NON-NOETHERIAN RINGS FOR WHICH EACH PROPER SUBRING IS NOETHERIAN

ROBERT GILMER and MATTHEW O'MALLEY

Let S be a ring and let \mathscr{F} and \mathscr{S} be two families of subrings of S. An important question in the theory of rings is to determine conditions under which each ring in the family \mathscr{S} has a given property P_2 if each ring in the family \mathscr{F} has property P_1 . We consider here two special cases of this problem. In order to describe these cases succinctly, we introduce two definitions.

A ring R has property (C1) if R does not satisfy the ascending chain condition (a.c.c.) on two-sided ideals, but each proper subring of R satisfies the a.c.c. on two-sided ideals; R has property (C2) if R does not satisfy the a.c.c. on left ideals, but each proper left ideal of R satisfies the a.c.c. on left ideals.

The purpose of this paper is to determine all rings with property (C1) or (C2). We prove Theorem 3.2:

In a ring R, the following conditions are equivalent.

- (a) R has property (C1).
- (b) R has property (C2).
- (c) R is the zero ring on a p-quasicyclic group.

The type of problem considered here—that is, that of characterizing rings for which each proper subring (or ideal) satisfies a given ring property P—is the same as that considered in [4]. It is interesting to note that the zero ring on a quasicyclic group was of prime importance in [4], also.

1. Preliminaries.

We use the word *ideal* to mean *two-sided ideal* throughout the paper. If $\{x_{\alpha}\}$ is a subset of a ring R, then $(\{x_{\alpha}\})$ will denote the ideal of R generated by $\{x_{\alpha}\}$. We make frequent use of the fact that the a.c.c. on ideals (left ideals) of R is equivalent to the condition that each ideal (left

Received July 12, 1971, in revised form February 14, 1972.

ideal) of R is finitely generated. In particular, if R is a ring with property (C1) (or (C2)), then R is the only ideal (or left ideal) of R that is not finitely generated. We use \subseteq for containment, and \subset for proper containment; Z denotes the set of integers, and ω is the set of positive integers. If xy=0 for all x,y in the ring R, we say that R is the zero ring on R^+ , the additive group of R; we will also say in this case that R has the trivial multiplication. Our proof of Theorem 3.2 proceeds in essentially two steps: In Section 2, we prove that the quasicyclic groups are the only abelian groups G for which G is not finitely generated, but every proper subgroup of G is finitely generated. Then in Section 3, we prove that a ring satisfying property (C1) or (C2) has the trivial multiplication.

Before proceeding to Section 2, we give a brief description of a quasicyclic group. (For details, see [1, p. 15], [5, p. 4], or [6, p. 19].) Let p be a prime integer. The p-quasicyclic group, which we denote by $C(p^{\infty})$, is an abelian group generated by a set $\{c_i\}_{i\in\omega}$ such that c_i has order p^i , and $pc_{i+1}=c_i$ for each $i\in\omega$; there is, to within isomorphism, exactly one group with these properties. (The group of all complex pth power roots of unity, under multiplication, is a realization of $C(p^{\infty})$.) The non-zero proper subgroups of $C(p^{\infty})$ are precisely the finite cyclic groups generated by the c_i 's. Thus, with the trivial multiplication, the proper subrings (and proper ideals) of $C(p^{\infty})$ are just the proper subgroups of $C(p^{\infty})$. It then follows that the zero ring on $C(p^{\infty})$ satisfies (C1) and (C2).

2. The group case.

In this section, we show that if G is a non-finitely generated abelian group for which each proper subgroup is finitely generated, then G is a quasicyclic group.

LEMMA 2.1. Let G be an abelian group. Suppose that G is not finitely generated, but each proper subgroup of G is finitely generated.

- (i) If H is a proper subgroup of G, then G/H is not finitely generated, but each proper subgroup of G/H is finitely generated.
- (ii) G is not the sum of two of its proper subgroup; in particular, G is indecomposable.

PROOF. (i) Clear.

(ii) If A and B are subgroups of G such that G = A + B, then A or B is not finitely generated, since G is not finitely generated. Hence G = A or G = B.

THEOREM 2.2. Let G be an abelian group satisfying the hypothesis of Lemma 2.1. Then $G \cong C(p^{\infty})$ for some prime p.

PROOF. We observe first that G is divisible, for if not, $pG \subset G$ for some prime p, and hence G/pG, as a vector space over $\mathbb{Z}/(p)$, is not finitely generated, but each proper subspace of G/pG is finitely generated. This is impossible, and hence G is divisible. From the structure theorem for divisible groups [1; Theorem 19.1], it follows that G is the direct sum of quasicyclic groups and full rational groups. Since G is indecomposable by Lemma 2.1, G is either a quasicyclic group or a full rational group. But a full rational group does not have the property that each of its proper subgroups is finitely generated, and thus $G = C(p^{\infty})$ for some prime p.

