GENERALIZED V-RINGS

V. S. RAMAMURTHI and K. M. RANGASWAMY

1. Introduction.

Kaplansky [11] noticed that a commutative ring is (von Neumann) regular if and only if it is a V-ring, that is, each simple module over the ring is injective. However in the general case, regularity of a ring is neither necessary nor sufficient to ensure that it is a left or a right V-ring, ([4], [9]). Here we consider right V-rings and also the generalized right V-rings which are written for short as GV-rings. These are the rings over which each simple right module is either projective or injective. We begin with the simple observation that every right V-ring possesses the property that to each element \(a \) in \(R \) there exists an element \(x \) in \(RaR \) such that \(a = ax \). Our investigation of GV-rings generalizes the work of [1], [3], [13]. For instance a ring \(R \) is a right GV-ring if and only if \(J(R) \cap Z(R) = 0 \), and every proper large right ideal of \(R \) is the intersection of all maximal right ideals containing it. In the presence of commutativity, von Neumann regularity is equivalent to the GV-ring condition. The right noetherian semiprime right GV-rings are precisely the rings \(R \) such that each semisimple right \(R \)-module is injective.

2. Preliminaries.

All the rings that we consider are associative rings with identity and all the modules, unitary right modules. A ring \(R \) will be called a right V-ring if each simple right \(R \)-module is injective and, a generalized right V-ring or for short, a GV-ring if each simple right \(R \)-module is either projective or injective. Observe that a GV-ring with zero socle is a V-ring. We shall require the following characterisation of right V-rings [5]: The following are equivalent for any ring \(R \):

1) \(R \) is a right V-ring,
2) each right ideal of \(R \) is an intersection of maximal right ideals,
3) each right \(R \)-module has zero radical.

A ring \(R \) is called (von Neumann) regular if for each element \(a \) in \(R \) there exists an element \(x \) in \(R \) such that \(a = axa \). A semiprime ring is

Received March 2, 1971.
one which has no nonzero nilpotent ideals and a Goldie ring is a ring \(R \) which satisfies the conditions

1) \(R \) has maximum condition on annihilator right ideals,
2) \(R \) contains no infinite direct sum of right ideals.

A right \(R \)-module \(M \) is called singular if each element of \(M \) is annihilated by a large right ideal of \(R \). It can be checked that a ring \(R \) is a right GV-ring if and only if each singular simple right \(R \)-module is injective. For any right \(R \)-module \(M \), \(Z(M), \text{Soc}M, J(M) \) will denote respectively the singular submodule of \(M \), the sum of all simple submodules of \(M \), and the intersection of all maximal submodules of \(M \). A submodule \(S \) will be called an absolute summand if for any submodule \(T \) of \(M \) such that \(T \) is maximal with respect to \(S \cap T = 0 \), we have \(S \oplus T = M \). A submodule \(S \) is fully invariant if \(S \) is invariant under every \(R \)-endomorphism of \(M \). The fully invariant submodules of injective modules are called quasi-injective. Observe that any simple \(R \)-module is quasi-injective. An \(R \)-module is \(\pi \)-quasi-injective if each direct product of copies of \(M \) is quasi-injective. An \(R \)-module is semisimple if it is a direct sum of simple modules.

Proposition 3.1. If \(R \) is a right \(V \)-ring, then for each element \(a \in R \) there is an element \(x \in RaR \) such that \(a = ax \).

Proof. If there is no element \(x \) in \(RaR \) such that \(a = ax \), then \(a \notin aRaR \). Hence by Villamayor (see [5, p. 130]), there is a maximal right ideal \(M \) of \(R \) which contains \(aRaR \) but not \(a \). Since \(R = aR + M \) we have \(1 = as + m \) for some \(s \in R \) and \(m \in M \), so that \(a = asa + ma \) is an element of \(M \), a contradiction. Hence the assertion.

We call rings with the property of proposition 3.1 right weakly regular rings. We shall need the following characterisations of such rings (due to Ramamurthi [10] and Vanaja [12]).

Proposition 3.2. Any ring \(R \) has all or none of the following properties:

1) \(R \) is right weakly regular.
2) The quotient \(R/I \) is left \(R \)-flat for any two-sided ideal \(I \) of \(R \).
3) The equation \(I^2 = I \) holds for every right ideal \(I \) of \(R \).
We now give a characterisation of GV-rings, and this generalizes theorem 1.1 of [1].

Theorem 3.3. The following are equivalent for any ring R.

1) Every proper large right ideal of R is an intersection of maximal right ideals of R, and $Z(R) \cap J(R) = 0$.

