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UNIFORM APPROXIMATION ON MANIFOLDS

JOHN ERIK FORNASS

1. Introduction.
Suppose that M is a real C'-manifold of dimension m, and that @ is

a family of complex-valued C'-functions on M. Then the exceptional sef,
E(D), is the set

{xeM; dfia... Adf,()=0, V(fy,....fm) € P"}.

We fix a compact subset X of M, and we shall often write E instead of
E(@P)nX.

Let A<C(X) denote the closed Banach-algebra generated by the
restriction to X of the elements of @. Assume that 4 separates points
in X and that M ,=X, where M, is the maximal ideal space of A4.
It is an open problem, see [1, pp. 348-349], if 4 includes all continuous
functions on X which vanish identically on E. Michael Freeman proved
this in [2] under the additional hypothesis that both M and the functions
in @ are real-analytic. In this work we will solve the problem if M and
the functions in @ are of class C7, for some sufficiently large real r.

Our result will be proved via the following corollary of theorem 3.1:
If X is a Cr-manifold in C* without complex tangents (see [4] for the
precise meaning of the last term) and K =o(f,...,f,) is the spectrum
of some members of A4, then all continuous functions on K which vanish
on K —2X operate on 4.

The proof will follow by adaptation of a technique developed in the
work of Hormander and Wermer [4].

2. Fundamental constructions.

Assume that = 1 and that X is a closed, real C"-sub-manifold, without
complex tangents, of an open set 2 in C* Let N, and N, be some open
sets in C*, N, N,.

The Euclidean distance between the point x and the set 4 will be
denoted d(x,A).

Lemma 2.1. Suppose that w e C"(QUN,) is holomorphic in N,. Then
there exists a v € CT(QUN,) with v=u on ZUN, and such that:
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For every compact F<QUN, and every >0 we can find a §>0 with
the property:
If ze F and d(z,X) <9, then [ov(z)| <7 d(z,2)"-L.

Proor. This lemma is a restatement of lemma 4.3 in [4].

The next result is similar to theorem 3.1 in [4]. However, since the
proof is a bit different, we will carry it out in some detail.

Consider X, 2, N, and N, as above with r=1. Suppose 4 is a commu-
tative Banach algebra with unit, and let f,...,f, be elements of 4.
Define K to be the joint spectrum o(f;,...,f,)-

Lemma 2.2. Assume K —N,<ZX. Then there exist real numbers g,>0
and t € {0,1), elements f, .1, ... fm € 4, a compact set F <X, and, for every
€ €40,¢&y), a domain of holomorphy w, € C™ such that

(1) o(fu- - o fn) 0, C* X {|(Zpr1s - - -5 200)| <18},
(ii) ¢f 2€ C™ and

A((Z15- + 120820115+ 2 €20),0(f1s - « s frr&fnsns e« 8fm)) < e,

then z € w,,
(iii) of z € w,— (Ny x Cm"), then d((2y,. . .,2,),F)<¢t.

Proor. Let N, be an open set such that N,cN,cN,=N,. By
applying the proof of theorem 3.1 in [4], we get:

An open set V such that Kn(N,;—N,) <V € N,, real numbers & >0
and ¢, € {0,1), a compact set F'<ZX, and, for every ¢ € (0,¢y), a domain
of holomorphy v, such that

() (o(frs. . sfn)—Ny)uV ey,
(ii) if z € C* and

(2.1) A((21+ - +,2,),0(f1s- - oo fn) —Np) < e,

then zewv,,
(iii) if z ev,— Ny, then d((zy,...,2,),F)<eft,.

To proceed, we must now study KnN,. This was done in [4] by imposing
a holomorphic convexity condition on this part of K. Instead, we will use
the fact that K is the spectrum of elements from a Banach algebra;
therefore the well known Arens-Calderén theorem applies here.

Obviously, V;=(C*—N;)JuVUN, is an open cover of K. Conse-
quently, we can find an open holomorphically convex set U € C™ and
elements f, ,,...,f,, € 4 such that

(2.2) (fpre+ofp) © U © Vyx Cmn
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We can now define the required w, for every ¢ € {0,¢,). Define
0, = (C"—N,)xCm= and Q,=N;xCm-n,

Since O,U0,=Cm, it is enough to specify w,n0, and w,N0,. We
define

(1) w,NO0;=(v,x Cm"")nUNO,,
(il) w,n0,=TUnO0,.

Now we must prove that (i) and (ii) agree on O,n0,. It suffices to prove
that Un0O;n0,<v, x Cm-—7,
Since
Un0,n0,  (V,n(N;—N,)) x Cn—n

by (2.2) and since (V, n (N;—N,))< V by the definition of V,, we have

Un0O;n0, < v, xCm—n
by (i) in (2.1).
It is easy to check that (i), (ii), and (iii) of the lemma now hold, if we
choose ¢>0 small enough.

