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A NOTE ON RADICALS AND POLYNOMIAL RINGS

B.J. GARDNER

1. Introduction.

All rings considered in this note are associative. A non-void class #
of rings is called a radical class if # is homomorphically closed, every
ring R has a largest ideal Z(R) belonging to # and %(R/%(R))=0 for
each R. With the exception that the disucssion is phrased in terms of
classes rather than properties, we follow the terminology of Divinsky’s
book [3], to which the reader is referred for further details. Two remarks
on notation: R[x] or R[x,,...,x,] denotes the ring of polynomials over
R in one or several commuting indeterminates; I < R means “I is an
ideal of R”.

We shall show that for every radical class %, the rings R whose poly-
nomial rings R[x] belong to &£ form a radical class ZV < Z. By induction,
a chain

R =R 2RV 2 ...

of radical classes is obtained which can have any finite length. When %
is hereditary, ZY(R)=RnZ%(R[x]) for every ring R. The equation
ZV={0} holds for hereditary # if and only if # is subidempotent.
An application is given to rings R for which #Z(R)=R or 0 for every
hereditary radical class Z.

2. The construction.
For a radical class £, let Z denote the class {R | R[x] € %}.

THEOREM 1. D is a radical class, for any radical class A.

Proor. If § is a homomorphic image of R € Z®, then S[z] is a homo-
morphic image of R[x] € Z, so S[x] € Z#, that is, S € ZV. For an arbitrary
ring R, let {I, | A € A} be the set of ideals belonging to ZV. Each I,[x]
belongs to %, so

L[x] € 2(3 4 1,[x])
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for each 4, that is,
VALV ACIRE B

Thus I=3,1,€ ZV. If J/I < R[I and J[I € ZY, then
T[] = (J/D[z] e .
But I[z]< #(J[x]), so J[x]/%(J[x]) € &, that is,
J[x] = A(J[x]) e Z ,
whence J = I. This proves that ZW is a radical class and ZV(R)=1.

Since every ring R is a homomorphic image of R[x], we have ZVc #
for every radical class #, and by inductively defining #®+1)=Z™O,  we
obtain a chain

RB=RO"2HV o ... 29" ...

of radical classes, where
A™ = {R| R[x,,...,x,]€R}.

A radical class # is hereditary if all ideals of rings in # belong to %;
if in addition £ contains all nilpotent rings (or, equivalently, all zero-
rings) it is said to be supernilpotent.

ProPOSITION 2. If % is a hereditary (resp. supernilpotent) radical class,
then so 18 #W.

Proor. If R is a zeroring, so is R[x], so if # contains all zerorings,
AV does also. The rest is obvious.

For hereditary %, we have the following ‘local” description of Z®:

THEOREM 3. If Z is a hereditary radical class, then

" AV(R) = R n Z(R[x])
Jor any ring R.

Proor. Let o(R)=RnZ(R[x]) and let R* denote the Dorroh exten-
sion of K. Since
o(BR*) = Z(R*[z]) < R*[x]

and x € R*[x], we have

e(B*)[x] = Z(R*[x]) .



A NOTE ON RADICALS AND POLYNOMIAL RINGS 85

But o(R*) < R*, so o(R*)[x] < Z(R*[x]) and thus o(R*)[x] € #, that is,
o(R*) € ZV, whence o(R*) < ZV(R*). But
AV(R*)[x] < R*[x] and BO(R*)[x]e R,
)
AV(R*) = R* n ZV(R*)[x] = R* n Z(R*[x]) = o(R*) .
In addition, #® is hereditary, so (cf. [3, Theorem 48 p. 125])
ANR) = Rn AY(R*) = Rne(R*) = Bn R*nZ(R*x])
— Rn A(R*[x]) = Rn R[z] n B(R*[x]) = R n R(R[x])
= o(R) .

Ortiz [7] has shown that for any radical class %,
R4 = {R| o(R)=R}

is also a radical class (notation as in the proof of Theorem 3) and that
2 4(R)=o(R) whenever g(o(R))=p(R). Thus Theorem 3 says that % ,=
AV whenever Z is hereditary, and that in such cases Z ,(R)=o(R) for
every ring R.

Every non-void class € of rings is contained in a smallest radical class,
the lower radical class L(%) determined by €. We now show that € can
always be embedded in a smallest radical class £ with the property
that Z=%W.

ProOPOSITION 4. Let € be a non-void class of rings satisfying the condition
Re® = R[x]e¥ .
Then L(€)V = L(%).

Proo¥. If R € %, then R[z] € € < L(%), so R € L(€)®. Thus € < L(¥)®,
so L(%) < L(%)™.

COROLLARY 5. For a non-void class € of rings let

L*®) = L({R[zy,...,x,)| Re%, n=1,2,...}).

Then L*(€)V=L*(®) and L*(¥) 1is the smallest radical class containing
€ which has this property.

Proor. €< L*(%), as any ring R is a homomorphic image of R[x].
If # is a radical class for which €< .# =4, then for each Re ¥, we
have R[z]e #, and by induction R[x,,...,z,]€.# for each n. Thus
Lx#)cs.
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On the other hand, every radical class # has a largest radical subclass
A for which #V=_4.

