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NON COMMUTATIVE INTEGRATION FOR
MONOTONE SEQUENTIALLY CLOSED C* ALGEBRAS

ERIK CHRISTENSEN

Introduction.

Recall that a monotone sequentially closed C* algebra (MSC for short)
is a O* algebra in which every norm-bounded increasing sequence has
a least upper bound, and that a Baire* algebra is an MSC which has a
separating family of o-normal states.

Previously R. V. Kadison [6], [7], E. Kehlet [8] and G. K. Pedersen [7],
[11] have investigated these algebras, and the general results on MSC,
which are used in this paper, can all be found there. The use of [7]
for our purpose needs the comment that the statements from p. 3 to
p. 9, Definition C, are all true for an MSC. In particular [7] then tells
us that the polar decomposition is possible in an MSC, that we can form
range projections, and that the set of projections in an MSC is a lattice
under A and v.

Unfortunately it is unknown whether the comparison lemma holds
in general for an MSC. It is therefore impossible to construct the algebra
of mesurable operators as S. K. Berberian and K. Sait6 do it in [1]
and [12]. However, assume that A is an MSC with unit, and that F
is a non empty subset of the set 4, of projections in A satisfying the
following four conditions:

e,feF = evfelF.
ecd,, feF,esf = eck.
ecd,, feF,e~f = eckF.

For ¢ in 4, and (f,) a sequence of elements in F decreasing to 0, e<f,,
for all » implies e=0.

It is then possible to construct an algebra of measurable operators
with almost the same properties as the algebras considered in [1], [2]
and [12]. Since the algebra so constructed is abstract, we have to give
another definition of integrability than Segal gives in [13], but a theorem,
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which in essence is also proved by G. K. Pedersen [10, Prop. 4.3], makes
it possible to prove the same integration theorems as Segal does.

Before we state the Fubini theorem, we prove a theorem on the tensor
product of Baire* algebras.

I am glad to have the opportunity to thank lektor E. Kehlet for his
valuable suggestions and the corrections he has given during the work
on this paper.

1. A center-valued trace for a certain MSC.
In this section A will denote an MSC with unit.

1.1. DeFINITION. For 2,y in A+ we write xay if there is a sequence of
elements (2,),.n in 4 such that

x=2z,*2, and y =21 2,2,*.

We write x Sy if there is a z in A+ such that x~2=<y.

1.2. DerFinITION. For z in A+ we say that x is countably finite if y <
and y~« imply y=2. When 1 is finite, we say that 4 is countably finite.

From [7] we obtain that ~ is a countably additive equivalence rela-
tion and that xSy and y Sx imply x~y. Note that A4 is said to be
countably generated if 4 has a countable subset B such that A is the
smallest sub-MSC containing B.

1.3. THEOREM. Let A be a countably generated, countably finite MSC
with unit, then there exists a unique finite normalized, o-normal faithfull
center-valued trace on A.

Proor. The proof is divided into some lemmas, which follow below.

1.4. Noratio~N. For z in A, L[z], R[x] and N[x] denote left, right and
null projection of z, respectively. Further let < and ~ denote the usual
preorder and equivalence in A, induced by partial isometries. For
z in A+, C[x] denotes the central support of L[x]. (Cf. [3], [7].)

1.5. LEMMA. For x,y tn A+ with x =1 and y =<1 there exist x, %y, Yy, Y2
in A+ such that
T =2%1+%; Y =UYtYs,
3~ Y, COl2]C[y] = 0.
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Proor. (Cf. [3, Theorem 2.6].) We can suppose that the generating
set U consists of a sequence (u,),.y 0f unitaries, which is closed under

multiplication and *. Define

vy = tugyuFat, 2z = yruFoeuyt,

then
VA2, Vu =% 2 =Y
define
- *
Vg = (@ =)ty (Y —2z)u* (@ —oy)t,
21p = (Y —2n) u* (@ —vyy) Uy (Y —29)F
then
V3tV R 23219 UtV S, 23t2 S Y,
etc. For

v = Evlm 5 = zzln’
we then have

VIRZ, VST 2% =Y.
Define now a by a=(z—v,)tu,(y —2,)u,* (x —v,)}. Then for each m € N,
a £ (@—vy)tuy (y = 275 2 * @ =)t 2y -

Choose a,, such that a~a,,<2,. Then ¥, .N¥n <2 nen?im =721, 80 the
countable finiteness of 4 implies that a=0.

Continuing in the same way with u,, x —v,;, y—2, instead of u,, z, y
we find v, and 2z, with

Vg REZy, Vg S T—Vy, 29 = Y—2q,

etc. Define x,=3v,,y;=>%2,. Then z,~y,, x,<2,y,5y, and, for
u, € U,

(@ =2 uy (Y — 1) up* (@ —21)t = 0,
hence (z—a;)u, (y—y,)=0and, as U is closed under multiplication and *,
@—x)A(y—y,) = 0.
Thus, by [8, lemma 4.3]

Clz—]Cly—y] = 0,

and the lemma is proved.
1.6. LEMMA. The equivalence classes under ~ are uniformly closed.

