UNIFORM APPROXIMATION ON MANIFOLDS

JOHN ERIK FORNÆSS

1. Introduction.

Suppose that M is a real C^1 -manifold of dimension m, and that Φ is a family of complex-valued C^1 -functions on M. Then the exceptional set, $E(\Phi)$, is the set

$$\{x \in M ; df_1 \land \ldots \land df_m(x) = 0, \forall (f_1, \ldots, f_m) \in \Phi^m\}$$
.

We fix a compact subset X of M, and we shall often write E instead of $E(\Phi) \cap X$.

Let $A \subseteq C(X)$ denote the closed Banach-algebra generated by the restriction to X of the elements of Φ . Assume that A separates points in X and that $M_A = X$, where M_A is the maximal ideal space of A. It is an open problem, see [1, pp. 348–349], if A includes all continuous functions on X which vanish identically on E. Michael Freeman proved this in [2] under the additional hypothesis that both M and the functions in Φ are real-analytic. In this work we will solve the problem if M and the functions in Φ are of class C^r , for some sufficiently large real r.

Our result will be proved via the following corollary of theorem 3.1: If Σ is a C^r -manifold in C^n without complex tangents (see [4] for the precise meaning of the last term) and $K = \sigma(f_1, \ldots, f_n)$ is the spectrum of some members of A, then all continuous functions on K which vanish on $K - \Sigma$ operate on A.

The proof will follow by adaptation of a technique developed in the work of Hörmander and Wermer [4].

2. Fundamental constructions.

Assume that $r \ge 1$ and that Σ is a closed, real C^r -sub-manifold, without complex tangents, of an open set Ω in \mathbb{C}^n . Let N_1 and N_2 be some open sets in \mathbb{C}^n , $\overline{N}_2 \subset N_1$.

The Euclidean distance between the point x and the set A will be denoted d(x,A).

Lemma 2.1. Suppose that $u \in C^r(\Omega \cup N_1)$ is holomorphic in N_1 . Then there exists a $v \in C^r(\Omega \cup N_2)$ with v = u on $\Sigma \cup N_2$ and such that:

Received February 22, 1971; in revised form April 4, 1972.

For every compact $F \subseteq \Omega \cup N_2$ and every $\eta > 0$ we can find a $\delta > 0$ with the property:

If
$$z \in F$$
 and $d(z, \Sigma) < \delta$, then $|\overline{\partial}v(z)| \leq \eta d(z, \Sigma)^{r-1}$.

PROOF. This lemma is a restatement of lemma 4.3 in [4].

The next result is similar to theorem 3.1 in [4]. However, since the proof is a bit different, we will carry it out in some detail.

Consider Σ , Ω , N_1 and N_2 as above with r=1. Suppose A is a commutative Banach algebra with unit, and let f_1, \ldots, f_n be elements of A. Define K to be the joint spectrum $\sigma(f_1, \ldots, f_n)$.

LEMMA 2.2. Assume $K - N_2 \subseteq \Sigma$. Then there exist real numbers $\varepsilon_0 > 0$ and $t \in \langle 0, 1 \rangle$, elements $f_{n+1}, \ldots, f_m \in A$, a compact set $F \subseteq \Sigma$, and, for every $\varepsilon \in \langle 0, \varepsilon_0 \rangle$, a domain of holomorphy $\omega_{\varepsilon} \in \mathbb{C}^m$ such that

(i)
$$\sigma(f_1,\ldots,f_m) \subset \omega_{\varepsilon} \subset \mathbb{C}^n \times \{|(z_{n+1},\ldots,z_m)| < 1/t\},$$

(ii) if $z \in \mathbb{C}^m$ and

$$d((z_1,\ldots,z_n,\varepsilon z_{n+1},\ldots,\varepsilon z_m),\sigma(f_1,\ldots,f_n,\varepsilon f_{n+1},\ldots,\varepsilon f_m)) < t\varepsilon$$

then $z \in \omega_s$,

(iii) if
$$z \in \omega_{\varepsilon} - (N_1 \times \mathbb{C}^{m-n})$$
, then $d((z_1, \ldots, z_n), F) < \varepsilon/t$.

PROOF. Let N_3 be an open set such that $\overline{N}_2 \subset N_3 \subset \overline{N}_3 \subset N_1$. By applying the proof of theorem 3.1 in [4], we get:

An open set V such that $K \cap (\overline{N}_3 - N_2) \subset V \subset N_1$, real numbers $\varepsilon_0 > 0$ and $t_1 \in \langle 0, 1 \rangle$, a compact set $F \subset \Sigma$, and, for every $\varepsilon \in \langle 0, \varepsilon_0 \rangle$, a domain of holomorphy v_{ε} such that

(i)
$$(\sigma(f_1,\ldots,f_n)-N_2)\cup V\subset v_s$$
,

(ii) if $z \in \mathbb{C}^n$ and

$$d\big((z_1,\ldots,z_n),\sigma(f_1,\ldots,f_n)-N_2\big)\;<\;t_1\varepsilon\;,$$

then $z \in v_{\varepsilon}$,

(iii) if
$$z \in v_{\varepsilon} - N_1$$
, then $d((z_1, \ldots, z_n), F) < \varepsilon/t_1$.