3. Properties (C1) and (C2).

We first show that any ring satisfying property (C1) or property (C2) has the trivial multiplication.

THEOREM 3.1. Let R be a ring that satisfies property (C1) or property (C2). Then R has the trivial multiplication.

PROOF. We show that if R satisfies (C1), then R has the trivial multiplication. The proof for the case when R satisfies (C2) is essentially the same and we omit it.

Observe that if $\{A_i\}_{i=1}^{\infty}$ is any infinite strictly ascending chain of ideals of R, and if $A = \bigcup_{i=1}^{\infty} A_i$, then A is an ideal of R and $\{A_i\}_{i=1}^{\infty}$ is an infinite strictly ascending chain of ideals of A. Hence A = R by the hypothesis on R.

Let $x \in R$; we show that Rx = 0. It will then follow that R has the trivial multiplication. Since $x \in R = \bigcup_{i=1}^{\infty} A_i$, we get $x \in A_m$ for some $m \in \omega$, and hence $Rx \subseteq RA_m \subseteq A_m \subset R$. Therefore, Rx = 0 or Rx is a proper subring of R. If Rx = 0, we are done; if Rx is a proper subring of R, then, by the hypothesis on R, it follows that Rx is finitely generated as an ideal of Rx. Let $\{r_ix\}_{i=1}^n$ be a set of generators for Rx, considered as an ideal of Rx.

If $r \in R$, then

$$rx = \sum_{i=1}^{n} s_i r_i x + \sum_{i=1}^{n} r_i x t_i + \sum_{i=1}^{n} u_i r_i x v_i + \sum_{i=1}^{n} \lambda_i r_i x$$
,

where $s_i, t_i, u_i, v_i \in Rx, \lambda_i \in Z$.

Letting $t_i = t_i'x$ and $v_i = v_i'x$ for each i, we have that

$$rx = \sum_{i=1}^{n} s_i r_i x + \sum_{i=1}^{n} r_i x t_i' x + \sum_{i=1}^{n} u_i r_i x v_i' x + \sum_{i=1}^{n} \lambda_i r_i x$$
,

and therefore,

$$[r - \sum_{i=1}^{n} (s_i r_i + r_i x t_i' + u_i r_i x v_i' + \lambda_i r_i)]x = ux = 0.$$

Therefore, u belongs to the left annihilator L of x, and $r \in (\{r_i\}_{i=1}^n) + L$. Therefore, since r was an arbitrary element of R, it follows that $R = (\{r_i\}_{i=1}^n) + L$. But L is a left ideal, hence a subring of R, and therefore cannot be finitely generated as an ideal of L, since R is not finitely generated as an ideal of R. Thus R = L so that Rx = Lx = 0.

We can now easily prove our main result.

Theorem 3.2. Let R be a ring. The following conditions are equivalent.

- (i) R satisfies property (C1).
- (ii) R satisfies property (C2).
- (iii) R is the zero ring on a quasicyclic group.

PROOF. We have already observed that (iii) \rightarrow (i) and (iii) \rightarrow (ii). If R satisfies (C1) or (C2), then R has the trivial multiplication, by Theorem 3.1. Consequently, the subrings (and ideals and left ideals) of R are precisely the subgroups of R^+ . Therefore, R^+ is an abelian group satisfying the hypothesis of Theorem 2.2, so that $R^+ \cong C(p^{\infty})$ for some prime p, and R is the zero ring on a quasicyclic group.

In conclusion, we state two questions that arise in connection with the results of this paper.

- 1. If G is a group which is not finitely generated, but for which each proper subgroup is finitely generated, must G be abelian, and hence quasicyclic?
- 2. Suppose that R is a ring in which the a.c.c. for ideals does not hold, and is such that the a.c.c. for ideals holds in each proper ideal of R. Is multiplication in R trivial?

Although we have made some progress toward a solution to each of these questions, we know the answer to neither.

REFERENCES

- 1. L. Fuchs, Abelian groups, Pergamon Press, Oxford · London · New York, 1970.
- R. Gilmer, Integral domains with Noetherian subrings, Comment. Math. Helv. 45 (1970), 129-134.

- R. Gilmer, Multiplicative ideal theory, Queen's Papers on Pure and Applied Mathematics 12. Kingston. Ontario. 1968.
- R. Gilmer, R. Lea, and M. O'Malley, Rings whose proper subrings have property P, Acta Sci. Math. Szeged 33 (1972), 69-76.
- 5. I. Kaplansky. Infinite abelian groups. University of Michigan Press. Ann Arbor, 1954.
- 6. E. Schenkman. Group theory, Van Nostrand, Princeton, 1965.

FLORIDA STATE UNIVERSITY, TALLAHASSEE, U.S.A.

AND

UNIVERSITY OF HOUSTON, HOUSTON, U.S.A.