Proor. Let (x,),.n be a sequence in 4+ of pairwise equivalent elements
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which converges uniformly to y in A+. Lemma 1.5 gives the existence
of a central projection p in 4 such that

(1-py S (1—-px, and opx, S py.

Assume further that ||y —x,||<2-" for all » € N. Then there exists an r
in A+ with
pr, ~r = py £ pE,+27"1)
and thus
0=Spy—r £ pr,+2"p—rxr+27"p—r=2"p

because 4 is assumed to be countably finite. Proposition 2.6 in [7] gives
then that there exist g,,,s, € A+ such that

qn+sn = 2—-np, qn ~ PY—71, Sp R (pxn+2‘"p—r)—(py—r) .

Since 3¢, <> 2-"p=9p and ¢,,,~¢,, we conclude ¢, =0 and py=r~pz,,
80 Y5y

Let t=sup,|lz,||. Then tl-z,~tl-—x,,, and tl—x, converges
uniformly to t1-y, so t{1-yStl—x, and x, Sy because 1 is countably
finite.

1.7. LeMMA. For positive central elements x,y in A, x~y implies x=y.
Proor. Cf. [7, Theorem 3.5].

1.8. We want now to use the approximation theorem in [4, III, § 5].
We then ought to state and prove the Lemmas 1 to 5 for our algebra.
However, as we have a unit and ‘“range projections” in our algebra,
it is easily seen that the proofs work as well in our case.

Combining this with Lemmas 1.6 and 1.7 we obtain a faithful map @
from A+ into the positive part of the center of 4.

From the definition of ~ it follows that @ is a o-normal, finite, nor-
malized (@(1)=1), center-valued trace. Every center-valued trace ¥
with these properties will be constant on the equivalence classes of ~.
Thus, for x in A+ ‘

P(z) = YD) = Bx) (1) = D),

and we have finished the proof of Theorem 1.3.

2. The algebra of measurable operators.

In this section 4 will denote an MSC with unit, and F a subset of
the set of projections 4, of A. The idea is then to let F' act as the set
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of finite projections does in Berberian’s and Saité’s construction of the
algebra of measurable operators for an AW* algebra. Since any set of
orthogonal projections in an AW* algebra has a least upper bound in
the algebra, there is no reason, in the A W* case, to consider the situation
where we have ‘“‘null-sets”.

In the MSC case we cannot form uncountable sums of projections
inside the algebra and, roughly speaking, in this way divide the “null-

operators’ out, so we will assume that we have a subset NV of F represent-
ing the “null-sets”.

2.1. DEFINITION. A pair (F,N) of non empty subsets of 4, is called
an (%, 4") system if and only if

1) NcF,

2) e,feF = evfelF,

3)ecd,, feF,esf = ec€l,

4) ec A, feF,e~f = e€bF,

5) e,feN = evfelN,

6) ecd,,feN,esf = eelN,

7 ecd, feN,e~f = e€N,

8) ecd,, e<fu,funelF; fuifeN = eelN,

9) e,eN,e,te = ecN.
If (F,0) is an (&, A") system, F is said to be an F system.

We will now assume that 4 has an (£, A4") system (F,N).

2.2. DEFINITION. A sequence (e,),.y Of projections from 4 is called
an SDD (strongly dense domain) if and only if e, is increasing, (1—e,) € F
and inf(1—e,) € N.

2.3. DEFINITION. A pair of sequences (a,,,¢,) is called an EMO (essential
measurable operator) if and only if (e,) is an SDD, a, € 4 and a,e¢,=
s Op* e =a,*e, for nzm.

2.4. DeFINITION. Let  be in 4 and e a projection of 4. Then
z1[e] = N[(1—e)x].

2.5. LemMa. Let (z,,e,) be an EMO and (f,) an SDD. Then

In = € A xn—l [.fn]
28 an SDD.
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Proor. Put h,=e, A (x,¢,)2[f,]. Then &, =<e, and

(l_fn)xnhn = (l_fn)xnenhn =0
so b, <g,, but
0= (1 _fn)xngn = (l—fn)xnengn

80 g,<h, and g,=h,,.
Since

gn = €z A N[(l _fn)xnen] =€, A N[(1 —fn)xn+len]
=€, A N[(l _fn)xn+1] = €n+1 A N[(l _fn+1)xn+l] = Gn+1>

g, is increasing. We also get 1—g, € F' because
(1-9,) = (1—¢,) v R[(1=fp)x,e,] = (1—¢,)+R[(1 —fn)xnen] .
Put g=supg,. Then for a natural number k

ex(l—g)ey = inf, ex(R(1—fn)x,e,])e;
and for n=k,

L[ek(l —g)ek] é L[ek(R[(l _fn)xnen])ek]
< R[(l _fn)xnen] <1 _fn

so 8) in 2.1 gives L[e,(1 —g)e,] € N. Now let e=supe,. Then
L{(1-g)e] = L[(1—-g)e(1—g)] = sup, L{(1—g)ex(1—9)],

but as
L[(1-9)e,(1—9g)] ~ Llex(1—9)e,] € N,

9) in 2.1 gives that L[(1—g)e] € N. Finally

L(1-g)(1—e)]< (1—€) € N
and
(1—g) = L[(1—g)e] v L[(1-g)(1—e)] € N,

so the lemma is proved.
2.6. CoroLLARY. If (e,), (f,) are SDD, then (e, Af,) ¢s SDD.
Proor. Put z, =1 for all n.
2.7. CoroLLARY. If (f,) ts SDD and z is in A, then (x~1[f,]) s SDD.
Proor. Put 2z, =z; e, =1 for all n.