2) R is a right GV-ring.

3) The module $J(M)$ vanishes for any right R-module M with $Z(M)$ large in M.

4) If M is any right R-module, then every proper large submodule of M is an intersection of maximal submodules of M and $Z(M) \cap J(M) = 0$

Proof. 1 \Rightarrow 2: Let X be a simple singular right R-module and I a large right ideal of R with a nonzero R-homomorphism $f: I \to X$. If $K (\neq I)$ is the kernel of f and K is not a large R-submodule of I, then K is a summand of I, and so $I = K \oplus S$. Here $S \cong X$ is simple so that $S^2 = 0$ or $S = eR$ where $e^2 = e$. Since S is singular, $S \subset Z(R)$ and hence $S \neq eR$. Thus $S \subset J(R) \cap Z(R) = 0$, a contradiction. Thus K is large in I and hence in R. Let M be a maximal right ideal of R containing K but not I. Then $R/K = M/K \oplus I/K$. Let g be the natural map $R \to R/K$, let h be the projection $R/K \to I/K$ and k be the isomorphism $I/K \to X$. Then the composite map khg extends f from I to R. Thus X is injective.

2 \Rightarrow 3: Let $0 \neq m \in M$. Since $Z(M)$ is large in M, we get $0 \neq mr = x \in Z(M)$ for some $r \in R$. Let L be a submodule of M maximal with respect to $x \notin L$. Then the module $(xR + L)/L$ is simple singular and hence is an injective submodule of the subdirectly irreducible module M/L, so that $M/L = (xR + L)/L$. This implies that L is a maximal submodule of M. Clearly $m \notin L$. Thus $J(M) = 0$.

3 \Rightarrow 4: If M is any right R-module and $S \neq M$ is large in M, then, by hypothesis, $J(M/S) = 0$ so that S is the intersection of all the maximal submodules of M containing S. Suppose

$$0 \neq m \in Z(M) \cap J(M).$$

Let L be a submodule of M maximal with respect to $m \notin L$. Clearly M/L is subdirectly irreducible and is not simple since L is not a maximal submodule of M so that $J(M/L) \neq 0$. But $(mR + L)/L$ is singular so that $Z(M/L)$ is large in M/L and hence, by hypothesis, $J(M/L) = 0$, a contradiction.

4 \Rightarrow 1: Trivial.
REMARK 1. The condition \(Z(R) \cap J(R) = 0 \) in (1) cannot be dropped. In fact, if \(R \) is the ring of integers modulo \(p^2 \) where \(p \) is a prime, then trivially each proper large right ideal of \(R \) is an intersection of maximal right ideals, but \(R \) is not a GV-ring, since \(R/pR \) is neither injective nor projective.

REMARK 2. The condition (4) implies that if \(R \) is a GV-ring, then for any right \(R \)-module \(M \), we get \(J(M) \subseteq \text{Soc } M \). This is because \(\text{Soc } M \) is the intersection of all large submodule of \(M \) and \(J(M/S) = 0 \) for every large submodule of \(M \). In particular, \(J(R) \subseteq \text{Soc } R \) and hence \((J(R))^2 = 0 \).

PROPOSITION 3.4. If \(R \) is a right GV-ring in which every primitive idempotent is central, then \(R \) is a right V-ring.

PROOF. Let \(S \) be a simple projective right \(R \)-module so that \(S \cong eR \) where \(e \) is an idempotent. Let \(I \) be an arbitrary right ideal of \(R \) and \(f: I \rightarrow eR \) any nonzero epimorphism with kernel \(K \). Then \(I = K \oplus T \) where \(T \cong eR \). Since \(e \) is central, \(eR \) is a fully invariant summand of the right \(R \)-module \(R \) and hence \(eR = T \). Clearly \(K \subseteq (1-e)R \) and hence the map given by \(g = 0 \) on \((1-e)R \) and \(g = f \) on \(eR \) is an extension of \(f \). Hence \(S \) is injective.

COROLLARY 3.5. A right GV-ring with no nonzero nilpotent elements is a V-ring.

Proposition 3.4 at once yields a characterisation of commutative GV-rings.

THEOREM 3.6. For any commutative ring \(R \) the following are equivalent

1. \(R \) is a GV-ring,
2. \(R \) is a V-ring,
3. \(R \) is a von Neumann regular ring.

PROOF. \(1 \Rightarrow 2 \) by proposition 3.4 and \(2 \Rightarrow 3 \) by proposition 3.1. Since for any regular ring \(R \), \(J(R) = 0 \) and furthermore every homomorphic image of a regular ring is regular, we have \(3 \Rightarrow 1 \) by theorem 3.3.