To proceed, we must now study $K \cap \overline{N}_2$. This was done in [4] by imposing a holomorphic convexity condition on this part of K. Instead, we will use the fact that K is the spectrum of elements from a Banach algebra; therefore the well known Arens-Calderón theorem applies here.

Obviously, $V_1 = (\mathbb{C}^n - \overline{N}_3) \cup V \cup N_2$ is an open cover of K. Consequently, we can find an open holomorphically convex set $U \subseteq \mathbb{C}^m$ and elements $f_{n+1}, \ldots, f_m \in A$ such that

$$(2.2) \sigma(f_1,\ldots,f_m) \subset U \subset V_1 \times \mathbb{C}^{m-n}.$$

We can now define the required ω_{ε} for every $\varepsilon \in \langle 0, \varepsilon_0 \rangle$. Define

$$O_1 = (\mathsf{C}^n - \overline{N}_2) \times \mathsf{C}^{m-n}$$
 and $O_2 = N_3 \times \mathsf{C}^{m-n}$.

Since $O_1 \cup O_2 = \mathbb{C}^m$, it is enough to specify $\omega_{\epsilon} \cap O_1$ and $\omega_{\epsilon} \cap O_2$. We define

- (i) $\omega_s \cap O_1 = (v_s \times \mathsf{C}^{m-n}) \cap U \cap O_1$,
- (ii) $\omega_{\bullet} \cap O_{\circ} = U \cap O_{\circ}$.

Now we must prove that (i) and (ii) agree on $O_1 \cap O_2$. It suffices to prove that $U \cap O_1 \cap O_2 \subset v_* \times \mathbb{C}^{m-n}$.

Since

$$U \cap O_1 \cap O_2 \subseteq (V_1 \cap (N_3 - \overline{N}_2)) \times \mathbb{C}^{m-n}$$

by (2.2) and since $(V_1 \cap (N_3 - \overline{N}_2)) \subset V$ by the definition of V_1 , we have

$$U \cap O_1 \cap O_2 \subset v_s \times \mathbb{C}^{m-n}$$

by (i) in (2.1).

It is easy to check that (i), (ii), and (iii) of the lemma now hold, if we choose t > 0 small enough.

By applying a technique introduced by Nachbin in [5], we shall now determine a class of mappings of a manifold into C^n . More precisely, let M be a k-dimensional real C^r -manifold, $r \ge 1$. Suppose X is a compact subset of M. Assume further that $\Phi \subset C^r_{\mathsf{C}}(M)$ and separates points in X. Let E denote the exceptional set $E(\Phi) \cap X$.

LEMMA 2.3. For every compact set $X_0 \subseteq X - E$ we can find an open neighbourhood V of X_0 , a finite number of functions, $f_1, \ldots, f_n \in \Phi$, and an open $\Omega \subseteq \mathbb{C}^n$ such that

(i) $(f_1, \ldots, f_n)(V)$ is a closed C^r -submanifold of Ω of dimension k and without complex tangents, and

(ii)
$$(f_1,\ldots,f_n)(X-V)\subset \mathbb{C}^n-\Omega$$
.

PROOF. Choose a finite number of functions $f_1, \ldots, f_n \in \Phi$ and an open neighbourhood V of X_0 with $E(\{f_1, \ldots, f_n\}) \cap V = \emptyset$. It follows from the inverse mapping theorem that the multiple function $(f_1, \ldots, f_n) \colon M \to \mathbb{C}^n$ is locally 1-1 on V. Obviously, the set

$$\{(x,y) \in (X_0 \times X_0) - \Delta ; f_i(x) = f_i(y), \forall i = 1,...,n\}$$

is a compact subset of $X_0 \times X_0$, where Δ denotes the diagonal in $X_0 \times X_0$. Consequently, by adding some more functions if necessary, we may assume that $\{f_1, \ldots, f_n\}$ separate points in X_0 . Shrinking V if necessary, we then get that (f_1, \ldots, f_n) is 1-1 on \overline{V} and that \overline{V} is compact.

Since Φ separates points in X, we can also suppose, after further modifications, that $(f_1, \ldots, f_n)(X - V)$ and $(f_1, \ldots, f_n)(V)$ are disjoint.

The choice $\Omega = \mathbb{C}^n - (f_1, \dots, f_n)(X - V)$ finishes the proof.

3. Approximation theorems.

Let X be a compact Hausdorff space, and let C(X) denote the Banach space under the supremum norm of continuous complex-valued functions. The notation $A \propto C(X)$ means that A is a closed linear subspace which is closed under pointwise multiplication, separates points and contains the constant functions.

If K is a compact subset of \mathbb{C}^n , then A(K) is defined to be the class of continuous, complex-valued functions on K which can be uniformly approximated on K by functions holomorphic in a neighbourhood of K.