2.8. DeriniTION. EMO’s (2,,¢,), (¥n,2,) are said to be equivalent,
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and we write (z,,e,) = (¥,,2,) if and only if there exists an SDD (g,)
such that

Cndn = YnIn»  Tn*In = Yn*In -
2.9. LEMMA. = 8 an equivalence relation.
Proor. Follows from Corollary 2.6.

2.10. DerinITION. The equivalence classes for = are called measurable
operators MO, and the equivalence class of an EMO (z,,e,) is denoted
[%,,6,]. The set of all MO’s is denoted M(4,F,N).

2.11. TaeorEM. M(A,F,N) is an associative algebra with involution *
over the complex numbers with respect to the operations

[xn’en]+[yn’fn] = [xn"'ymen/\fn] ’
l[xn’en] = [Axn’en] >
[xnsen]*= [xn*’en] ’

[yn’f n] [xn!en] = [ynxmgn] ’
where

In = (eaAZ, 2 [fo]) A (faAyn*en]) -
Proor. Use Lemma 2.5 and Corollary 2.6.

2.12. LEMMA. Define I={xec A | Llx]e N}. Then I is a monotone
sequentially, and hence uniformly, closed twosided ideal tn A.

Proor. For z in A we have L[z]~ R[x] so the properties of N imply
that I is monotone sequentially closed and a twosided ideal in 4.

From [6, p. 317] we then obtain that the selfadjoint part I, of I
is uniformly closed, so I is uniformly closed.

2.13. LemMA. A/I 13 an MSC with unit and the canonical homomorphism
k is o-normal.

Proor. Let (z,) be a bounded increasing sequence of positive operators
in A/I, and let (u,) be selfadjoint operators in A4 such that k(u,)=x,.
Let oo =sup|jz, ||, =0,

Pn = L[(un—un—l)n] A L[(o‘l —un)—] ’
p Vn Pns Yn = (l—p)“n(l"P) .

Math. Scand. — 12
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Then
0y, = ... 29 SYpuu S ... Sl

and
k(yn) =Ty .

By continuing with this technique one obtains the lemma.

2.14. LEmMA. For x ¢n A and e, f in 4,,,
k(L)) = Lk(&]) and  klevf) = ke) v k(f).

ProOF. k is o-normal and L[x]=sup(1 — (1 —zz*/||z|?)*). Cf. [7, pp.8-9].
2.15. LEMMA. k(F) ts an F system.

Proor. The two first conditions follow from 2.14 and 2.13.

Suppose p,q € (4/I),, p~q, and g=Fk(e) for some ¢ in F. Choose u
in A such that k(u)*k(u)=q and k(u)k(u)*=p, write e=u*u+¢. Then
(1-L[zl)ee F,

(1—L[¢]) Ae = ((1—L[])ae)u*u((1 — L[])ae) ~ u((1—L[s])ae)u* = f,
feF and k(f)=p.

Let (¢,) be a decreasing sequence from k(F) with infq,=0, and let
p € (4/1), with p<q, for all n. Using the technique from 2.13 we can
find a decreasing sequence (f,) from F with k(f,)=g,. The proof just
before gives the existence of a sequence (e,) from F such that e,<f,
and k(e, ) =p. The o-normality of £ implies that inff, € N and k(A e,) =p.
Hence 8) in 2.1 implies that A,e, € N, so p=0 and k(F) is an & system.

2.16. THEOREM. The map K: M(A,F,N) > M(A[I,k(F),0) defined by
K([xmen]) = [k(xn):k(en)]
18 an isomorphism.
Proor. It is easy to verify that K is well defined and a homomorphism.
Suppose X =[z,,e,] is an MO and K(X)=0. Then
k(xnen) = k(xn)k(en) = K(X)k(en) =0,

so R[z,e,]e N and f=V,R[z,e,]e N. Hence (e,A(1—f)) is an SDD
and X=[z,,e,A(1—f)]=0. Thus it is proved that K is faithful.

For Y=[y,,p,] € M(A/1,k(F),0) we choose an SDD (e,) in 4 such
that k(e,) =p,, (2.13; 2.14; 2.15), and a sequence (z,) in 4 with k(z,) =y,.
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It is now clear that we can find fe N such that (x,,e,A(1—f)) is an
EMO and K([,,e,A(1—f)])=7Y.

