ANOTHER PROOF FOR A COMBINATORIAL LEMMA IN FLUCTUATION THEORY

R. ALTSCHUL

An important problem in fluctuation theory is that of showing that in a random path the number of steps on the positive half-line has the same distribution as the index where the maximum is attained for the first time. This theorem is mentioned by Spitzer [3]. There he refers to a more general proof by H. F. Bohnenblust. Baxter [1] describes a rule due to Richards which was used to prove this theorem by finding an inverse rule. Sparre Andersen gives a proof in this fashion, and Brandt generalizes it (Hobby and Pyke [2].)

The proof that I describe below uses the rule due to Richards, and proves Brandt's generalization by a direct method. The method consists merely of inductive steps based on an inductive definition of the above rule.

1. Notation and definitions.

Let $x_1, x_2, \ldots x_n$ be n real numbers, and let P be the set of the n! permutations of $(1, 2, \ldots, n)$. For $\sigma: i_1, i_2, \ldots, i_n$, an element of P, we define the following quantities:

$$(1.1) s_0(\sigma) = 0, s_k(\sigma) = x_{i_1} + \ldots + x_{i_k} (1 \le k \le n),$$

$$(1.2) R_n(\sigma) = \max\{s_k(\sigma) \mid 0 \le k \le n\},\,$$

$$(1.3) N_n(\sigma; \gamma) = \operatorname{card} \{1 \leq k \leq n \mid s_k(\sigma) > \gamma\}, \quad \gamma \in R,$$

$$\begin{array}{ll} (1.4) & L_n(\sigma;\gamma) = & \min \left\{ 0 \leq k \leq n \mid s_k(\sigma) \geq R_n(\sigma) - \gamma \right\}, \quad \gamma \geq 0, \\ & = & \max \left\{ 0 \leq k \leq n \mid s_k(\sigma) > R_n(\sigma) + \gamma \right\}, \quad \gamma < 0. \end{array}$$

Theorem 1.1. $\{N_n(\sigma; \gamma) \mid \sigma \in P\} \equiv \{L_n(\sigma; \gamma) \mid \sigma \in P\}$, where by \equiv we understand the following two properties:

- i) If $N_n(\sigma; \gamma) = k$, then there is a permutation τ such that $L_n(\tau; \gamma) = k$; the converse is also true.
- ii) card $\{\sigma \in P \mid N_n(\sigma; \gamma) = k\} = \operatorname{card} \{\sigma \in P \mid L_n(\sigma; \gamma) = k\}.$

Received June 28, 1971.

124 R. ALTSCHUL

2. A bijection.

In this section I give an inductive definition of the rule due to Richards, and prove that it is indeed a bijection.

DEFINITION 2.1. For any subset C of the real line, define

$$\Gamma_C \colon P \to P$$

by the following rule. For $\sigma: i_1, i_2, \ldots i_n$, write

$$A_C(\sigma) = \{1 \le k \le n \mid s_k(\sigma) \in C\}, \quad A'_C(\sigma) = \{1, 2, \dots n\} - A_C(\sigma).$$

Let card $A_C(\sigma) = m \ (0 \le m \le n)$; then

$$\Gamma_C(\sigma) = \sigma' : i'_1, i'_2, \dots, i'_n, \quad i'_r = i_{k(r)} \quad (1 \le r \le n)$$

with

$$k(1) = \max\{k \mid k \in A_C(\sigma)\},\ k(\nu) = \max\{k \mid k \in A_C(\sigma), k \neq k(1), \dots, k \neq k(\nu-1)\}\ (2 \leq \nu \leq m),\ k(m+1) = \min\{k \mid k \in A'_C(\sigma)\},\ k(m+\nu) = \min\{k \mid k \in A'_C(\sigma), k \neq k(m+1), \dots, k \neq k(m+\nu-1)\}\ (2 \leq \nu \leq n-m).$$

Lemma 2.1. For any subset C of the real line, Γ_C is bijective.

PROOF. Since P is finite it is sufficient to prove that Γ_C is injective. Let $\sigma: i_1, i_2, \ldots, i_n$, and $\tau: j_1, j_2, \ldots, j_n$, with

$$\Gamma_C(\sigma) = \sigma' : i'_1, i'_2, \dots, i'_n, \quad \Gamma_C(\tau) = \tau' : j'_1, j'_2, \dots, j'_n.$$

Assume $\sigma' = \tau'$, that is $i'_{\nu} = j'_{\nu}$ for $1 \le \nu \le n$; then

$$s_n(\sigma) = \sum_{\nu=1}^n x_{i_{\nu}} = \sum_{\nu=1}^n x_{j_{\nu}} = s_n(\tau)$$
.

