E,. 1If E,
were not properly infinite, there would exist a nonzero projection P in
the center of # such that PE,, and consequently PE,, was finite. But
then also PE,+ PE,=P would be finite, contradicting the proper in-
finiteness of &). Since a properly infinite projection is equivalent to an
Ry-multiple of itself [2; p. 298], we have that o/, belongs to Xy+Z for
finite n,’s. Altogether, we may suppose that all the n,’s are greater than
or equal to X,. The proof is now completed as in part i).

Many theorems in the spatial theory for von-Neumann algebras now
follow as easy corollaries from the above theorem.

CoroLLARY 1. 4 type 1 von-Neumann algebra is GD with respect to
abelian projections.

Proor. If o is type I, so is &/’. In our language this means that &/’
is semi-abelian. Let 4 denote the property “abelian’’; then 4 is primitive
[2; p. 239] and hereditary. Since every abelian projection is finite, 4 is
homogeneously unique (lemma 3.3). Since ¢—A4=4, the corollary fol-
lows.

COROLLARY 2. 4 von-Neumann algebra with properly infinite commu-
tant 18 GD with respect to a-countably decomposable projections.

Proor. Let € denote the property ‘“‘countably decomposable”. Then,
as noted before, any von-Neumann algebra is semi-¢. Furthermore, the
property € is almost primitive ([2; p. 299] and our proposition 3.1, iii),
almost homogeneously unique ([2; p. 224, lemma 6]) finitely invariant and
hereditary. The corollary follows.

COROLLARY 3. A semi-fintte von-Neumann algebra with properly in-
finite commutant 13 GD with respect to finite projections.
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Proor. If &/ is semi-finite, so is &/’. Let & denote the property
“finite”’. Then & is finitely invariant and hereditary. Since every finite
projection is o-countably decomposable (lemma 3.2, corollary) & is also
almost primitive and almost homogeneously unique (cf. the proof of the
preceding corollary). The corollary follows.

4. A note on generating vectors.

By theorem 3.2, corollaries, the only possible pure type non-GD alge-
bras are the II, ;-algebras (x=1 or o). And indeed, a II, ,-algebra need
not be GD since, for instance, a I, ;-factor with non-trivial fundamental
group permits non-spatial automorphisms [5] (and so can’t be GD, by
theorem 3.1; on the other hand, a II, ,-algebra with a generating and
separating vector is GD). In general then, when we deal with II, ,-alge-
bras, we must look for other criteria for unitary implementation than
those developed in the preceding paragraphs.

For finite-finite (‘“finite with finite commutant’) algebras, and in
particular for II, ;-algebras, one may formulate a criterion in terms of
the coupling-operator ([2] and [3]).

For II, ;-algebras there is no canonical coupling-operator at hand.
However, for algebras with generating vectors there is a condition for
unitary implementation, due to Kadison, which says that an isomor-
phism between such algebras is spatial if it preserves maximal cyclicity
[6; p. 349]. (For finite-finite algebras with generating vectors it is easy
to see that an isomorphism ¢: &/ —~ % preserves maximal cyclicity if it
preserves the coupling-operator; indeed, in this case C_,~1=[&/"x]4,
Cy1=[%#'y]A where C_,,C 4 are the coupling-operators and x,y are gen-
erating vectors. By assumption, @([«/'z]8)=[%'y]8; but ¢([=/'z]d=
(p([7’'2]))8, by uniqueness of the trace, and so ¢([«/’'z])~[Z y], by
faithfulness of the trace.) We now contend that a II, ;-algebra with
countably decomposable center has a generating vector. This will fol-
low from the following more general result, which gives a condition for
the existence of separating vectors in terms of the relation <. At the
same time we also get a new and unified proof of two similar results in
Dixmier ([2; p. 19] and [2; p. 302]). (Note that in view of lemma 3.2,
corollary, and theorem 2.1, corollary 2, the restriction to algebras with
countably decomposable centers is not a very severe one.)

ProPosITION 4.1. Suppose & belongs to the class P and /' belongs to
the class 2, where <2 and 2 is symmetric. Then, if < is countably
decomposable, o/ has a separating vector.
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Proor. By [2; p. 18] we may assume that o/ has a generating vector
x. Then, if E=[s/"x], we have that Cz=1 and F € 2, and so, by hypo-
thesis, I < E, that is I ~ E. The algebra &7 5 has a separating vector, and
8o the same must hold for &/ (& is spatially isomorphic to &7 ).

CorOLLARY 1. A countably decomposable abelian von-Neumann algebra
has a separating vector.

Proor. The property “abelian” is dominated by any property [2;
p. 239].

COROLLARY 2. A countably decomposable von-Neumann algebra with
properly infinite commutant has a separating vector.

Proor. The property “countably decomposable’ is dominated by the
property ‘‘properly infinite’” [2; p. 292], and the latter is symmetric.
[2; p. 231].

COROLLARY 3. A properly infinite von-Neumann algebra with finite
commutant and countably decomposable center has a generating vector.

Proor. If of satisfies the hypothesis of the corollary, &/’ is countably
decomposable (lemma 3.2, corollary). Thus &/’ has a separating vector,
that is &/ has a generating vector.
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