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CONTENT MODULES AND ALGEBRAS
JACK OHM! and DAVID E. RUSH

0. Introduction.

Let R be a commutative ring with identity, and let M be a unitary
R-module. We define a content function ¢ from M to the ideals of R by

c(z) = N{4 | A is an ideal of R and xc AM},

and we call M a content module if for every x € M, x € ¢(x) M. Every
free module or, more generally, every projective module is a content
module. In the free case, merely write x as a linear combination of basis
elements (for any basis), and then c¢(x) is the ideal generated by the
coefficients of z. For a projective module a similar observation holds
by first writing the module as a direct summand of a free module. An-
other characterization of a content module is that N (4,M)=(NA4,)M
for every set of ideals {4,} of R. (Recall that flat modules have this
property for finite sets of ideals [2, p. 32, Prop. 6].)

Our interest in these matters stems from [9], where we frequently
worked with the content function for polynomial rings. When one loca-
lizes at a multiplicative system (m.s.) of such a ring, the properties of
the content are usually retained but one loses the freeness, thus suggest-
ing that a more general setting would make for better exposition.

Also, the content function plays a role similar to that of the trace
function ; indeed, for a projective module they coincide. One is therefore
led to hope that some new insight might be obtained by using the con-
tent instead of the trace, especially since there exist flat content modules
for which the functions do not agree.

In Section 1 we characterize flat content modules as those content
modules M for which c(rx)=rc(x) for all r € R, x € M. We also charac-
terize the submodules of a content module which are content modules
with respect to the restricted content function. In Section 2 we give
examples of content modules which are not torsion-free and which are
flat but not torsionless. We study localizations of content modules in

Received November 1, 1971.

1 The first author was supported by National Science Foundation grant GP29104 during
the writing of this paper.

Math. Scand. — 4



50 JACK OHM AND DAVID E. RUSH

Section 3 and show there that a finitely generated flat content module
has its content ideal generated by an idempotent. In Section 4 we study
the content function for modules over an absolutely flat ring R; and we
prove that for any such R-module M, ¢(xr)=AnnAnnz, and that M is a
content module if and only if Annz is finitely generated for every x € M.
Section 5 is devoted to the question of when finitely generated flat con-
tent modules are projective. We prove that they are projective when R
is a product of fields or when M is a direct sum of cyclic modules, but
are not in general, even when R is absolutely flat. In Section 6 we define
content algebras, that is, R-algebras which are faithfully flat content
R-modules and which also satisfy the usual multiplicative property that
the content function of a polynomial ring satisfies, and we give examples
to show such algebras need not be projective. Finally, in Section 7 we
define a trace module to be a content module for which the trace and
content coincide, and we prove that finitely generated trace modules
are projective.

Our notation and terminology will be that of Zariski-Samuel [12].
All our rings are commutative rings with identity, our modules are unit-
ary, and our ring homomorphisms map the identity to the identity.

If M is an R-module, Homg (M, R) denotes the set of E-module homo-
morphisms of M into R,

Z(M) = {reR| rx=0 for some x+0ecM},

and by rk M, we shall mean the maximum of the ranks of free submodules
of M. M is called torsion-free if for every regular r € R and every x € M,
rz=0 implies £=0. For x € M, the trace of x, denoted 7T'(x), is the ideal
of R consisting of

{h(z) | h € Homg(M,R)},

and M is called torsionless if T(x)=0 implies x=0 for all xe M. If N
is a subset of M, we denote

AnnN = {reR| rN=0}.
Note that Ann N is an ideal of R. Also we denote
(4:B)p, = {deD | dB<A4},

whenever A, B, D are sets for which this makes sense. Finally (R,m)
signifies that R is a quasi-local ring with maximal ideal m.
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1. Basic properties of content modules.

Let R be a commutative ring with identity, and let M be an R-module.
For any x € M, we define the content of x, denoted cg y(x), by

cru(®@) = N{4| A isan ideal of R and xe AM} .

Similarly, if N is any non-empty subset of M, we define cp »,(N) to be
the ideal of R generated by {cj ,(x) | e N}. Either or both of the sub-
scripts R, M will be omitted whenever we feel it is possible to do so
without causing confusion.

1.1 DeriniTiON. M will be called a content R-module if for every
xeM, xec(x)M.

One sees easily from the definition that the following are equivalent:

(1.2) (i) M is a content R-module.
(ii) For every set of ideals {4;} of R, (NA,)M =N (4, M).
(iii) For every set of finitely generated ideals {4,} of R, (N4,)M =
N(4,M).
(iv) There exists a function f from M to the set of ideals of R such
that for every € M and every ideal 4 of R, x € AM if and
only if f(x)<=4.