3. The algebra M(A4, F, O).

In this section 4 will denote an MSC with unit and F an & system
in 4.

The theory for M(4,F,0) is analogous to the theory developed in
the papers [1], [2] and [12] by S. K. Berberian and K. Sait6, except for
the cases mentioned below.

3.1. Theorem 3.2 in [12] must be divided into the following two
theorems.

3.1.1. Let ¢ be a ¢-normal isomorphism of 4 onto an MSC B, then
there exists a unique extension @ of ¢ to a ¢-normal isomorphism of
M(A,F,0) onto M(B,p(F),0).

3.1.2. Let B be as in 3.1.1 and let G be an & system in B. If & is
a o-normal isomorphism of M(4,F,0) onto M(B,G,0), then D|4 is a
g-normal isomorphism of 4 onto B.

3.2. Let u be a unitary in 4 and let A(u) denote the C* subalgebra
spanned by u.

By ((A(u))s_a.) . we mean the monotone sequential closure of the real
part of A(u) in 4. By [11, p. 222] it follows that A(u)/™ defined by

A(u)s = (A(u)s.a.)sm+i(A(u)s.a.)sm

is the smallest MSC subalgebra of A containing . That A(u),™ is com-
mutative follows from [7, Lemma 2.1].

3.2.1. LEMMA. Let Q2 denote the spectrum of A(u),™ and let H and G be
closed disjoint subsets of £2. Then there exists an open and closed subset E
of 2 such that HS E and EnG=40.

Proor. Since 2 is normal we can find &, g € C(Q) such that k(H),g(G) < {1}
and hg=0. Taking E as the support of R[A] yields the lemma.

Now by writing 4 (u),™ instead of {u}"’ in the theorems of [2] and [12],
we only have to make the following few remarks on the validity of these
theorems in our case.

3.3. Theorem 6.4 of [12] is false, that is, M is not a Baer *ring in
general, but in Berberian’s formulation [2, Theorem 2.3], namely that if
4 is a Baer *ring, then M is too, the theorem is true here.
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3.4. Theorem 6.3 of [12] is true, but we want to give a shorter proof.
3.4.1. THEOREM. Let x € M. Then there exists exactly one partial isometry
w € M such that

z =wlz|, ww*=L[z], w*w = R[z].
Proor. Write |z|=[y,,e,] with y,20, y,e,=v,. Then

Yn = Ynln = leen ’

80 y,=|ve,|. Thus wze, is bounded, and has a polar decomposition
ze,=w,y, such that w,w,*=L[ze,] and w,*w,=L[y,]. For n=m
we have

WpYm = WplYmlm = WpYnlm = L€,6y = T, = Wy, Yy,

and (w, —w,,)Y,, =0, so (w,—w,)L[y,,]=0. Now [8, Corollary 5.2] gives
the existence of a partial isometry w such that

ww* = supw,w,*, w*w = supw,*w,
and wL[y,]=w,,. For each n we then obtain
ze, = WyYnly, = WYne, = W|Tle,,
80 z=w|z|. It is obvious that ww* = L[x] and w*w = R[x], but

w,w,* = L[xe,] = L[ze,x*] < L[xx*] = L[x],
and
wy*w, = Lly,] = Lllzle,l2|] = R[«],

80 ww* = L[] and w*w= R[x].

Suppose u is another partial isometry with the same properties as w,
and let v be the Cayley transform of |z|. Then u|z|=w|x| so u(l+v)=
w(1+v) hence

uL(14v) = wL(l1+v) and wuR[x] = wR[x],

which implies u=w.
3.5. Theorem 6.2 of [12] has to be divided into the following two.
3.5.1. THEOREM. If 1 is tn F, then M s regular.
Proor. [1, Corollary 7.1].

3.5.2. THEOREM. If M i3 regular, then 1 s finite.
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Proor. Suppose that there exists a partial isometry w such that
w*w=1 and ww* +1.

Define p, by p, = (w)*(w*)* for n € {0,1,2,...} and g, by ¢, =P, —Ppn_1
for n e {1,2,...}. Then (p,) is a decreasing sequence of equivalent pro-
jections, so it has an infimum ¢. The projections (g,) are pairwise
orthogonal and equivalent and 3¢, =1—gq.

Let  be the unitary in A defined by

u = exp(i(2—-m))g + 27 exp(i(n~t —))g,, -

Then (1 —wu) is invertible in 4 and x=4(1+u)(1 —u)-?! is positive. Since
M is regular and
R[x] = L[z] = L[1+u] =1,

it follows that z is invertible in M.
It is now easy to see that Theorem 6.1 of [12] and the construction of
u yield a contradiction.

3.6. In [2] it is proved, that if A is an MSC and =z, is an increasing
sequence of MO’s which is majorized by an MO y, then z=supz,, exists
in the algebra of measurable operators.

3.6.1. LEmmaA. Let (x,) be an increasing sequence wn M(A,F,0) for
which x=supw, exists in M(A,F,0), and let ye A. Then supy*z,y
extsts and supy*x,y=y*supzx,y.

