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DIRECT LIMITS OF POWER SERIES RINGS!

ELIZABETH A. MAGARIAN

All rings considered in this paper are assumed to be commutative and
to contain an identity element.

DeriNiTION. A subring R of a ring S is said to have property (C) with
respect to 8 provided (AS)nR=A4 for every ideal 4 of R.

Let R be a ring, and let {R,},., be a directed family of subrings of R
whose union is R. We shall be interested in the question:

When is UR,[[X,,...,X,]] Noetherian?

Theorem 1 gives a description of a finite basis for each prime ideal of
UR,[[X]], where each R, has property (C) with respect to R. Theorem 2
shows that if R is Noetherian and if for each =, there is an R,-module
T, for which R=R,®T,, then U(R,[[X,,...,X,]]) is Noetherian. In
Theorems 3 and 4, Theorem 2 is applied to the question: When is the
tensor product of a local ring containing a field £ and an algebraic ex-
tension field K of ¥ Noetherian ? Examples 1 and 2 show that if R is a
local ring containing a field k£ and if K is an extension field of k, then
R®, K is not necessarily semilocal.

THEOREM 1. Let {R,} be a directed family of subrings of a Noetherian
ring R whose union is R and such that each R, has property (C) with respect
to R. If A=UR,[[X]], then A is Noetherian. In fact, if P is a prime
tdeal of A and

Py={d: deR and f(0)=d for some fe P} = (ay,...,a;) ,

let f; be an element of P for which fi(0)=a;. Then P=(f,,...,f,X) or
P=(fy,....f,) according as X is in P or not.
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1 These results are part of the author’s doctoral dissertation, which was written under
the direction of Joe L. Mott at The Florida State University. The author wishes to thank
Robert Gilmer for suggesting this problem.
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Proor. Let P be a prime ideal of 4. If
Py={d: deR and f(0)=d for some fe P},

then P, is an ideal of the Noetherian ring R and hence has a finite basis
{a,,...,a;}. Since each a; € P,, there exist f; € P such that fi(0)=a,.
For each ¢, choose such an f; and fix it.

For each R, € {R,},

Po n R,n = ((al,. . .,ak).R) n .Rn = ((al,- .. ,ak).Rn).R n Rn = (a]_,. . .,ak).Rn

provided {a,,...,a}< R, since R, has property (C) with respect to R.
I {fi- - o fuy S Ra[[X]]), let

»Po=1{d: de R and f(0)=d for some fe Pn R,[[X]]}.
Then ,P, is an ideal of R,, and
2o & PonN R, = (ay,...,ap)R, .

Moreover, f; € PnR,[[X]]; hence, a; € , P, for every i. Therefore, ,Py=2
(ay,...,a,)R,, and

ﬂPO = Poan = (al,.. .,ak).Rn .
It will be shown that

P=(fyp....f,X) if XeP
P = (fl’---’flc) if X¢P.

Since f; € P, we have P2(fy,...,f;) and if X € P,

P2 (fy.... [i.X).

Let g € P. Then there is an » such that g,f;,...,f, belong to R [[X]].
Note that f; e R,[[X]] implies that a,e R,. Now g¢(0) e ,P,. Hence,
there exist 7y, . . .,7q, in R, such that g(0)=3*_,r,a;. Moreover,

9—25:1 rof; € P

and has zero constant term so that

g2k 1rufie (X).
If X € P, then g € (fy,. . .,f;, X) so that

P = (fl»- . "fk>X)

P =(fy.. "fk’X) .

and
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On the other hand if X ¢ P, let
Xg, = g—2F 1 roifi-

Since P is prime, g, € P. For 0<j=<m assume that elements r;,...,7;;
of R, have been found so that

(ZJ 0 X r:nft) Xm+lgm+1 EP.
Since P is prime and X™+! ¢ P, it follows that g,,,, € P. Now g¢,,.,1(0) € ,P,
so there are elements 7,,,; 1,...,7y1,; Of B, such that

Im+1 0) z@ 1 (rm+1 (3

Then g,,43 —Z5_; (*m41,4)f; € P and has zero constant term so that

9351 (37 1 XA)fy = Xm4%g,,0€ P
Hence,

z==1 (ZJ 2077X%)f; and zﬁo r X7 € R,[[X]] .
Therefore,

g€ (fu- - SB[ [X]] € (10 -S4

and P<(fy,....fx); 80 P=(fy,....fr)-
Since every prime ideal of A4 is finitely generated, by a classical result

of I. S. Cohen [8, Theorem 3.4, p. 8] the ring 4 is Noetherian.
If P is a prime ideal of UR,[[X,,...,X,]] and

Py = {d: de R and f(0)=d for some fe P} = (ay,...,a;),

it is not known whether P has a basis of the form {f;,...,f,}UX, where
fi€ P, f(0)=a,, and X is the maximal subset of {X,,...,X,} contained
in P.

CoroLLARY. Let {R,} be a directed family of subrings of R whose union
18 R and such that each R, has property (C) with respect to R. If R is a
principal ideal domain, then UR,[[X]] is a unique factorization domain.

