ON THE LENGTH OF FAITHFUL MODULES OVER ARTINIAN LOCAL RINGS

TOR H. GULLIKSEN

Let R be an Artinian local ring with residue field k=R/m. Let M be any faithful R-module, that is rM=0 implies r=0 for all $r \in R$. Then for a large class of rings R one has the inequality

$$l(M) \ge l(R) ,$$

l denoting classical length. It is easily seen that the inequality is valid whenever R is self injective, that is when $\dim_k \operatorname{Hom}_R(k,R) = 1$; see (2.8) in [1]. The purpose of the present note is to generalize this fact by showing that (*) is valid for all faithful R-modules M whenever $\dim_k \operatorname{Hom}_R(k,R) \leq 3$. This result is in a way the best possible, in fact for each integer $s \geq 4$ we can give an example of a local ring R and a faithful R-module M such that

$$l(M) < l(R)$$
 and $\dim_k \operatorname{Hom}_R(k,R) = s$.

We shall use the following notation.

R will always be an Artinian local ring with maximal ideal m. R-modules are assumed to be unitary and finitely generated. If M is an R-module we define the annihilator

$$\operatorname{an}(M) = \{r \in R \mid rM = 0\},\,$$

and the socle

$$s(M) = \{x \in M \mid mx = 0\}.$$

Observe that $s(M) \approx \operatorname{Hom}_{R}(R/\mathfrak{m}, M)$.

By l(M) we denote the length of M. If $\operatorname{an}(M) = \mathfrak{m}$ then $\dim M$ will denote the dimension of M as a vectorspace over R/\mathfrak{m} . By E we denote the injective hull of the R-module R/\mathfrak{m} . We let M^* denote the dual of M, that is

$$M^* = \operatorname{Hom}_{\mathcal{P}}(M, E)$$
.

Recall that the functor $\operatorname{Hom}_R(-,E)$ defines a duality on the category of finitely generated R-modules, cf. [2]. Note that

$$\operatorname{an}(M) = \operatorname{an}(M^*), \quad s(M^*) \approx M/\mathfrak{m}M.$$

M will be called a faithful R-module if an (M) = 0. Observe that E is, up to isomorphism, the only faithful R-module with one-dimensional socle.

LEMMA 1. Let M be a faithful R-module. Suppose that M/N is not faithful for any submodule $N \neq 0$. Then s(M) = s(R)M.

PROOF. Let N be a submodule of M such that

$$s(M) = (s(R)M) \oplus N$$
.

We are going to show that N=0. Suppose $N \neq 0$. Then by the minimality of M there exists an element $r \neq 0$ in R such that $rM \subseteq N$. We may as well assume that $r \in s(R)$. It follows that $rM \subseteq (s(R)M) \cap N = 0$. Hence r = 0, which is a contradiction.

LEMMA 2. Let M be a faithful R-module. Assume that neither N nor M/N is faithful for any submodule N such that $0 \neq N \neq M$. Then we have

(i)
$$\dim M/\mathfrak{m}M \leq \dim s(R)$$

(ii)
$$\dim s(M) \leq \dim s(R)$$
.

Moreover, if $M \neq R$ then at least one of the inequalities is strict.

PROOF. We will first prove (i). Let $m = \dim M/\mathfrak{m}M$ and let g_1, \ldots, g_m be a minimal set of generators for M. Since (i) is obvious if m = 1, we may assume that $m \geq 2$. For $1 \leq i \leq m$ let M_i be the submodule generated by all g_1, \ldots, g_m except g_i . Put $c_i = \operatorname{an}(M_i)$. By the minimality of M we have $c_i \neq 0$ hence $c_i \cap s(R) \neq 0$ for all i. Choose one non-zero element u_i in $c_i \cap s(R)$ for each i. Since M is faithful, the elements u_i are clearly linearly independent over the field R/\mathfrak{m} . It follows that $m \leq \dim s(R)$.

To prove (ii) we just have to apply (i) to the dual M^* , observing that M^* satisfies the same minimality conditions as M. We get

$$\dim s(M) = \dim M^*/\mathfrak{m}M^* \leq \dim s(R)$$
.

We will now assume that we have equality in both (i) and (ii), and we assume that M is not isomorphic to R. We are going to show that this is impossible.

Since M is faithful, but not isomorphic to R, we have $\dim M/\mathfrak{m}M \geq 2$. Let g_1, \ldots, g_m and u_1, \ldots, u_m be as above. The equality in (i) gives that u_1, \ldots, u_m is a basis for s(R). Hence by lemma 1 we obtain

$$s(M) = (u_1, \ldots, u_m)(g_1, \ldots, g_m) = (u_1g_1, u_2g_2, \ldots, u_mg_m).$$

Let c be the annihilator of the element $g_1 + \ldots + g_m$. By minimality of M we have $c \neq 0$ and hence $c \cap s(R) \neq 0$. Let u be a non-zero element in $c \cap s(R)$. Let r_1, \ldots, r_m be elements in R such that $u = \sum_{i=1}^m r_i u_i$. We have

$$0 = u(g_1 + \ldots + g_m) = \sum_{i=1}^m r_i u_i g_i$$
.

Since not all r_i are in m, the equation above shows that $\dim s(M) < m$ contradicting the equality in (ii).

COROLLARY. Let M be as in lemma 2 and suppose that $\dim s(R) \leq 2$. Then $M \approx R$ or $M \approx E$.

PROOF. If $M \neq R$ then by lemma 2 we have $\dim s(M) = 1$, hence $M \approx E$.

