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NON-NOETHERIAN RINGS FOR WHICH
EACH PROPER SUBRING IS NOETHERIAN

ROBERT GILMER and MATTHEW O’MALLEY

Let S be a ring and let &# and & be two families of subrings of S.
An important question in the theory of rings is to determine conditions
under which each ring in the family % has a given property P, if each
ring in the family & has property P;,. We consider here two special
cases of this problem. In order to describe these cases succinctly, we
introduce two definitions.

A ring R has property (C1) if R does not satisfy the ascending chain
condition (a.c.c.) on two-sided ideals, but each proper subring of R satis-
fies the a.c.c. on two-sided ideals; R has property (C2) if B does not
satisfy the a.c.c. on left ideals, but each proper left ideal of R satisfies
the a.c.c. on left ideals.

The purpose of this paper is to determine all rings with property (C1)
or (C2). We prove Theorem 3.2:

In a ring R, the following conditions are equivalent.
(a) R has property (C1).

(b) R has property (C2).

(c) R s the zero ring on a p-quasicyclic group.

The type of problem considered here—that is, that of characterizing
rings for which each proper subring (or ideal) satisfies a given ring prop-
erty P—is the same as that considered in [4]. It is interesting to note
that the zero ring on a quasicyclic group was of prime importance in [4],
also.

1. Preliminaries.

We use the word ideal to mean two-sided ideal throughout the paper.
If {x,} is a subset of a ring R, then ({z,}) will denote the ideal of R gen-
erated by {z,}. We make frequent use of the fact that the a.c.c. on ideals
(left ideals) of R is equivalent to the condition that each ideal (left
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ideal) of R is finitely generated. In particular, if R is a ring with property
(C1) (or (C2)), then R is the only ideal (or left ideal) of R that is not
finitely generated. We use < for containment, and < for proper contain-
ment; Z denotes the set of integers, and w is the set of positive integers.
If 2y=0 for all 2,y in the ring R, we say that R is the zero ring on R+,
the additive group of R; we will also say in this case that R has the trivial
multiplication. Our proof of Theorem 3.2 proceeds in essentially two
steps: In Section 2, we prove that the quasicyclic groups are the only
abelian groups @ for which @ is not finitely generated, but every proper
subgroup of @ is finitely generated. Then in Section 3, we prove that a
ring satisfying property (C1) or (C2) has the trivial multiplication.
Before proceeding to Section 2, we give a brief description of a quasi-
cyclic group. (For details, see [1, p. 15], [5, p. 4], or [6, p. 19].) Let p be
a prime integer. The p-quasicyclic group, which we denote by C(p™), is
an abelian group generated by a set {c;};., such that ¢; has order 2%,
and pc,,;=c; for each 7 € w; there is, to within isomorphism, exactly
one group with these properties. (The group of all complex pth power
roots of unity, under multiplication, is a realization of C(p*).) The non-
zero proper subgroups of C(p™) are precisely the finite cyclic groups
generated by the c;’s. Thus, with the trivial multiplication, the proper
subrings (and proper ideals) of C(p™) are just the proper subgroups of
C(p*). It then follows that the zero ring on C(p*) satisfies (C1) and (C2).

2. The group case.

In this section, we show that if G is a non-finitely generated abelian
group for which each proper subgroup is finitely generated, then G is a
quasicyclic group.

LemmA 2.1. Let G be an abelian grouwp. Suppose that G is not finitely
generated, but each proper subgroup of G is finitely generated.

(i) If H is a proper subgroup of @, then G|H s not finitely generated, but
each proper subgroup of G|H 1is finitely generated.

(ii) G is mot the sum of two of its proper subgroup; in particular, G s
1ndecomposable.

Proor. (i) Clear.

(ii) If 4 and B are subgroups of @ such that G=A4+ B, then 4 or B
is not finitely generated, since @ is not finitely generated. Hence G=4
or G=B.
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THEOREM 2.2. Let G be an abelian group satisfying the hypothesis of
Lemma 2.1. Then G~ C(p™) for some prime p.

Proor. We observe first that @ is divisible, for if not, pG <@ for some
prime p, and hence G/p@, as a vector space over Z/(p), is not finitely
generated, but each proper subspace of G/pG is finitely generated. This
is impossible, and hence G is divisible. From the structure theorem for
divisible groups [1; Theorem 19.1], it follows that G is the direct sum of
quasicyclic groups and full rational groups. Since ¢ is indecomposable
by Lemma 2.1, G is either a quasicyclic group or a full rational group.
But a full rational group does not have the property that each of its
proper subgroups is finitely generated, and thus G=C(p*) for some
prime p.

3. Properties (C1) and (C2).

We first show that any ring satisfying property (C1) or property (C2)
has the trivial multiplication.

TarorREM 3.1. Let R be a ring that satisfies property (Cl) or property
(C2). Then R has the trivial multiplication.

Proor. We show that if R satisfies (C1), then R has the trivial multi-
plication. The proof for the case when R satisfies (C2) is essentially the
same and we omit it.

Observe that if {4,}72, is any infinite strictly ascending chain of ideals
of R, and if A=U 4,, then 4 is an ideal of R and {4,}2, is an in-
finite strictly ascending chain of ideals of 4. Hence 4 =R by the hy-
pothesis on R.

Let 2 € R; we show that Rx=0. It will then follow that R has the
trivial multiplication. Since z € R=UX 4;, we get z € 4,, for some
m € w, and hence Rx < RA,, < A,,< R. Therefore, Rx =0 or Rx is a proper
subring of R. If Rx=0, we are done; if Rz is a proper subring of R,
then, by the hypothesis on R, it follows that Rx is finitely generated
as an ideal of Rx. Let {riz};_, be a set of generators for Rz, considered
as an ideal of Raz.

If r € R, then

—— n n
1T o= DT S+ D il T ugav 3T A,

where s;,t;,u,,v; € Rz, A, € Z.
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Letting ¢,=t,’x and v,=v;'x for each ¢, we have that
1= 30y 8@+ 20y rat w20 urav v+ 30 Arg
and therefore,
[r—=27 1 (srit+rat) +urav +2Ar)]e = ux = 0.

Therefore, u belongs to the left annihilator L of z, and r € ({r;}I.,) + L.
Therefore, since » was an arbitrary element of R, it follows that R=
({r}7-1)+L. But L is a left ideal, hence a subring of R, and therefore
cannot be finitely generated as an ideal of L, since R is not finitely
generated as an ideal of R. Thus R=L so that Rx=Lx=0.

We can now easily prove our main result.

THEOREM 3.2. Let R be a ring. The following conditions are equivalent.
(i) R satisfies property (C1).

(ii) R satisfies property (C2).

(iii) R s the zero ring on a quasicyclic group.

Proor. We have already observed that (iii) - (i) and (iii) — (ii). If R
satisfies (C1) or (C2), then R has the trivial multiplication, by Theorem
3.1. Consequently, the subrings (and ideals and left ideals) of R are pre-
cisely the subgroups of R+. Therefore, R+ is an abelian group satisfying
the hypothesis of Theorem 2.2, so that R+~ C(p*) for some prime p,
and R is the zero ring on a quasicyclic group.

In conclusion, we state two questions that arise in connection with
the results of this paper.

1. If G is a group which is not finitely generated, but for which each proper
subgroup s finitely generated, must G be abelian, and hence quasicyclic ?

2. Suppose that R is a ring in which the a.c.c. for ideals does not hold,
and 18 such that the a.c.c. for ideals holds in each proper ideal of R. Is multipli-
cation in R trivial?

Although we have made some progress toward a solution to each of
these questions, we know the answer to neither.
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