Proor. The ideal

= {f: feR[[X]] and £(0)=0}

is prime in R[[X]] since R[[X]]/(X)~R. Let A=UR,[[X]]. If a and
beAd and
abe (X)nA = {f: fe A and f(0)=0},
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then a or b e (X); so a or be (X)n4 and (X)n4 is prime. Let P be a
prime ideal in 4. If X € P, then P contains the principal prime ideal (X).
If X ¢ P, then P is itself a principal prime. Hence, 4 is a unique factoriza-
tion domain [6, Theorem 1.2, p. 2].

Krull is generally credited with the result that if R is a principal
ideal domain, then R[[X]] is a unique factorization domain. In 1938 he
proved this for the case where R/M is infinite for each maximal ideal
M of R [7, § 5, Satz 17, p. 780]. Note, however, that UR,[[X]] need
not equal R[[X]]. For example, if R is an infinite algebraic extension
of a field k and if {R,} is the collection of finite algebraic extensions of k
contained in R, then R=U R, ~injlim R, and

Rk [X]] = (inj im B, )@, k{[X]]

inj lim (R, ®, ¥[[X]])

inj lim R, [[X]]

UR,[[X]] € B[[X]]

since the coefficients of a series in R[[X]] may generate an infinite ex-

tension of & while the coefficients of a series in U R,[[X]] only generate
a finite extension of k.

e ne ne m

THEOREM 2. Let R be a commutative ring, {R,} a directed family of sub-
rings of R whose union is R. For each n, let T, be an R, -module such that
R=R,®T,. If R is Noetherian, then U(R,[[X;,...,X,]]) is Noetherian.

Proor. Let

An = Rn[[Xl’ . "Xt]]1 B = R[[Xl’- . -’Xt]] ’
U= U(Rn[[XI’ . ’Xt]]) :

Since R=R,®T, ,

R[[Xy....X]] = B[(Xy. ... XJOT[[Xy,. . ., X))

and T,[[X;,...,X]] is an (R,[[X,,...,X/]])-module. A result of Gilmer
[5, § 2, Result 3, p. 562] shows that R, [[X,,...,X,]] satisfies property
(C) with respect to R[[X,,...,X,]].

To show that U satisfies property (C) with respect to B it suffices to
show that each finitely generated ideal of U is the contraction of an ideal
of B [5, § 2, Result 5, p. 562]. Let D be a finitely generated ideal
(dy,...,d,)U of U. Let fe DBnU. Then {d,,...,d,.f} is contained in
A, for some n. Since 4, cUc B,

((dy,- . .,d,)4,)B = (. . .,d,)U)B = DB
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and fe (dq,...,d,)4,B. Moreover,

fe(dy....d)A,BnA, = dy,....d)A4, < @dy,...,d,)U

since 4, satisfies property (C) with respect to B. Hence, fe D and
D2DBnU. Since DBNU always contains D [9, p. 219], DBnU=D
and U has property (C) with respect to B. Therefore, B Noetherian
[10, Corollary to Theorem 4, p. 139] implies that U is Noetherian.

AppricaTiON. Let R be an algebraic extension field of a field k. Then
R is the union of the set of all finite algebraic extensions R, of k con-
tained in R. Since R is a vector space over R, and R, is a subspace of
R generated by 1, there is a basis {1}uB for R over R,. Let T, be the
vector space over R, generated by B. Then 7', is an R, -module and
R=R,®T,. Now

MIXy. o X0 R = KXy, .., X,]]@ UR,
HIXy. . ., X,]]® (injlim B,)
injlim (k[[Xy,. . ., X, ]| @i R,)
injlim (R,[[Xy,. .., X,.]])
U(RB,[[ Xy, X)),

e e me ne e

which is Noetherian.

THEOREM 3. Let K be an algebraic extension field of a field k. Let
R=k[[X,,...,X,]]. Then R®, K is a regular local ring of dimension n,
and if n=1, RQ, K is a rank one discrete valuation ring.

Proor. Let
F,.e{F: kcFcK, F afield, [F:k]<oo}.

Then F, satisfies property (C) with respect to K, K=UF,, and
R®, K is Noetherian. Moreover, since F [[X,,...,X,]] is a local ring
with maximal ideal M, ={fe F [[X,,...,X,]]: f(0)=0}=(X,,...,X,).,
M=UM,_ is the unique maximal ideal of UF [[X,,...,X,]], being the
set of all nonunits of the ring. Therefore, RQ, K is a local ring.

Since K is algebraic over k, R®,K is integral over R. Therefore,
dim(R®Q,K)=dimR=n (8, I, (10.10), p. 30]. Moreover, the maximal
ideal of R®, K has a basis {X,,...,X,} of n elements; so R®, K is a
regular local ring of dimension n [10, VIII, § 11, p. 301].

In particular, if n is one, R®, K is a one-dimensional local ring with
principal maximal ideal; so R®, K is a rank one discrete valuation ring
[2, VI, § 3, no. 6, Proposition 9 (d), p. 109].
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The following example shows that if the extension field K of & is
not an algebraic extension of k, then R®; K need not be local nor even
semilocal.