The following two propositions give sufficient conditions for a right GV-ring and a right weakly regular ring to be a V-ring.
Proposition 3.7. A ring R is a V-ring if and only if R is a right GV-ring and every simple right ideal of R is an absolute summand of R.

Proof. Let R be a V-ring and S be a simple right ideal of R. Let T be a right ideal of R maximal with respect to $S \cap T = 0$. If $X = S \oplus T$ and $X \to S$ is the obvious projection, then, by the injectivity of S, this extends to an epimorphism $f: R \to S$. Clearly $\ker f \cap S = 0$ and $\ker f \supseteq T$. Hence $\ker f = T$. Thus $S \oplus T = R$ as $\ker f$ is a maximal right ideal in R. Conversely, let R be a right GV-ring and let every simple right ideal of R be an absolute summand. If X is a projective simple right R-module and $f: I \to X$ is a nonzero morphism with kernel K, then K is a summand of I, that is $I = K \oplus L$ for a right ideal L of R. As L is isomorphic to X, the ideal L is simple and hence, if T is a right ideal of R containing K and maximal with respect to $T \cap L = 0$, then $L \oplus T = R$. The projection $R \to L$, followed by the isomorphism $L \to X$, extends f from I to R. Thus X is injective.

Proposition 3.8. A ring R is a right V-ring if and only if it is right weakly regular and each simple right R-module is \(\pi \)-quasi injective.

Proof. Let X be a simple right R-module that is \(\pi \)-quasi-injective. Then, by Fuller [6], X is an injective right $R/\ell(X)$-module where $\ell(X)$ is the annihilator of X in R. If R is right weakly regular then, by proposition 3.2, the left R-module $R/\ell(X)$ is flat, so that

$$\text{inj dim}_RX \leq \text{inj dim}_{R/\ell(X)}X$$

by Cartan and Eilenberg [2, exercise 9, chapter VI]. Thus X is an injective right R-module. The converse is trivial.

We conclude this section by noting the following.

Proposition 3.9. A ring R is a V-ring if and only if R_n (the ring of all $n \times n$ matrices over R) is a V-ring.

Proof. This follows from the Morita equivalence of the categories of R-modules and R_n-modules.

4. Semiprime GV-rings.

In general a GV-ring need not be semiprime. We give below, conditions under which a right GV-ring is semiprime. Our main result in this sec-
tion asserts that, noetherian semiprime GV-rings are precisely the rings over which each semisimple module is injective.

Lemma 4.1. In any right GV-ring each large right ideal is idempotent.

Proof. Let I be a large right ideal of the right GV-ring R such that $I^2 + I$. Then there is an element $a \in R$, such that $a \in I$ but $a \notin I^2$. By Zorn’s lemma, choose a right ideal T, maximal among those containing I^2 but not a. Then $(aR + T)/T$ is a simple singular right R-module and hence injective. Since R/T is an essential extension of $(aR + T)/T$, it follows that T is a maximal right ideal of R. Since $a \notin T$, there are elements $r \in R, t \in T$ such that $ar + t = 1$. Thus $ara + ta = a$ is an element of T, a contradiction.

Proposition 4.2. A right GV-ring is semiprime if and only if each two-sided ideal of R is idempotent.

Proof. Let A be a two-sided ideal of the semiprime right GV-ring R. If B is the right annihilator of A in R, then B is a two-sided ideal and since R is semiprime, $A \cap B = 0$ and $A + B$ is a large right ideal. Hence, by lemma 4.1,

$$A \oplus B = (A \oplus B)^2 = A^2 + AB + BA + B^2 = A^2 \oplus B^2.$$

Thus $A = A^2$. The converse is obvious.

Proposition 4.3. A ring R, in which each large right ideal is two-sided, is semiprime right GV, if and only if it is right weakly regular.

Proof. Suppose that R is a right weakly regular ring in which every large right ideal is two-sided. Then by Ramamurthi [10], we have $J(R) = 0$ and $J(R/I) = 0$ for each large right ideal I of R, so that, by theorem 3.3, R is a right GV-ring. Conversely, let a be any element of the semiprime right GV-ring R and let H be a right ideal of R, maximal with respect to $aR \cap H = 0$. Then, $aR + H$ is a large right ideal. As this is a two-sided ideal, $RaR \subseteq (aR + H)$ so that

$$aR + (RaR \cap H) = RaR = (RaR)^2$$

$$= aRaR + aR(RaR \cap H) + (RaR \cap H)aR + (RaR \cap H)(RaR \cap H).$$

Thus

$$aR = aRaR + aR(RaR \cap H) = aRaR,$$

which implies that R is a right weakly regular ring, by proposition 3.2.
Remark 3. It is known that a self-injective regular ring need not be a V-ring [9]. It is easy to deduce from the above proposition, that, any self-injective regular ring in which each large right ideal is two-sided (these are precisely the semiprime q-rings of [7]) is a V-ring.