Moreover, when (iv) holds, then the function f of (iv) is unique and is
just the content function ¢. Note also that if M is a content module and
x € M, then ¢(z) is a finitely generated ideal; for « € c(x) M implies there
exists a finitely generated ideal 4 <c(x) such that x € AM, and then
c(x)=A.

Any free module M is a content module, for ¢(x) is then merely the
ideal generated by the coefficients of x when x is written as a linear
combination of basis elements. Corollary 1.4 of the next theorem shows
that any projective module is also a content module and that its con-
tent function is obtained by writing the module as a direct summand of
a free module and restricting the content function.

1.3 THEOREM. Let L be a content R-module, and let K be a submodule
of L. Then the following are equivalent:
(i) ALNK =AK for every ideal A of R.
(ii) For every x € K, x e cy(x) K.
(i) K is a content module and c;, restricted to K is cg.
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Proor. (i) = (ii): Let x € K. Then z ecy(x)L since L is a content
module. Therefore x € ¢, (x) LNK =c(z) K.

(ii) = (iii): Let x € K. Then x € ¢;(z) K implies cx(x) <c.(x). Since the
reverse inclusion is always true, cx(x) =c,(x). Thus, cx is the restriction
of ¢;; and z € ¢z (x) K =cg(x) K implies K is a content module.

(iii) = (i): Let x € ALNK. Then c;(x)< A4, and hence z e cg(x)K=
c(x) K< AK.

Theorem 1.3 is a routine generalization of [2, p. 65, Ex. 23]. The con-
dition ALNK =AK for every ideal 4 of R has been extensively studied
by Besserre [1]. If L/K is flat, then this condition is satisfied (and con-
versely, if L is flat and the condition is satisfied, then L/K is flat) [2,
p- 33, Cor.].

1.4 CoroLLARY. Let M be an R-module and {M},.; be a set of sub-
modules such that M =@M;. Then M is a content module if and only if
M, is a content module for every i € I. Moreover when this occurs, then
for every x=3x;, x,€ M;, cp(x) is the ideal of R generated by {cp(%;)}ic1-

Proor. If M is a content module, then I, is a content module by 1.3.
Conversely, suppose each M, is a content module, and let z=3Yx,,
where x; € M,. If x € AM for some ideal 4 of R, then x, € AM,. Thus,
e (®;) S cy(x). On the other hand, since M; is a content module, z; €
o (%) M;. Therefore x € BM, where B is the ideal of B generated by
{ca1,(%:)}icr- This implies ¢/ (x) = B, which proves the second assertion of
the corollary. Now to conclude that M is a content module, observe that
%; € Cpr(w;) M, for all 4 implies x € cp () M.

We shall now characterize (in 1.6) flat and faithfully flat content
modules in terms of their content functions.

1.5 THEOREM. Let M be a content R-module, and let r € R. Then the
Jfollowing are equivalent:
(i) re(x)=c(rz) for all x € M.
(i) (A:r)gM =(AM :r)y for every ideal A of R.
(iii) (0:7)g M =(0M :7),,.

Proor. (i) = (ii): The inclusion < is always true, so suppose z €
AM:r. Then re € AM, and hence c(rx)<A. But c(rx)=rc(z) by (i), so
then c(z) = A:r. Therefore x € (4:7) M since M is a content module.
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(ii) = (iii) is trivial.

(iii) = (i): Clearly x € ¢(x) M since M is a content module. Therefore
rx € re(x) M, which implies rc(x)>c(rx). Conversely, rxerM implies
¢(rx) < (r). Therefore c(rx)=(r)B, where B=c(rx):r. Since M is a content
module, rx € c(rx) M =rBM. Therefore rz =17z, for some element z € BM,
which implies x —z € 0M :r. But OM:r=(0:r)M by (iii), so then z—z€
(0:7)M = BM. Since z € BM, then « € BM. Therefore c(x) < B, and hence
re(x) <rB=c(rx).

Note that if r ¢ Z'(M), then (0M :7),,=0 and hence (iii) is valid. Also
observe that the set of all » € R which satisfy the conditions of 1.5 form
a m.s. (which will enter into the localization considerations of Section 3).
The following corollary shows that this m.s. equals R if and only if M
is flat.

