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GENERALIZED V-RINGS
V.S. RAMAMURTHI and K. M. RANGASWAMY

1. Introduction.

Kaplansky [11] noticed that a commutative ring is (von Neumann)
regular if and only if it is a V-ring, that is, each simple module over the
ring is injective. However in the general case, regularity of a ring is
neither necessary nor sufficient to ensure that it is a left or a right
V-ring, ([4], [9]). Here we consider right V-rings and also the generalized
right V-rings which are written for short as GV-rings. These are the
rings over which each simple right module is either projective or injec-
tive. We begin with the simple observation that every right V-ring pos-
sesses the property that to each element @ in R there exists an element x
in RaR such that a=ax. Our investigation of GV-rings generalizes the
work of [1], [3], [18]. For instance a ring R is a right GV-ring if and
only if J(R)nZ(R)=0, and every proper large right ideal of R is the inter-
section of all maximal right ideals containing it. In the presence of com-
mutativity, von Neumann regularity is equivalent to the GV-ring condi-
tion. The right noetherian semiprime right GV-rings are precisely the
rings R such that each semisimple right R-module is injective.

2. Preliminaries.

All the rings that we consider are associative rings with identity and
all the modules, unitary right modules. A ring R will be called a right
V-ring if each simple right R-module is injective and, a generalized right
V-ring or for short, a GV-ring if each simple right R-module is either
projective or injective. Observe that a GV-ring with zero socle is a
V-ring. We shall require the following characterisation of right V-rings
[5]: The following are equivalent for any ring R:

1) R is a right V-ring,
2) each right ideal of R is an intersection of maximal right ideals,
3) each right R-module has zero radical.

A ring R is called (von Neumann) regular if for each element a in R
there exists an element 2 in R such that a=axa. A semiprime ring is
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one which has no nonzero nilpotent ideals and a Goldie ring is a ring R
which satisfies the conditions

1) R has maximum condition on annihilator right ideals,
2) R contains no infinite direct sum of right ideals.

A right R-module M is called singular if each element of M is anni-
hilated by a large right ideal of R. It can be checked that a ring R is
a right GV-ring if and only if each singular simple right R-module is
injective. For any right R-module M, Z(M), SocM,J(M) will denote
respectively the singular submodule of M, the sum of all simple sub-
modules of M, and the intersection of all maximal submodules of M.
A submodule S will be called an absolute summand if for any submodule
T of M such that 7 is maximal with respect to SNn7T =0, we have
S@®T =M. A submodule 8 is fully invariant if S is invariant under every
R-endomorphism of M. The fully invariant submodules of injective
modules are called quasi-injective. Observe that any simple R-module
is quasi-injective. An R-module is =-quasi-injective if each direct prod-
uct of copies of M is quasi-injective. An R-module is semisimple if
it is a direct sum of simple modules.

3. Characterising Properties.

Prorosition 3.1. If R is a right V-ring, then for each element a € R
there is an element x € RaR such that a=ax.

Proor. If there is no element x in RaR such that a=ax, then
a ¢ aRaR. Hence by Villamayor (see [5, p. 130]), there is a maximal
right ideal M of R which contains aRaR but not a. Since R=aR+ M
we have 1=as+m for some s € R and m € M, so that a =asa+ma is an
element of M, a contradiction. Hence the assertion.

We call rings with the property of proposition 3.1 right weakly regular
rings. We shall need the following characterisations of such rings (due to
Ramamurthi [10] and Vanaja [12]).

ProrosiTION 3.2. Any ring R has all or none of the following proper-
ties:

1) R is right weakly regular.
2) The quotient R|I is left R-flat for any two-sided ideal I of R.
3) The equation 1*=1 holds for every right ideal I of R.
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We now give a characterisation of GV-rings, and this generalizes
theorem 1.1 of [1].

THEOREM 3.3. The following are equivalent for any ring R.

1) Every proper large right ideal of R is an intersection of maximal right
ideals of R, and Z(R)nJ(R)=0.

2) R is a right GV-ring.

3) The module J(M) vanishes for any right R-module M with Z(M)
large in M.

4) If M is any right R-module, then every proper large submodule of M
18 an tntersection of maximal submodules of M and Z(M)nJ(M)=0

Proor. 1 = 2: Let X be a simple singular right R-module and I a
large right ideal of R with a nonzero R-homomorphism f: I - X. If
K (1) is the kernel of f and K is not a large R-submodule of I, then K
is a summand of 7, and so I=K@®S. Here S~ X is simple so that 82=0
or 8S=eR where e?=e. Since S is singular, S<Z(R) and hence S=+eR.
Thus S<J(R)nZ(R)=0, a contradiction. Thus K is large in I and hence
in R. Let M be a maximal right ideal of R containing K but not I.
Then R/K=M|K®I|K. Let g be the natural mapR - R/K, let h be the
projection R/K — I/K and k be the isomorphism I/K — X. Then the
composite map khg extends f from I to R. Thus X is injective.