If $s_n(\sigma) = s_n(\tau) \in C$, then $i_n = i'_1 = j'_1 = j_n$; if $s_n(\sigma) = s_n(\tau) \notin C$, then $i_n = i'_n = j'_n = j_n$.

Assume now that $s_{\nu}(\sigma) = s_{\nu}(\tau)$, and $i_{\nu} = j_{\nu}$ for $k+1 \le \nu \le n$ $(0 \le k < n)$, and let

$$a = \operatorname{card} \{ v \mid k+1 \leq v \leq n, \ s_v(\sigma) \in C \}$$
.

Then

$$s_k(\sigma) = s_{k+1}(\sigma) - x_{i_{k+1}} = s_{k+1}(\tau) - x_{j_{k+1}} = s_k(\tau)$$
,

and therefore

$$\begin{split} &i_k=i'_{a+1}=j'_{a+1}=j_k &\quad \text{if} \quad s_k(\sigma)\in C \text{ ,}\\ &i_k=i'_{k+a}=j'_{k+a}=j_k &\quad \text{if} \quad s_k(\sigma)\notin C \text{ .} \end{split}$$

3. Proof of theorem 1.1.

To complete the proof of theorem 1.1 it is sufficient to prove the following

LEMMA 3.1. If $C = (\gamma, \infty)$ where γ is real, then

$$N_n(\sigma; \gamma) = L_n(\Gamma_C(\sigma); \gamma)$$
.

PROOF. Let $\sigma: i_1, i_2, \ldots, i_n, \Gamma_C(\sigma) = \sigma': i'_1, i'_2, \ldots, i'_n$ and

$$N_n(\sigma; \gamma) = m \quad (0 \leq m \leq n).$$

I will prove that $L_n(\sigma'; \gamma) = m$ if $\gamma \ge 0$ (the proof for the case $\gamma < 0$ is analogous). Let

$$R'_{m}(\sigma') = \max\{s_{m}(\sigma'), \ldots, s_{n}(\sigma')\}.$$

I will prove that

$$(3.1) s_m(\sigma') \ge R'_m(\sigma') - \gamma ,$$

$$(3.2) s_n(\sigma') < R'_m(\sigma') - \gamma \text{for } 0 \le \nu < m.$$

The inequalities (3.1) and (3.2) imply the theorem.

a) Proof of (3.1):

$$s_{m+1}(\sigma') - s_m(\sigma') = x_{i_{k(m+1)}} \le s_{k(m+1)-1}(\sigma) + x_{i_{k(m+1)}} = s_{k(m+1)}(\sigma) \le \gamma$$
.

Assume

$$(3.3) s_{m+\nu}(\sigma') - s_m(\sigma') \leq \gamma \quad \text{for } 1 \leq \nu < l \quad (l \leq n-m).$$

Consider the sequences

$$y^{\nu} = (k(m+\nu), \dots, k(m+l))$$
 for $1 \le \nu \le l$,

and let $\bar{v} = \min\{1 \le v \le l \mid y^v \in J\}$, where

$$J = \{y \mid \exists p \ge 1, p \in \mathbb{Z}, y = (y_1, \dots, y_p); y_{i+1} = y_i + 1 \text{ for } 1 \le i < p\}.$$

If $k(m+\bar{\nu})=1$, then

$$s_{m+l}(\sigma') - s_m(\sigma') = s_{k(m+l)}(\sigma) \leq \gamma$$
.

If $k(m+\bar{\nu}) > 1$, then

$$x_{i_{k(m+\bar{\nu})}} + \ldots + x_{i_{k(m+\bar{\nu})}} + \gamma < s_{k(m+\bar{\nu})}(\sigma) \leq \gamma;$$

but by (3.3)

$$x_{i_{k(m+1)}} + \ldots + x_{i_{k(m+\tilde{\nu}-1)}} \leq \gamma$$
,

and hence $s_{m+l}(\sigma') - s_m(\sigma') \leq \gamma$. Therefore $s_m(\sigma') \geq R'_m(\sigma') - \gamma$.

126 R. ALTSCHUL

b) Proof of (3.2): Let $0 \le v \le m-1$ and

$$\mu = \max\{0 \le j \le n - m \mid k(m+j) \le k(v+1)\}.$$

Then

$$s_{\nu}(\sigma') = s_{m+\mu}(\sigma') - s_{k(\nu+1)}(\sigma) < s_{m+\mu}(\sigma') - \gamma.$$

Hence $s_n(\sigma') < R'_m(\sigma') - \gamma$.

REFERENCES

- G. Baxter, Combinatorial methods in fluctuation theory, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1963), 263-270.
- Ch. Hobby and R. Pyke, Remarks on the equivalence principle in fluctuation theory, Math. Scand. 12 (1963), 19-24.
- F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), 323-339.

CASE WESTERN RESERVE UNIVERSITY, OHIO, U.S.A.