1.6 CoroLLARY. Let M be a content R-module. Then the following are
equivalent :
(1) M is flat.
(ii) For every re R and x € M, rc(x)=c(rz).
(iii) (4:B)pM =(AM :B),, for every pair of ideals A, B of R.
Moreover, M is faithfully flat if and only if M is flat and c¢(M)=R.

Proor. M is flat if and only if for every ideal 4 of R and every b € R,
(A:0)M=AM:b [2, p. 65, Ex. 22]. Therefore (i) <= (ii) follows from 1.5.
(iii) = (i) is immediate; and (i) = (iii) since

(A:B)M = [N{(A:b)| beB)]M = N{(A:b) M | beB}
= N{AM:b| beB} = AM:B,

the second equality resulting from 1.2-(ii) and the third equality from
M being flat.

For the second assertion of the corollary, suppose M is flat and
¢(M)=R. Then mM + M for every maximal ideal m of R, since otherwise
¢(M) =m. Therefore M is faithfully flat by [2, p. 44, Prop. 1]. Conversely,
if M is faithfully flat, then M is flat and for every maximal ideal m of R,
mM #= M. Therefore for every maximal ideal m, there exists x € M such
that x ¢ mM and hence such that c(x) ¢ m. Therefore ¢(M) ¢ m for every
maximal ideal m of R, and consequently ¢(M)=R.

Thus, a module M is a flat content module if and only if there exists
a function ¢ from M to the set of finitely generated ideals of R such that
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(i) for every ideal A of R, x € AM if and only if ¢(z)< A4,

(ii) for every x € M and r € R, c(rx)=rc(x).

These are the axioms proposed in [9]. It also follows from 1.5 and 1.6
that if M is a content module and & (M) =0, then M is flat; in particular,
if B is a domain, then M is flat if (and only if) M is torsion-free. Actually,
Jensen (3, p. 943, Thm. 1] has proved that if R is a domain and M is
torsion-free, then M is flat if (and only if) N(4,M)=(NA4,)M for every
finite set {4,} of ideals of R, so the full assumption that M is a content
module is not needed for this result.

2. Some examples.

The next proposition provides a useful characterization of content
modules over a discrete rank 1 valuation ring.

2.1 PropositioN. Let (R,m) be a discrete rank 1 valuation ring, and
let M be an R-module. Then M is a content module if and only if

N{miM|i=1,2...}=0.

PrOOF. =>: 0=m’ since R is noetherian [12-I, p. 216, Cor. 1].
Therefore 0= (Nm?*)M = (m*M) by 1.2 (ii).
<: Let 40 € M. Since every ideal of R is of the form m?,

c(xz) = N{m?| xem'M} .

But N{m‘M | =1,2,...}=0 implies there exists an » such that
¢(x)=m" and « € m*M. Then x € c(x) M.

We have seen in Section 1 that every projective module is a content
module, and we have given a characterization of flat content modules.
To get now an example of a content module which is not flat and in fact
which is not even torsion-free, one need only take a discrete rank 1 valua-
tion ring (R,m) and let M = R[m?2.

Recall that if M is an R-module and x € M, then the trace of x, de-
noted 7'(x), is the ideal of R consisting of

{h(z) | heHompg (M ; R)} .

It is immediate that 7'(x) =c(x), but in general the two functions are
not equal since T'(rx)=rT(z), r € R, is true for any R-module M while
the corresponding equality for ¢ is valid for a content module if and
only if the module is flat. However, it follows from our previous con-
siderations that these functions coincide for a projective module, and
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one might ask if they also coincide for a flat content module. The next
example shows that this is not the case. We remind the reader that M
is said to be torsionless if x4 0 implies 7'(x) 0.

2.2 ExampPLE of a flat content module M of finite rank which is not
torsionless.

Let (R,m) be the discrete rank 1 valuation ring k[t],, where k is a
field and ¢ an indeterminate. Let R[X] be the polynomial ring in an
indeterminate X, and choose f € R[X] such that f is irreducible and the
constant term and leading coefficient of f are in m and such that ¢(f)=R
(here c¢(f) denotes the ideal of R generated by the coefficients of f),
e.g. take f=t+X+¢X% Let I=fR[X], and let M denote the ring
R[X]/I. Since R[X] is a UFD, the ideal I is prime, and hence M is a
domain. M is then a torsion-free and hence flat R-module [2, p. 29,
Prop. 3]. mM + M since 1 ¢ I+mR[X] because the constant term of f
is in m. Therefore N (m*M)= 0 since M is a noetherian domain and mM
is a proper ideal of M [12-1, p. 216, Cor. 1]. Thus, M is a content module
by 2.1. Since the leading coefficient of f is in m, the ideal I does not
contain a monic polynomial; and hence M is not an integral extension
of R and is consequently not a finite B-module. However, M does have
finite rank since M Q7 K, where K is the quotient field of R, is a free
K-module of rank 2. Now observe that a module of finite rank over a
domain is torsionless (if and) only if it is a submodule of a finitely
generated free module (Recall that “rank’ here means the maximum of
the ranks of free submodules of M). This follows from the observation
that the dual of a module of finite rank is a submodule of a finitely
generated free module and a torsionless module is embedded in its
double dual (see [6, Prop. 1.3]). Thus, since the above module has finite
rank but is not finitely generated and hence certainly cannot be a sub-
module of a finitely generated module (since R is noetherian), it follows
that this module is not torsionless.