2 =-3: Let 0fme M. Since Z(M) islargein M, we get 0+ mr=x € Z(M)
for some r € R. Let L be a submodule of M maximal with respect to
x ¢ L. Then the module (xR + L)/L is simple singular and hence is an
injective submodule of the subdirectly irreducible module M/L, so that
M|L=(xR+ L)/L. This implies that L is a maximal submodule of M.
Clearly m ¢ L. Thus J(M)=0.

3 = 4: If M is any right R-module and S+ M is large in M, then,
by hypothesis, J(M[S)=0 so that S is the intersection of all the maximal
submodules of M containing S. Suppose

0+ meZ(M)nJ(M).

Let L be a submodule of M maximal with respect to m ¢ L. Clearly
M|L is subdirectly inreducible and is not simple since L is not a maximal
submodule of M so that J(M[L)+0. But (mR+ L)/L is singular so that
Z(M|L) is large in ML and hence, by hypothesis, J(M[L)=0, a contra-
diction.

4 = 1: Trivial.
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ReMaRrk 1. The condition Z(R)nJ(R)=0 in (1) cannot be dropped.
In fact, if R is the ring of integers modulo p? where p is a prime, then
trivially each proper large right ideal of R is an intersection of maximal
right ideals, but R is not a GV-ring, since R/pR is neither injective nor
projective.

REMARK 2. The condition (4) implies that if R is a GV-ring, then for
any right R-module M, we get J(M)<Soc M. This is because Soc M is
the intersection of all large submodule of M and J(M/[S)=0 for every
large submodule of M. In particular, J(R)<=SocR and hence (J(R))?=0.

ProrositioN 3.4. If R is a right GV-ring in which every primitive idem-
potent 1s central, then R 1s a right V-ring.

Proor. Let S be a simple projective right ER-module so that S~eR
where e is an idempotent. Let I be an arbitrary right ideal of R and
f: I —eR any nonzero epimorphism with kernel K. Then I=K®T
where 7'~ eR. Since ¢ is central, ¢R is a fully invariant summand of the
right R-module R and hence eR=1T. Clearly K <(1—e¢)R and hence the
map given by g=0 on (1—e)R and g=f on eR is an extension of f. Hence
S is injective.

CoROLLARY 3.5. 4 right GV-ring with no nonzero nilpotent elements is a
V-ring.

Proposition 3.4 at once yields a characterisation of commutative
GV-rings.

THEOREM 3.6. For any commutative ring R the following are equivalent

(1) R ¢s a GV-ring,
(2) R is a V-ring, ‘
(3) R 18 a von Neumann regular ring.

Proor. 1 =2 by proposition 3.4 and 2 =3 by proposition 3.1.
Since for any regular ring R, J(R)=0 and furthermore every homo-
morphic image of a regular ring is regular, we have 3 => 1 by theorem 3.3.

The following two propositions give sufficient conditions for a right
GV-ring and a right weakly regular ring to be a V-ring.
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ProrosiTiON 3.7. A ring R is a V-ring if and only if R is a right GV-
ring and every simple right ideal of R is an absolute summand of R.

Proor. Let R be a V-ring and S be a simple right ideal of R. Let T
be a right ideal of B maximal with respect to Sn7'=0. If X =8®T and
X — S is the obvious projection, then, by the injectivity of S, this ex-
tends to an epimorphism f: R - S. Clearly kerfnS=0 and kerf>T.
Hence kerf=7. Thus S®T =R as kerf is a maximal right ideal in R.
Conversely, let R be a right GV-ring and let every simple right ideal of
R be an absolute summand. If X is a projective simple right R-module
and f: I - X is a nonzero morphism with kernel K, then K is a sum-
mand of I, that is I =K®@L for a right ideal L of R. As L is isomorphic
to X, the ideal L is simple and hence, if 7' is a right ideal of R containing
K and maximal with respect to 7'nL =0, then LT = R. The projection
R — L, followed by the isomorphism L — X, extends f from I to R.
Thus X is injective.

ProposITION 3.8. A ring R is a right V-ring if and only if it is right
weakly regqular and each simple right R-module is s-quast injective.

Proor. Let X be a simple right R-module that is z-quasi-injective.
Then, by Fuller [6], X is an injective right R/l(X)-module where /(X)
is the annihilator of X in R. If R is right weakly regular then, by propo-
sition 3.2, the left R-module R/l(X) is flat, so that

inj dimzX < inj dimpgyx X

by Cartan and Eilenberg [2, exercise 9, chapter VI]. Thus X is an
injective right R-module. The converse is trivial.

We conclude this section by noting the following.

ProposITION 3.9. 4 ring R is a V-ring if and only if R, (the ring of
all n xn matrices over R) 1s a V-ring.

Proor. This follows from the Morita equivalence of the categories of
R-modules and R,-modules.

4. Semiprime GV-rings.

In general a GV-ring need not be semiprime. We give below, conditions
under which a right GV-ring is semiprime. Our main result in this sec-
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tion asserts that, noetherian semiprime GV-rings are precisely the rings
over which each semisimple module is injective.

LeMMA 4.1. In any right GV-ring each large right ideal is idempotent.