Proor. (Cf. [7, Lemma 2.1].) The sequence (y*z,y) is majorized by
y*zy, so the existence of supy*z,y follows. Write y=3%_,1,%; where
u;, is unitary. Then

0= y*@x—=z,)y = 4Zt=1 [Ag|?up* (2 — 2, ) Uy

and the lemma follows.

3.6.2. THEOREM. Let (x,) be an increasing sequence in M(A,F,0) for
which x=supz, exists in M(A,F,0), and let ye M(A,F,0). Then

supy*z,y = y*supz,y .

Proor. Obviously y*xy 2supy*z,y==z. Since y € M, there exists an
SDD (e;) such that ye, € A for all k. The lemma then gives that

ec(y*zy—2)e, = 0,
80 (y*xy—z)te,=0.
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Lemma 4.5 in [12] then implies that z=y*ry, and the theorem is
proved.

3.7. In continuation of Section 9 of [1] we want to consider the mono-
tone sequential closure in M of a sub-MSC B of 4.

3.7.1. TuEOREM. If B is a sub-MSC of A with 1 € B, then M(B,BnF,0)
18 1somorfic to a subalgebra My of M such that M znA = B.

Proor. [1, Theorem 9.1].

3.7.2. DeriNiTION. Let B, be the real part of a sub-MSC B of A.
Then (Bj,,)™ is defined as the smallest real subspace of M,, which
contains the limit of every increasing sequence of elements in B,,
majorized by an element of M, .

The monotone sequential closure of B in M is denoted by B/ and
defined by BM= (Bs.a,.)sM'}'i(Bs.a.)sM'

3.7.3. THEOREM. Under the assumptions of 3.7.1 we have BM=My,
where M g 18 constructed as ¢n [1, Theorem 9.1].

Proor. Let b, be an increasing sequence of positive elements from
B majorized by an element from M. Then Y =supb, exists and

(1+ Y)-! = inf,(1+b,)1e B.

If u is the Cayley transform of 1+ Y, then —u* is the Cayley transform
of (1+Y) 1, s0uecB,hence 1+ Y eMgzgand Y € M.

Thus we have proved that BM< M, and will finish the proof by
showing that the positive part Mg+ of My is contained in B,

Let x € Mg*+. Then = can be written [z,,e,] with z,=0, z,e,=2,,
where z,,¢, € B. Since ze,=x,¢,=¢,%,

x, = ate,at <z,
Theorem 3.6.2 then gives the result.

3.7.4. THEOREM. Let B be a sub-MSC of A. Then B is a selfadjoint
subalgebra of M with BMnA =B.

Proor. For any sequence (z,,) of elements of B/ there exists a projec-
tion ¢ € B such that ex,=z,e=2, for all n. Verifying first that if (z,)
is a monotone absolutely majorized sequence, then
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L[limz,] £ V,, L[2,]€ B,

one obviously obtains the existence of such an e. By standard technique
it follows that e B;Me=(eBe) M, but taking eBe as a subalgebra of eAe,
and using that M(ede,eFe,0) can be identified with eMe [1, Theorem
9.4], we infer from Theorem 3.7.3 that eB/Me is a self-adjoint algebra.
This completes the proof.

3.8. THEOREM. T'here exists a one-to-one correspondence between the MSC
tdeals I of A and the monotone sequentially closed ideals J of M. The
correspondence is obtained by

J=MM I=Jnd.

Proor. Simple but not very short.

4. Integration.

In accordance with Section 2 of this paper we shall only consider
the case where A4 is an MSC with unit, ¢ a o-normal faithful semifinite
trace on 4, and F an & system containing the set {p € 4, | p(p) <oo}.
We let m denote the defining ideal of ¢ and suppose that ¢ is extended
to m. As usual,

mt=A4+tnm; mt={xed| a*rem}.

For zem, ¢(-x) is a functional on A with normg(|z|), and if xem*
then ¢(-x) is positive, o-normal, and the family of all such functionals
is separating, so 4 is a Baire *algebra.

4.1. LEMMA. Let x € M, 220, and let (e,), (9,) be SDD with g,<e,,
e,xe, € A and g,xg, € m*. If sup,p(g,xg,) <, then

e,xe, em* and sup,p(e,re,) = sup,pd,rd,) -
Proor. Put x =supe(g,2g,). Then
& 2 ¢(ga2gy) = patg,at) 2 p(at(gyae,)at),
80
« 2 sup, p(et(g,ae)at) = p(ate.at) = plexey)

but g(e,xze,)=gp(xte, zt) 2 p(atg,zt) = p(g,29,), and the lemma follows.

4.2, DEFINITION. Let 2 € M and 20. If there exists an SDD (e,)
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with e, xe, € m* and supg(e,re,) =& < oo, then x is said to be integrable
with integral «.

4.3. ProprosITION. Let x € M, x>0, be integrable with integral «. Then
for each SDD (e,) with e,xe, € A, we have x =supgl(e,xe,) and «=0.

Proor. Use 4.1.