By applying a technique introduced by Nachbin in [5], we shall now
determine a class of mappings of a manifold into C*. More precisely,
let M be a k-dimensional real CT-manifold, » = 1. Suppose X is a compact
subset of M. Assume further that @ <(C7c(M) and separates points in
X. Let E denote the exceptional set E(®)nX.

LemMMA 2.3. For every compact se¢ X=X —E we can find an open
neighbourhood V of X, a finite number of functions, fy,....f, € D, and
an open < C" such that

(1) (frseesfu (V) s a,;closed Cr-submanifold of Q of dimension k and
without complex tangents, and

(i) (f- - fu)(X— V)= Cr—g.

Proor. Choose a finite number of functions f;,...,f, € ® and an open
neighbourhood V of X, with E({f,...,f,})nV =0. It follows from the
inverse mapping theorem that the multiple function (fy,...,f,): M - C"
is locally 1-1 on V. Obviously, the set

{(@,9) e (Xox Xo)—4; filx)=Ff(y), Vi=1,...,n}

is a compact subset of X, x X,, where 4 denotes the diagonal in X, x X,.
Consequently, by adding some more functions if necessary, we may as-
sume that {f},...,f,} separate points in X,. Shrinking V if necessary,
we then get that (f},...,f,) is 1-1 on ¥ and that V is compact.
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Since @ separates points in X, we can also suppose, after further modi-
fications, that (fy,...,[,)(X —V) and (fy,....f,)(V) are disjoint.
The choice 2=C"—(f;,...,f,)(X —V) finishes the proof.

3. Approximation theorems.

Let X be a compact Hausdorff space, and let C(X) denote the Banach
space under the supremum norm of continuous complex-valued func-
tions. The notation 4ocC(X) means that A is a closed linear subspace
which is closed under pointwise multiplication, separates points and
contains the constant functions.

If K is a compact subset of C», then A(K) is defined to be the class of
continuous, complex-valued functions on K which can be uniformly
approximated on K by functions holomorphic in a neighbourhood of K.

THEOREM 3.1. Suppose AocC(X), where X ts a compact Hausdorff
space. Let X be a closed k-dimensional submanifold of an open set Q<Cn,
without complex tangents, and of class C*, r=3k+1. Choose fy,...,fr€A
and define K =0o(fy,....f,), Ko=K—2.

If w e O(K) with wg, € A(K,), then uo(fy,....f,) € 4.

ReMARK. We can replace the condition r=}k+1 with r=max {}k,1},
but the proof will then be more involved. More specifically, we need a
stronger version of lemma 2.2.

Proor or THEOREM 3.1. Evidently, we may assume that ueC"(QUN?)
for some open neighbourhood N, of K, and also that w is holomorphic
in N;. We will further suppose that » has been modified as described
in lemma 2.1. If N, is chosen as an open set with K =N, € N,, we can
apply lemma 2.2.

With notations as in lemma 2.2, we will define

oy = {(2,. 0 1208204050 - 1 82) 5 (21, +52) E WL},
and also
v,: o'y, > C by (21,...,2,) > u(2y,...,2,) .

Condition (iii) in lemma 2.2 ensures that v, is well-defined in ’, for all
small enough &> 0.
With this notation, lemma 2.2 says:

(1) o(f1s- « sfprtfntrre - 1 8fm) S0, SCPX {|(Zpy1s- - - »2m)| <&[t};
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() if zeC™ and d((2y,...,2p),0(f1s. « - sfns&fntrs- - - &fm)) <fe, then
zew',,

(iii) if z € ', — (N, x Cm—7), then d((zy,. . .,2,),F)<¢ft.

Then proceeding exactly as in the proof of theorem 4.1 in [4], we obtain
a function v’, which is holomorphic in w’, and which satisfies

’
&

Ve=vlly,~0 as &e—0.

Then, since holomorphic functions operate on 4,

V'o(fi sfmotfnin- - 8fm) €A

Since v,0(f1,- - -sfns&fnsts - - s8fm) =uo(f1,. - -, f,), the completeness of 4
implies wo(fy,. . .,f,) € 4.

We are now able to prove a generalization of a result by Freeman [2].

THEOREM 3.2. Let M be a k-dimensional real manifold of class C7,
r=3k+1. Suppose that @ =Cr(M) separates points on a compact subset
X of M. Define E=E(®)nX and A =the sup norm algebra in O(X) gen-
erated by ®. If M 4=X, then B

4 > {geC(X); gp=0}.

Proor. Choose any compact subset X, X —F and use lemma 2.3.
It follows from theorem 3.1 that the family

{ge AnCr(X); 95=0 and 0 ¢ g(X,)}

is non-empty and separates points in X,. The theorem now is a conse-
quence of Stone-Weierstrass.
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