Next we consider noetherian GV-rings. The following lemma is proved in [10].

Lemma 4.4. Every ring R contains a largest two-sided ideal W, which is right weakly regular, such that 0 is the only right weakly regular ideal in R/W. W is called the RWR-radical of R.

Proposition 4.5. Any prime right GV-ring R is right weakly regular.

Proof. If R has zero socle then it is a V-ring and hence right weakly regular by proposition 3.1. Let R have a nonzero socle S. Then S is a regular ideal of R (see the proof of theorem 1.8 of [1]) so that the RWR-radical of R is nonzero. Since R is a prime ring and W is a two-sided ideal of R, it is a large right ideal of R. Hence by lemma 4.1, the ring R/W is right weakly regular, which implies that $R/W = 0$ or $R = W$. Hence the proposition.

Corollary 4.6. Any prime Goldie right GV-ring is simple.

Proof. Follows from proposition 4.5 and the fact that any prime right weakly regular Goldie ring is simple (see [10]).

We need the following result, due to Ornstein [8], for our next theorem.

Lemma 4.7. Let R be a non-prime, semiprime ring. Then R is a right Artin ring if and only if R/A is right noetherian for every nonzero two-sided ideal A of R, and R/P is a simple ring for every nonzero prime ideal P of R.

Theorem 4.8. The following are equivalent for any ring R.

1) R is a semiprime right noetherian right GV-ring.
2) R is either a simple right noetherian V-ring with zero socle or is a semisimple Artin ring.
3) Every semisimple right R-module is injective.

Proof. 1 \Rightarrow 2: If R is prime, then the implication follows by corollary 4.6. Let R be not prime. If A is any nonzero two-sided ideal of R,
then \(R/A \) is right noetherian because \(R \) is so. If \(P \) is any nonzero prime ideal of \(R \) then \(R/P \) is a prime right noetherian right GV-ring so that by corollary 4.6, the ring \(R/P \) is simple. Thus by lemma 4.7, \(R \) is a semi-simple Artin ring.

\[3 \Rightarrow 1: \text{ It is sufficient to prove that } R \text{ is right noetherian. Let } \]

\[I_1 \subseteq I_2 \subseteq \ldots \subseteq I_n \subseteq \ldots \]

be an ascending sequence of distinct right ideals of \(R \). As \(R \) is a V-ring, there are maximal right ideals \(M_k \) (\(k = 1, 2, \ldots \)) such that \(I_k \subseteq M_k \) but \(I_{k+1} \not\subseteq M_k \). Let \(p_k \) denote the natural projection \(R \to R/M_k \). If \(I = \bigcup_{k=1}^{\infty} I_k \), define a morphism

\[f: I \to \sum_{k=1}^{\infty} R/M_k, \]

by \(f(x) = \sum_{k=1}^{\infty} p_k(x) \) (the summation on the right being meaningful since every \(x \in I \) belongs to all but a finite number of the \(M_k \)'s). Then \(f \) extends to a morphism

\[g: R \to \sum_{k=1}^{\infty} R/M_k, \]

since

\[\sum_{k=1}^{\infty} R/M_k \]

is a semi-simple \(R \)-module and hence injective. Since \(R \) has an identity, \(g(R) \) and hence \(g(I) \) is contained in

\[\sum_{k=1}^{t} R/M_k \]

for some positive integer \(t \). This implies that the assumed chain of right ideals is finite.

\[2 \Rightarrow 3: \text{ Since } R \text{ is right noetherian, each direct sum of injective right } \]

\(R \)-modules is injective. Because \(R \) is furthermore a V-ring, 3 follows.

Corollary 4.9. ([3]) A commutative ring \(R \) is Artin semisimple if and only if every semisimple \(R \)-module is injective.

References

DEPARTMENT OF MATHEMATICS, DE LA SALLE COLLEGE,
KARUMATHOOR, MADURAI, TAMIL NADU INDIA

AND

DEPARTMENT OF MATHEMATICS, I.A.S.
THE AUSTRALIAN NATIONAL UNIVERSITY,
CANBERRA, A.C.T. 2600, AUSTRALIA