4.4. DerFiNITION. L't is defined as the set of all positive integrable
operators and L? for 1=p<o by

Lr = {xe M| |x|p e L}+}.

It is easy to verify that LP+=L?P n M+ for 1 <p<oo is an invariant
linear system (Definition 1.3 in [9]), so L? becomes a subspace of M,
and for x € 4, y € L? we have xy € L?. For L' we get that there exists
a unique extension of ¢ to L. In the following we therefore suppose
that ¢ is defined on L.

We will now give the theorem on which we base the proofs of the
integration theory.

4.5. LEMMA. Let x € mt and e=R[x]. Then there exists an increastng
sequence (e,) of projections in m such that e=supe,,.

Proor. Put e, =R[(x*x—e[n)*], and the lemma follows.

4.6. THEOREM. Equipped with the inner product (xly)=p(y*zx), mt is
an achieved Hilbert algebra. Let H be the completion of m* as Hilbert space,
and let D(x) for x € A be the closure of the operator y — xy defined on mt.
Then @ is a o-normal ssomorphism of A onto a concrete Batre* algebra
A on H.

Proor. Let € mt, and choose a sequence (en):having the properties
of Lemma 4.5. Then ze, € m and

(- e,z —ze,) = p(z*z) —p(x*we,) — ple, 2*z) + ple, x*xe,)
= g(|2%) — p(lz|enle]) = p(lzl(e—e,)l])

so by the g-normality of ¢ it follows that (m#)2=m is dense in mt. By
[4, I. 6.2 Theorem 2] it then follows that mt is a Hilbert algebra, and
that @ is a o-normal homomorphism. It has already been mentioned
that the functionals ¢(-y), y € m*, are separating. If zisin 4 and @(x)=0,
we get for each y e m+
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0 = (D) yilyt) =p(zy) ,

and we can conclude that =0, so @ is a o-normal isomorphism of 4
onto &(4)=%A. Theorem 1 of [4, I. 6.2] implies, that @(mt) (the weak
closure of @(m?)) is a semifinite von Neumann algebra on H. Since ®(m?)
is a twosided ideal in A, @(mt) is a twosided ideal in the von Neumann
algebra %, but 1 € @(mt), so @(mt) =A. Let w be the canonical trace on NA.
Then if z,y € m*, we have

w(D(y*) (@) = (zly) = p(y*2) ,

and if e is a projection in m, then w(P(e))=p(e) < oo, so D(e) is o-finite
with respect to 2.

Suppose z is a bounded element of H [4, I. 5. Definition 2.3] and z=xz*
and let U, be defined as in [4, I. 5]. Then Proposition 4 of [4, I. 5] gives
the existence of a sequence (z,), z, € m¥, such that |x—=,| -0,
sup ||P(x,)|| < o, and D(x,) converges strongly to U,.

Lemma 4.5 applied to A, and the remark just before show that
R[z,]=e, is the countable supremum of o-finite projections. Hence
e, is o-finite, e=V,,_ e, is o-finite and e e A. It is then obvious that
U,e=U,, so a theorem due to Kadison [6, p. 322-23] gives the existence
of a selvadjoint z in 9 such that

U,=U,e =zec¥.

Now take y=®-1(U,) € A and suppose y ¢ mt. Then, since ¢ is semi-
finite, for each » € N we can choose z, € m such that z, <y*y and

n < @(z,) = w(P(z,) £ w(Py*y)) = w(U*V) < o,

so y € m¥, and m? is achieved.

4.7. COROLLARY. The trace induced by @ on A can be extended to a normal
semifinite faithful trace w on A and

{fxeA+| wr)<oo} = {xe WA+ | pod-(z)<o}.

4.8. Let E be the set of metrically finite projections in 4, E=
{ped,|p®) <o} Then E is an F system and M(4,E,0)c M(A,F,0).
The definition of integrability implies that L» < M(4,E,0) for 1 <p<oo.
If x=[z,,e,] is in M(4,E,0), then 1—®P(e,) is metrically finite with
respect to the faithful trace w, so 1—®(e,) is finite with respect to .
According to Lemma 1.4 of [9], &(z,e,) converges n.e. to a measurable
operator X affiliated with %. Suppose z=[z,,f,] with 1 —f, € E. Then
b(z,f,) converges n.e. to a measurable operator Z affiliated with 9, but
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obviously Z&d(e, Af,)=XD(e, Af,), so Z and X agree on a strongly dense
domain, hence Z=X [13, Corollary 5.3]. It is then possible to extend @
to a faithful homomorphism of M(4,E,0) into the algebra of measur-
able operators affiliated with 9. (Cf. [9, Theorem 1].)

4.9. LemmA. For x € M(A,E,0) we have D(|z|*)=|D(x)|*
Proor. Corollary 1.1 of [9].

4.10. LemmA. The smage of LY(A,p) by D is LA, H,w) (Segal’s nota-
tion), and wd(x)=¢p(x) for x € L(A4,p).

Proor. It is enough to consider the case where X e LY, H,w)*.
Then z=[rAd(E;) and w(l—E,)<c for >0 [9, 2.2], so 1-E,=
sup(l—£E,,,) is o-finite and an element of 2.