Theorem 3.1. Suppose A
otin C(X), where X is a compact Hausdorff space. Let Σ be a closed k-dimensional submanifold of an open set $\Omega \subseteq \mathbb{C}^n$, without complex tangents, and of class C^r , $r = \frac{1}{2}k + 1$. Choose $f_1, \ldots, f_n \in A$ and define $K = \sigma(f_1, \ldots, f_n)$, $K_0 = \overline{K - \Sigma}$.

If
$$u \in C(K)$$
 with $u_{|K_0} \in A(K_0)$, then $u \circ (f_1, \ldots, f_n) \in A$.

REMARK. We can replace the condition $r = \frac{1}{2}k + 1$ with $r = \max\{\frac{1}{2}k, 1\}$, but the proof will then be more involved. More specifically, we need a stronger version of lemma 2.2.

PROOF OF THEOREM 3.1. Evidently, we may assume that $u \in C^r(\Omega \cup N^1)$ for some open neighbourhood N_1 of K_0 , and also that u is holomorphic in N_1 . We will further suppose that u has been modified as described in lemma 2.1. If N_2 is chosen as an open set with $K_0 \subseteq N_2 \subseteq N_1$, we can apply lemma 2.2.

With notations as in lemma 2.2, we will define

$$\omega'_{\varepsilon} = \{(z_1, \ldots, z_n, \varepsilon z_{n+1}, \ldots, \varepsilon z_m) ; (z_1, \ldots, z_m) \in \omega_{\varepsilon} \},$$

and also

$$v_{\mathfrak{s}}: \ \omega'_{\mathfrak{s}} \to \mathsf{C} \ \ \mathrm{by} \ \ (z_1, \ldots, z_m) \mapsto u(z_1, \ldots, z_n) \ .$$

Condition (iii) in lemma 2.2 ensures that v_{ε} is well-defined in ω'_{ε} for all small enough $\varepsilon > 0$.

With this notation, lemma 2.2 says:

(i)
$$\sigma(f_1,\ldots,f_n,\varepsilon f_{n+1},\ldots,\varepsilon f_m) \subset \omega'_{\varepsilon} \subset \mathbb{C}^n \times \{|(z_{n+1},\ldots,z_m)| < \varepsilon/t\};$$

(ii) if $z \in \mathbb{C}^m$ and $d((z_1, \ldots, z_m), \sigma(f_1, \ldots, f_n, \varepsilon f_{n+1}, \ldots, \varepsilon f_m)) < t\varepsilon$, then $z \in \omega'_s$,

(iii) if
$$z \in \omega'_s - (N_1 \times \mathbb{C}^{m-n})$$
, then $d((z_1, \ldots, z_n), F) < \varepsilon/t$.

Then proceeding exactly as in the proof of theorem 4.1 in [4], we obtain a function v'_{ϵ} which is holomorphic in ω'_{ϵ} and which satisfies

$$||v'_{\varepsilon} - v_{\varepsilon}||_{\omega'_{\varepsilon}} \to 0$$
 as $\varepsilon \to 0$.

Then, since holomorphic functions operate on A,

$$v'_{\varepsilon} \circ (f_1, \ldots, f_n, \varepsilon f_{n+1}, \ldots, \varepsilon f_m) \in A$$
.

Since $v_{\varepsilon} \circ (f_1, \ldots, f_n, \varepsilon f_{n+1}, \ldots, \varepsilon f_m) = u \circ (f_1, \ldots, f_n)$, the completeness of A implies $u \circ (f_1, \ldots, f_n) \in A$.

We are now able to prove a generalization of a result by Freeman [2].

Theorem 3.2. Let M be a k-dimensional real manifold of class C^r , $r=\frac{1}{2}k+1$. Suppose that $\Phi \subset C^r(M)$ separates points on a compact subset X of M. Define $E=E(\Phi)\cap X$ and A= the sup normalgebra in C(X) generated by Φ . If $M_A=X$, then

$$A \supset \{g \in C(X); g_{|E} \equiv 0\}.$$

PROOF. Choose any compact subset $X_0 \subseteq X - E$ and use lemma 2.3. It follows from theorem 3.1 that the family

$$\{g \in A \cap C_{\mathbb{R}}(X) ; g_{|E} \equiv 0 \text{ and } 0 \notin g(X_0)\}$$

is non-empty and separates points in X_0 . The theorem now is a consequence of Stone-Weierstrass.

REFERENCES

- 1. F. T. Birtel, Function algebras, Scott-Foresman & Co., Chicago 1966.
- M. Freeman, Uniform approximation on a real analytic manifold, Trans. Amer. Math. Soc. 143 (1969), 545-553.
- 3. L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math. 113 (1965), 89–152.
- L. Hörmander and J. Wermer, Uniform approximation on compact sets in Cⁿ, Math. Scand. 23 (1968), 5-21.
- L. Nachbin, Sur les algèbres denses de fonctions differentiables sur une variété, C.R. Acad. Sci. Paris Sér. A. 228 (1949), 1549–1551.