Proor. Let I be a large right ideal of the right GV-ring R such that
I2% 1. Then there is an element a € R, such that a € I but a ¢ I2. By
Zorn’s lemma, choose a right ideal 7', maximal among those containing
I2 but not a. Then (aR+T)/T is a simple singular right R-module and
hence injective. Since R/T is an essential extension of (aR+T)/T, it
follows that 7' is a maximal right ideal of R. Since a ¢ 7', there are ele-
ments r € R, t € T such that ar+t=1. Thus ara+ta=a is an element of
T, a contradiction.

ProrosITION 4.2. A right GV-ring is semiprime if and only if each
two-sided ideal of R s tdempotent.

Proor. Let A be a two-sided ideal of the semiprime right GV-ring R.
If B is the right annihilator of 4 in R, then B is a two-sided ideal and
since R is semiprime, 4NB=0 and 4 + B is a large right ideal. Hence,
by lemma 4.1,

A®B = (A®B)? = A*+ AB+BA+B* = A*®B*.

Thus A =A42. The converse is obvious.

ProrosiTiON 4.3. 4 ring R, in which each large right ideal is two-sided,
18 semiprime right GV, if and only if it is right weakly regular.

Proor. Suppose that R is a right weakly regular ring in which every
large right ideal is two-sided. Then by Ramamurthi [10], we have J(R)=0
and J(R/[I)=0 for each large right ideal I of R, so that, by theorem 3.3,
R is a right GV-ring. Conversely, let a be any element of the semiprime
right GV-ring R and let H be a right ideal of R, maximal with respect
to aRnH =0. Then, aR+ H is a large right ideal. As this is a two-sided
ideal, RaR<(aR+ H) so that

aR+(RaRn H) = RaR = (RaR)?
= aRaR+aR(RaR n H)+ (RaR n H)aR+ (RaR n H)(RaRn H) .
Thus
aR = aRaR+aR(RaR n H) = aRaR ,

which implies that R is a right weakly regular ring, by proposition 3.2.
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ReEMARK 3. It is known that a self-injective regular ring need not be
a V-ring [9]. It is easy to deduce from the above proposition, that, any
self-injective regular ring in which each large right ideal is two-sided
(these are precisely the semiprime g-rings of [7]) is a V-ring.

Next we consider noetherian GV-rings. The following lemma is proved
in [10].

Lemma 4.4. Every ring R contains a largest two-sided ideal W, which is
right weakly regular, such that 0 is the only right weakly regular ideal in
R|W. W is called the RWR-radical of R.

ProrosITION 4.5. Any prime right GV-ring R is right weakly regular.

Proor. If R has zero socle then it is a V-ring and hence right weakly
regular by proposition 3.1. Let B have a nonzero socle S. Then S isa
regular ideal of R (see the proof of theorem 1.8 of [1]) so that the RWR-
radical of R is nonzero. Since R is a prime ring and W is a two-sided
ideal of R, it is a large right ideal of R. Hence by lemma 4.1, the ring
R[W is right weakly regular, which implies that R/W =0 or R=W.
Hence the proposition.

COROLLARY 4.6. Any prime Goldie right GV-ring is simple.

Proor. Follows from proposition 4.5 and the fact that any prime
right weakly regular Goldie ring is simple (see [10]).

We need the following result, due to Ornstein [8], for our next theorem.

Lemma 4.7. Let R be a non-prime, semiprime ring. Then R is a right
Artin ring if and only if R[A is right noetherian for every nonzero two-sided
wdeal A of R, and R|P is a simple ring for every nonzero prime tdeal P of R.

THEOREM 4.8. The following are equivalent for any ring R.

(1) R ¢s a semiprime right noetherian right GV-ring.

(2) R s either a simple right noetherian V-ring with zero socle or is a
semisimple Artin ring.

(3) Every semissmple right R-module is injective.

Proor. 1 = 2: If R is prime, then the implication follows by corol-
lary 4.6. Let R be not prime. If 4 is any nonzero two-sided ideal of R,
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then R/A is right noetherian because R is so. If P is any nonzero prime
ideal of R then R/P is a prime right noetherian right GV-ring so that by
corollary 4.6, the ring R/P is simple. Thus by lemma 4.7, R is a semi-
simple Artin ring.

3 = 1: It is sufficient to prove that R is right noetherian. Let

ILiclyc...cl, <.

be an ascending sequence of distinct right ideals of R. As R is a V-ring,
there are maximal right ideals M, (k=1,2,...) such that I, <M, but
I M. Let p, denote the natural projection R—~ R/M,. If I=
U, I}, define a morphism

fo I35 @OR[M,,

by f(x) =351 pi(x) (the summation on the right being meaningful since
every « € I belongs to all but a finite number of the M,’s). Then f extends
to a morphism

9: B30 OR[MU,,

i1 DRI M,

is a semi-simple R-module and hence injective. Since R has an identity,
g(R) and hence g([) is contained in

2O R/,

for some positive integer ¢. This implies that the assumed chain of right
ideals is finite.

2 = 3: Since R is right noetherian, each direct sum of injective right
R-modules is injective. Because R is furthermore a V-ring, 3 follows.

since

CoROLLARY 4.9. ([3]) 4 commutative ring R is Artin semisimple if and
only sf every semisimple R-module is injective.
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