ExampLE 1. Let k be a field, R=k[[X]], K=k(Y), and S=k[Y]—{0},
where Y is transcendental over k. The ring k[[X]] is a flat k-module
[1, § 3, no. 4, Corollary 3 to Theorem 3, p. 70]. Hence,

R@,K = K[X]]®,k(Y) = k[X]]®(k[Y])s
~ (M[X]]®kk Y])i@s = (M[XI[Y])s -

Consequently R®,K is Noetherian [10, Theorem 4, p. 138] and [9,
Theorem 1, p. 201; Corollary 1 to Theorem 15, p. 224; and p. 199].

It can be shown that the ideal (1—X*Y) in A[[X]][Y] misses S. Let
M, be an ideal of k[[X]][Y] which contains (1—X%Y) and is maximal
with respect to missing S. Now M, is prime [8, (2.1), p. 4]. If i %7, then
M;2M;, for if M;2M;, then

(1-XY)-(1-XY) = (X'-XYY e M,.
Since M;nS8=0, Y ¢ M,, and since M, is prime,

Xi(Xi~i—1)e M, ifj>i
Xi(l—-Xi-)e M, if j<i

Regardless of whether j>i or j<¢, X is in M, for in each case X7 — X?
can be factored as a product of some power of X and a unit of k[[X]]
(10, VII, § 1, Theorem 2, p. 131]. Since M, is a proper prime ideal, X
and consequently X¢Y € M,. It follows that 1=X‘Y +(1—-X'Y) is in
M, which contradicts the fact that M,nS=0.

Consequently, the M,’s which form an infinite collection of prime
ideals of k[[X]][Y] which are disjoint from S, extend to an infinite col-
lection of prime ideals of (K[[X]][Y[)g [9, IV, § 10, Corollary to Theorem
16, p. 224]. In fact, the M,’s extend to an infinite collection of maximal
ideals of (K[[X]][Y])s since each M is maximal with respect to missing S.

ExampLE 2. Let Q be the field of all complex numbers algebraic over
the rational number field Q. We will show that Q ®,Q has infinitely
many maximal ideals and thus is not a semi-local ring.

If n is rational, then (n*®n-)2=n@n1=1xQ1. But if a2=1, then
3(1—a) and }(1+a) are idempotents. In particular,

{3[n-1(n*@nt)+ (1Q1)] : n is a prime integer}
is an infinite collection of distinct idempotents of 6®Q6.



DIRECT LIMITS OF POWER SERIES RINGS 109

If R is a ring with identity 1 and e is an idempotent of R different
from 0 and 1, then e¢ and 1—e are orthogonal idempotents of R and
R=Re®R(1—e). Using this fact and mathematical induction, one can
show that if R is a commutative ring with identity and infinitely many
idempotents, then, for each positive integer n, the ring R has a direct
sum decomposition of the form R=Re,®...PRe,, where the e;’s are
pairwise orthogonal idempotents of R. Each Re; is a commutative
ring with identity and hence has a maximal ideal M; [9, p. 151]. There-
fore, R has n maximal ideals

Re,®...PRe, DM, DRe; 1®...DRe, .

Since this is true for every positive integer n, B has infinitely many
maximal ideals. Taking R to be Q®,Q, we see that Q®,Q has infin-
itely many maximal ideals and hence Q ®,Q is not a semi-local ring.

THEOREM 4. Let R be a complete local ring with maximal ideal M.
Suppose that R and R|M have the same characteristic and that M has a
minimal basis of n elements. If K is an algebraic extension of k~ R|M,
then R®, K is Noetherian.

Proor. By Cohen’s theorem on the structure of complete local rings
[4, Theorem 9, p. 72], Rx~k[[X,,...,X,]]/I, where I is an ideal of
k[[X,,...,X,]]. Hence,

= (k[[Xb . 7Xn]]/I)®k‘K
= (k[[XP . ’X'n]]®kK)/(I,O)(k[[X1’ . °’-Xn]]®kK) ‘

2

R®,K

Since the homomorphic image of a Noetherian ring is Noetherian, to
show that R®, K is Noetherian, it suffices to show that

HIXy,. .., X, ]]Q.K

is. Since K is an algebraic extension field of k, K is the union of the set
of finite algebraic extension fields K, of k contained in K. Since direct
limits and tensor products commute [3, Ch. V, § 9, Proposition 9.2%,
p. 99],

Xy, .., X, )]0 K = K[[X;,...,X,]]®(injlim K )
injlim (k[[X,,. .., X,]]®K,)
UK [[X,,...,X,]]-

e e e

Since K, is a subfield of K, K, satisfies property (C) with respect to K.
Hence, UK [[X,,...,X,]] and R®, K are Noetherian.
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ExampLE 3. The following example is an exercise in Bourbaki [2,
Ch. V, § 1, Exercise 21, p. 74].

Let ko be a perfect field of characteristic p+0. Let {X,}, .5 be a col-
lection of indeterminates over k,, and let K be the quotient field of
kol{X }nen]- Let Y and Z be indeterminates over K. Let k=KrPc K.
Then K is an algebraic extension of k. Let R=£k[[Y,Z]]. Theorems 2
and 4 apply; hence R®, K is Noetherian.
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