2.3 REMARKS. (a) Example 2.2 also shows that a flat content module
need not be a submodule of a free module, since a submodule of a tor-
sionless module is torsionless.

(b) A variation of 2.1 can be stated as follows. Let R be a ring such
that any r+0€ R is in at most finitely many ideals (e.g. let R be a
Dedekind domain), and let M be a flat R-module. Then M is a content
module if and only if N (4;M)=0 whenever {4,} is an infinite set of
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ideals of R. This follows from 1.2 (ii) and the fact that finite intersec-
tions distribute through flat modules.

(c) It would be interesting to have a characterization of the R-algebras
of the type R[X]/I, for I an ideal of R[X], which are flat content modules.
It can be seen that R[£], for & in the total quotient ring of R, is such a
module if and only if £ € R.

(d) Another way of getting content modules is by means of the fol-
lowing observation: If M is a content R-module and 4 is an ideal of R,
then M[AM is a content (R/A)-module (with ¢y (2 +AM)=cp(x) + A
for any x € M). Finally, we shall give in Section 6 further examples of
flat content modules which are not projective.

3. Localization of content modules.

Let M be a content R-module. We shall denote by %, the m.s. of R
consisting of

{re R| c(rx)=rc(x) for all xe M}.

We have shown in 1.5 and 1.6 that a content module is flat if and only if
its corresponding m.s. %, is the whole ring, and that R\ Z(M)<,.
Thus, in many cases %, is large. In order for a content module M to
localize well, it seems necessary to restrict one’s attention to multiplica-
tive systems contained in ;.

3.1 THEOREM. Let M be a content R-module and S be a m.s. of R such
that Sc%;. Then Mg is a content Rg-module; and for any x € M and
8 €8 we have cp(x)RBg=cpr(2/s)-

Proor. For x € M, x € cy(x) M implies z/s € (cp(x)Rg) M. Therefore
Carg(%[8) < cp(%)RBg, and the proof will be complete if we show the reverse
inclusion. Let 4’ be any ideal of Rg such that x/se A'Mg, and let
A=A4'nR (here A'nR denotes the inverse image of A’ under the ca-
nonical homomorphism of R into Rg). Then there exists an element
8" € § such that s’ € AM. Therefore cy(s'vr)=A4; and since <%, it
follows that s'cy(x)=cy(s'c)=A4. But then cy,(x)Rg<A4’, and hence

cu(®) B < cyr (/).

We next prove a theorem which describes the local behavior of the
content of those submodules of a content module which are described
in 1.3. We first need a lemma which generalizes [2, p. 66, Ex. 23-d].
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3.2. LEMMA. Let L be a content R-module, and let K be a content sub-
module of L having restricted content function. If K <JL, where J is the
Jacobson radical of R, then K =0.

Proor. For any x € K, we have € cx(x)K since K is a content mod-
ule. Therefore x € c(x)JL since cx(x)=cy(r) and K<JL. But then
cr(x)<cr(x)J by definition of the content function. Since c¢;(x) is a
finitely generated ideal, it follows from Nakayama’s lemma that
¢r(x)=0. Therefore x=0.

3.3 TuEOREM. Let L be a content R-module, and let K be a content sub-
module of L having restricted content function. Then for any prime ideal
P of R such that P> R\ ¥, either ¢(K)p=0 or ¢(K)p=Rp.

Proor. By localization at P via 3.1, it suffices to prove the theorem
for the case that R is quasi-local with maximal ideal P. If ¢(K) =+ R, then
¢(K)<P. But then K <PL; and hence by 3.2, we conclude K =0.