Using the theorem in [6, p. 322-23] again and defining X,=XE, =
X(E,—-E,) we get X,,,E, € A. Now

y = [P7UX,), P UE,)] € M(4,E,0) and 9P(y) =X.
On the other hand,
p(y) = supg(ye,) = supw(P(ye,)) = supw(z,) = w(X).

For 1=p<oco and x € LP(4,p) we define as usual |jz|,=¢(|z[?).

4.11. THEOREM. For 1 £ p < oo the restriction of @ to LP(A) is an tsometry
of L?(A4) onto L*(UA, H,w).

Proor. For « € LP(A) Lemmas 4.9 and 4.10 give that
w(|P()|?) = w(P(|z[?)) = ¢(|z[?),

so @ is an isometry, and an argument similar to that used in 4.10 shows
that @ is onto.

4.12. THEOREM. If (2,) 83 an increasing sequence of positive operators in
Lr, 1 = p < oo, such that {||z,|,} ts bounded, then there exists an xeLP(A)*
such that x=supywx, and ||x—x,|, >0 as n - co.

Proor. Since @ is a * homomorphism, it preserves order, so by using
4.11 and Theorem 9 of [9], we get the existence of x € L?(4)* such that
&(x)=supP(z,) and ||D(x)—D(x,)|l, -~ 0. Hence y=sup,x, exists and
D(x,) < D(y) < D(x), which gives the theorem.
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We will now proceed to the study of the Radon-Nikodym theorem.
Let 7 denote the universal o-normal representation of 4 (cf. [8]), E the
corresponding Hilbert space, and put B=m(A4). Then there exists
exactly one normal representation 2 of B such that @ =00 IT [8, Theorem
2.7]. Corollary 2 of [4, I. 4, Théoréme 2] implies that 2(B)=%. Finally
let u be the normal trace on B defined by u=woQ.

4.13. LEMMA. Let @ be the support of 2 and let y € II(m*). Then Gy=y.

Proor. Let u, be the positive normal functional on B defined by
py(0)=pu(yb). Then the support of u, is GL[y]. Suppose now that
Liy](1—@) =0 and choose £ +0, £ € L{y](1—G)E; then for the support
g of w, we have g < L[y](1 —G). Since g and GL[y] are o-finite with respect
to B, [6] implies

(Bsa)(g+GLIY]) = (Byo)g+GLIy]) -
So there exists p € B, such that pg=g and pGL[y]=0. Now

0 = u,(p) = wQ(py)) = w(Qpy)),

so py=0 since Q2|B is faithful, and we have got a contradiction.

4.14. THEOREM. Let f be a positive o-normal functional on A. Then f
can be written as a sum g+ h, where g has the form ¢(-z) for an x in L*(4,¢)*
and h is a positive g-normal functional on A with the property h(y)=0
Jor all y € m+.

Proor. Lifting f to B, f becomes a normal positive functional 3w,
with &, € B, 3||§,l2<oco. Define

g' = z wGEn a'nd h, = z w(l_men .

Then Lemma 4.13 gives that A'(y)=0 for y € II(m*). Since G is the
support of 2,9 =g'0Q-1 is a well-defined normal functional on A.
Therefore Corollary 3.1 in [9] gives the existence of X in LY, H,w)*
such that ¢’ =w(-X). Let », g on 4 be defined by

h="Holl, g=g'od.

Then it is easy to verify that f=g+#% and that h is positive o-normal
with the desired property. If z=@-1(X), then z e LY(4,¢)*, and for
y € A we have yz € L'(4,¢) and ¢(yz) =w(P(y)~ X)=g(y) so the theorem
is proved. (Here ~ denotes strong product cf. [13].)
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5. Tensorproduct of Baire* algebras.

5.1. DEFINITION. Let 4 and B be two concrete Baire* algebras acting
on the Hilbert spaces H and K. We define the tensor product 4 7' B
as the monotone sequential closure of the algebraic tensor product
A ® B on the Hilbert space tensor product H @"K.

ReMARK. From Theorem 1 in [11] it follows that A Q7B is a C*
and hence a Baire* algebra.

5.2. TEEOREM. Let A, B be concrete Baire* algebras and U, B the universal
a-normal representations. Then there exists a o-normal isomorphism of
A Q7 B onto AR B.

Proor. As usual let 4, B be the weak closures of 4 and B and 4 QB
the weak closure of the algebraic tensor product 4 ® B. Theorem
2.7 of [8] gives the existence of normal homomorphisms @ of % onto 4
and ¥ of B onto B such that the restrictions @|% and ¥|B are o-normal
isomorphisms of % onto 4 and B onto B. If #R°Y is the canon-
ical normal homomorphism of ARV onto A®°B, the restriction
PRV IARTB is a g-normal homomorphism of ARTB onto 4 QY B,
and the theorem will be proved when it is shown that ® QV|ART B
is faithful. Suppose that x € ART'B and D R°¥P(z)=0. Then by using
Tomiyama’s Fubini maps [14, Theorem 1] the theorem follows as
sketched below. If ¢ €%, and 920, then R, is positive and normal.
Hence B, maps A®; B into B. For fe A, we have

YR, o(%) = RADR¥(z)) = 0.