PRrOPOSITION 6. Let & be a radical class, By, =NT,R™. Then R, is
a radical class, (Zy)V =R, and if M <X is a radical class which shares
these properties, then M = R,

Proor. The intersection of any collection of radical classes is itself a
radical class (see [6]). If R € Z,, then R € Z"+D=(Z™)V), that is R[x] €
Amforn=1,2,..., 80 R[x] € Ry, thatis, (#,)V=R,. If A is as described,
then

M= MV = . = M < G

for each n, s0 A S %, .

In this context, an obvious question is: Does the chain
R=RO2 RV ... 2942 ...

terminate for every radical class Z? We are unable to answer this ques-
tion, but we shall show, by an example, that chains of arbitrary finite
length can occur. The next couple of results prepare the way for this
example.

LemMA 7. Let R be a ring with identity, S a ring with identity and no
other mon-zero idempotents. S belongs to L({R}) if and only if it is a homo-
morphic image of R.

Proor. If S € L({R}) there exists a finite chain

ILi<al,q...«<1,«8

where I,(#0) is a homomorphic image of R (see [8]). But then I, has an
identity, which must be the identity of S, so I;=...=1I,=_8. The con-
verse is obvious.

ProprosITION 8. Let Q denote the field of rational numbers. Then
Qlz] ¢ L({Q}) and

Q[z]_, o ,xn+1] ¢ L({Q[.’L‘l, “ee ,xn]}), n= 1,2, c e
Proor. Each of the rings referred to has an unique non-zero idem-

potent—the identity. By Lemma 7, it suffices to show that Q[x] is not
a homomorphic image of Q and Q[z,,...,%,,,] is never a homomorphic
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image of Q[x,,...,x,]. The first assertion is obvious and both follow
from Theorem 28, p. 101 of [9].

CoroLLARY 9. Let Z=L({Q[xy,. . .,%,]}). Then

R=RO2RDQ ... DA™ Q RoD

Proor. If #%=R™ where k<m, then
RO o READ o ) = BB g0 RPD = RZ® forall j>k.

We need only show, therefore, that Zn+V+Z™, Now Q belongs to
Z™, but not to Z"+V, since then #=L({Q[x,,...,%,]}) would con-
tain Q[z,,...,x,,;], contradicting Proposition 8.

A hereditary radical class is subidempotent if it consists of rings in
which all ideals are idempotent (see [2]).

THEOREM 10. Let X be a hereditary radical class. Then Y ={0} if and
only if # is subidempotent.

Proor. If # is subidempotent and R belongs to #Z®, then for any
a € R, we have ax € I?, where I is the principal ideal of R[x] generated
by ax. This can happen only when a=0, so #V={0}. Conversely, if
ZV={0} and I <R e %, then # contains the zeroring I/I%, and hence
also (I/I?)[x], as the latter is isomorphic to a direct sum of copies of
I/I2. But then I[I2 € ZW, so I=1I2

3. An application.

A radical theoretic problem which has not so far received much at-
tention is to determine, for a ring R, which ideals can have the form
Z(R) for some radical class Z. (See [5] for some remarks on the question
for hereditary radicals). A special case is the characterization of those
rings R for which Z(R)=R or 0 for all radical classes # or for those
with some additional condition imposed. We shall call a ring R h-un-
equivocal if Z(R)=R or 0 for every hereditary radical class Z.

If o7 is a radical class of abelian groups, then the rings whose additive
groups belong to &/ form a radical class &7 (see [4] for further details)
and if o is hereditary, so is o/ . A consequence of this is that if a ring R
is to be k-unequivocal, its additive group must be torsion-free or primary.
The radical behaviour of polynomial rings over h-unequivocal rings is
partially described by the next result.
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ProrosiTioN ‘11. If an h-unequivocal ring R has a torsion-free additive
group or admits an algebra structure over an infinite field of finite charac-
teristic, then R[z,,...,x,] 18 h-unequivocal for n=1,2,... .

Proor. Amitsur [1] has shown that for any radical class #Z and any
ring R which has a torsion-free additive group or is an algebra over an
infinite field, Z(R[x])+ 0 implies RNZ(R[x])+0. (Amitsur’s results are
stated for a restricted class of radicals, but the restrictions do not in-
fluence the proof of the result cited). As we have seen, for hereditary %,
we have RnZ(R[x])=ZV(R). Thus if R is as described and & is a here-
ditary radical class with Z(R[x])+0, we have ZM(R) 0, so, since ZV
is hereditary, ZW(R)=R. But then R[z]e %, that is Z(R[x])=R[x].
Hence ER[x] is h-unequivocal. In addition, it inherits the other property
from R, so the result follows by induction.

If R is as in Proposition 11 and %Z(R)=0 for some hereditary radical
class Z, then R[] cannot belong to £, for then its homomorphic image
R would also. Thus we obtain

CoroLLARY 12. If R is an h-unequivocal ring which has a torsion-free
additive group or admits an algebra structure over an infinite field of finite
characteristic, and if Z(R)=0 for a hereditary radical class &, then

A(R[xy,...,2,]) =0 for mn=1,2,....
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