THEOREM 1. Let R be an Artinian local ring with

$$\dim_{R/m} \operatorname{Hom}_{R}(R/\mathfrak{m}, R) \leq 3$$
.

Let M be a faithful R-module. Then we have $l(M) \ge l(R)$.

PROOF. Clearly we may assume that M is a faithful module of minimal length, so that M as well as M^* satisfies the assumption in lemma 2. If $\dim s(R) \leq 2$ then the theorem follows from the above corollary. We may therefore assume that $\dim s(R) = 3$. Moreover we may assume that M is not isomorphic to R. Hence using lemma 2 and the relation

$$\dim M/\mathfrak{m}M = \dim s(M^*),$$

we have either

$$\dim s(M^*) \leq 2$$
 or $\dim s(M) \leq 2$.

There is no loss of generality in assuming that $\dim s(M) \leq 2$. If $\dim s(M) = 1$ then $M \approx E$, and if $\dim M/\mathfrak{m}M = 1$ then $M \approx R$. Hence in the rest of the proof we may work under the following assumptions:

$$\dim s(R) = 3$$
, $\dim s(M) = 2$, $\dim M/\mathfrak{m}M \ge 2$.

By the second of these assumptions we can find non-zero irreducible

submodules M_1, M_2 in M such that $0 = M_1 \cap M_2$ (see § 2 in [1]). Put $a_i = \operatorname{an}(M/M_i)$ for i = 1, 2. We will first show that

(1)
$$l(M/M_i) = l(R/\alpha_i) \quad \text{for } i = 1,2.$$

Since M_i is irreducible we have $\dim s(M/M_i) = 1$. It follows that $(M/M_i)^*$ is a homomorphic image of R. Moreover we have

$$\operatorname{an}((M/M_i)^*) = \operatorname{an}(M/M_i) = \mathfrak{a}_i,$$

and hence $(M/M_i)^* \approx R/\mathfrak{a}_i$, so (1) follows.

Since M is faithful we have $a_1 \cap a_2 = 0$. Since $\dim s(R) = 3$, at least one of the two vectorspaces $s(a_1)$ and $s(a_2)$ is one-dimensional. We assume that $\dim s(a_1) = 1$. In view of (1) it now suffices to show that $l(M_1) \ge l(a_1)$. Since $a_1 M \subseteq M_1$ it will be sufficient to prove that

$$(2) l(\mathfrak{a}_1 M) \ge l(\mathfrak{a}_1).$$

Let g_1, g_2, \ldots, g_m be a minimal set of generators for M. Put $\mathfrak{b}_i = \operatorname{an}(g_i)$ for $1 \leq i \leq m$. Then $\bigcap_{i=1}^m \mathfrak{b}_i = 0$. Hence one of the \mathfrak{b}_i , say \mathfrak{b}_1 , does not contain $s(\mathfrak{a}_1)$. Since $\dim s(\mathfrak{a}_1) = 1$ we conclude that $\mathfrak{a}_1 \cap \mathfrak{b}_1 = 0$. We obtain $\mathfrak{a}_1 M \supset \mathfrak{a}_1 g_1 \approx \mathfrak{a}_1 (R/\mathfrak{b}_1) \approx \mathfrak{a}_1/\mathfrak{a}_1 \cap \mathfrak{b}_1 = \mathfrak{a}_1$ which yields (2).

Theorem 2. Let $s \ge 4$ be an integer. Then there exists a local Artinian ring R and a faithful R-module M such that

(i)
$$\dim_{R/\mathfrak{m}} \operatorname{Hom}_{R}(R/\mathfrak{m}, R) = s,$$

(ii)
$$l(M) < l(R).$$

PROOF. Let $m \ge 2$ be an integer and let k be an arbitrary field. Let R_m be the k-algebra of $(m+2) \times (m+2)$ -matrices of the form

(3)
$$\left(\begin{array}{c|c} \lambda I_{m,m} & O_{m,2} \\ \hline a_1 \dots a_m & \\ b_1 \dots b_m & \lambda I_{2,2} \end{array} \right),$$

where λ , a_1, \ldots, a_m , b_1, \ldots, b_m run through k and $I_{p,q}$, and $O_{p,q}$ denotes the identity matrix and the zero-matrix of size $p \times q$. Clearly R_m is a commutative local Artinian ring of length $l(R_m) = 2m + 1$. In fact the socle of R_m coincides with the maximal ideal which consists of all matrices of the form (3) in which $\lambda = 0$. Hence $\dim s(R_m) = 2m$.

Now let M be the k-vector space k^{m+2} . Clearly M becomes a faithful R_m -module in the obvious way. We have

$$l(M) = \dim_k M = m+2 < 2m+1 = l(R_m).$$

This proves the theorem in the case where s is even.

Assume that s is odd. Write s=2m-1 where $m \ge 3$. Consider R_m and M as before. Let R'_m be the subring consisting of all matrices of the form (3) in which $a_m=0$. Clearly R'_m is a local ring of length 2m and $\dim s(R'_m)=2m-1=s$. Moreover M is a faithful R'_m -module with

$$l(M) = \dim_k M = m+2 < 2m = l(R'_m).$$

The proof is now complete.

REMARK. Let $R = C[X, Y]/(X, Y)^4$. It can be shown that $l(M) \ge l(R)$ for any faithful R-module, inspite of the fact that $\dim s(R) = 4$.

REFERENCES

- 1. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- 2. E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), 511-528.

OSLO UNIVERSITY, NORWAY