Since Y| is faithful and R, ,(x) € B, we have R, ,(x)=0 for fe 4,;
but fo®(L,(x))=y(R;,0(®))=0 for ye B, so L(x)=0 for all y € By,
and we can conclude that z=0.

5.3. In the following A4 (resp. B) is a Baire* algebra with unit and a
semifinite o-normal faithful trace ¢ (resp. w). Let m (resp. ») denote
the definition ideal of ¢ (resp. w), and let @ (resp. 2) be the induced
representations. Then setting A=P(4), B=02(B) and using Proposition
9 of [4, I. § 5] and Theorem 4.6 we obtain

AR < AR'B = U(m) @ U(n}) = U(miQnt) < ART'SB .
5.4. LEMmaA. Let « be the canontcal trace on %(mt @nt). Then
bt = {ze UmtQ@n¥)* | x(z)< oo}
18 contained in AR B.
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Proor. If x € h*, then  has the form U, for some bounded y in the
completion of m*@n? as a Hilbert space. The arguments given in the
proof of Theorem 4.6 together with the remarks of 5.3 show that
ze ARy B.

5.5. CorOLLARY. A Q' B has a canonical semifinite o-normal faithful
trace v such that n(a @b)=gp(a)w(bd) for a e m,ben. Let II be the repre-
sentation induced by n. Then II(A ®} B) ts spatial ssomorphic to A QT B.

Proor. Theorem 5.2 gives that there exists a faithful g-normal repre-
sentation ¥ of 4 Q7' B onto AR, B such that

YO, a;®b) = D7, Dla;) @LQ(b;) .

Define then # =0 ¥-1. If h is the definition ideal of « and % the defini-
tion ideal of x, it is obvious that ¥ induces an isometric isomorphism
of the completion of A* onto the completion of k* as Hilbert spaces, so
the corollary follows.

5.6. THEOREM. There exists a continuous linear map
& LMA®F B, n) > LY(B,w)
such that w(&y(x))=n(x) for x in L\ (A Q7T B, n).

Proor. Consider the diagram
LYA®™B, n) —2— LII(A @™ B), no II-Y) —2— L(AQT B, «)
—O L (Ut @nd), &) — 2 LHUMA), wo Q1) — s LY(B,w) .

Theorem 4.11 tells us that (1) and (4) are isometries. By Corollary 5.5,
(2) is an isometry. By the Remark 5.3, (3) is an isometry. £ is a con-
tinuous linear map such that for x € LY{%(m!@nt), «) we have x(x)=
woR-Y£ (x)). The existence of £ is shown in [13, Corollary 22.1].

Define &, =(4)o £;0(8)0(2)o(1). Then it is clear that & has the
desired properties.

REFERENCES

1. S. K. Berberian, Regular ring of a finite AW*-algebra, Ann. of Math. 65 (1957), 224-239.

2. S. K. Berberian, 4 note on the algebra of mesurable operators of an AW*-algebra.
Téhoku Math. J. 22 (1970), 613-618.

3. E. B. Davis, The structure of Z*algebras, Quart. J. Math. Oxford Ser. 20 (1969), 351-
366.



190 ERIK CHRISTENSEN

4

5
6

10
11

12

. J. Dixmier: Les algébres d’opérateurs dans Uespace Hilbertien, II Edition, Gauthier—
Villars, Paris, 1969.

. J. Dixmier, Les C* algébres et leurs représentations, Gauthiers—Villars, Paris 1964.

. R. V. Kadison, Unitary invariants for representations of operator algebras, Ann. of
Math. 66 (1957), 304-379.

. R. V. Kadison and G. K. Pedersen, Equivalence in operator algebras, Math. Scand.
27 (1970), 205-222.

. E. T. Kehlet, On the monotone sequential closure of a C* algebra, Math. Scand. 25
(1969), 59-70.

. T. Ogasawara and K. Yoshinaga, 4 non commutative theory of integration for operators,
J. Sci. Hiroshima Univ. Ser. A 18 (1954-55), 311-347.

. G. K. Pedersen, Measure theory for C* algebras I1I, Math. Scand. 25 (1969), 71-93.

. G. K. Pedersen, On weak and monotone g-closures of C* algebras, Comm. Math. Phys.
11 (1969), 211-226.

. K. Baitd, On the algebra of measurable operators for a general AW*-algebra, T6hoku
Math. J. 21 (1969), 249-270.

13. I. E. Segal, 4 non commutative extension of abstract integration, Ann. of Math. 57

14

(1953), 401-457.
. J. Tomiyama, On the tensor products of von Neumann algebras, Pacific J. Math. 30
(1969), 263-270.

UNIVERSITY OF COPENHAGEN, DENMARK