If L is a flat content module, then by 1.5 we have &, =R, and hence
¢(L)p=0 or ¢(L)p=Rp for every prime P of R. Thus, we have the fol-
lowing :

3.4 CoroLLARY. Let L be a flat content R-module. Then for any prime
tdeal P of R, ¢(L)p=0 or ¢(L)p=Rp. If tn addition c(L) is a finitely gen-
erated ideal, then c(L) is principal and is generated by an idempotent.

Proor. The first assertion follows from the preceding remark, and
the second is a consequence of the observation that an ideal which is
locally idempotent is idempotent and a finitely generated idempotent
ideal is generated by an idempotent (see [2, p. 83, Cor. 3]).

In connection with the above corollary, note that if L is a finitely
generated content module, then c¢(L) is finitely generated; and hence if
L is also flat, then ¢(L) is generated by an idempotent. More precisely,
it follows from the definition that if M is a content module and 7' a
subset which generates M, then ¢(7")=c(M). A partial converse exists:

3.5 THEOREM. Let M be a flat content R-module, and let T be a subset
of M such that ¢(T)=c(M). If Mp is a cyclic Rp-module for every prime
P of R, then T generates M.
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Proor. Since it suffices to see that 7' generates M locally [2, p. 112,
Cor. 1], we may localize at a prime P (using 3.1) and thus are reduced to
proving the theorem in the case that R is a quasi-local ring with maximal
ideal m and M is a cyclic R-module. If ¢(M) =m, then M =mM ; and hence
by Nakayama’'s lemma M =0, and the theorem is trivially true. If
c(M)dEm, then c(T)Em; so there exists t € T\ mM. But then t+mM
generates M/mM as an (R[m)-module since M/mM is cyclic. Therefore
by Nakayama’s lemma, ¢ generates M.

3.6 CoroLLARY. Let M be a flat content R-module. If M is locally cyclic,
then M is finitely generated if (and only if) c(M) is a finitely generated
ideal.

Theorem 3.5 and corollary 3.6 are generalizations of a lemma of
Vasconcelos [11, p. 430, lem. 1.2], who assumes that M is projective and
then uses the trace function in essentially the same way as we have used
the content function. This illustrates a procedure that should be useful.
In particular, it would be interesting to know if one could similarly
generalize some of the other results of Vasconcelos’s paper.

We would also like to mention here that P. Eakin and J. Silver, in a
forthcoming work, have used the notion of content module to study a
class of rings closely related to polynomial rings.

4. Content modules over absolutely flat rings.

An absolutely flat ring (sometimes called a regular ring) is a ring R
for which every R-module is flat. Equivalent properties are that a € (a?)
for every a € R [2, p. 64, Ex. 16-17] or that for every prime ideal P of
R, the localized ring R is a field. It follows that every ideal of an abso-
lutely flat ring is idempotent and hence that every finitely generated
ideal is principal and generated by an idempotent. By 1.3 and the re-
mark following 1.3, if R is an absolutely flat ring, then every submodule
of a content R-module is also'a content module with restricted content
function; and by writing a given R-module as a homomorphic image of
a free module, the converse also results from 1.3 and the remark following
it. Thus, the following are equivalent:

(i) R is an absolutely flat ring.
(ii) Every submodule of a content R-module is a content module with
restricted content function.

(iii) Every submodule of a free R-module is a content module with

restricted content function.
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We shall now proceed to give a very explicit description of content
functions and modules for an absolutely flat B. We do this in more
generality than is needed since the only property of an absolutely flat
ring that is used is that for every finitely generated ideal 4 of R, the
ideal Ann A4 is finitely generated and AnnAnn4=A4.

4.1 TaEOREM. Let M be a flat R-module (R any ring), and let x € M.
Then c(x)<AnnAnnz. Moreover, if Annx is finitely generated, then
z € (AnnAnnz) M.

Proor. If ax=0 for a € R, then z € (0M :a),,. By the flatness hypo-
thesis, (0M :a),,=(0:a)g M, which equals (Anna)M. Therefore

¢(z) < N{Anna | eeAnnz} = AnnAnnz.
Suppose now Annz=(a,,...,a,). Then
xeN(O0M:a,)y = N[(0:a;)zgM] = [N(0:a,)g]M = (AnnAnnz)M ,

the first and second equalities being consequences of the flatness as-
sumption.

4.2 CoroLLARY. Let R be a ring with the property that AnnAnnd=A
for every finitely genmerated ideal A of R. If M is a flat R-module and
x e M, then ¢(x)=Ann Annz.

Proor. If A is a finitely generated ideal of R such that x € AM, then
AnnA4 < Annz; and hence 4 =AnnAnnA > AnnAnnz. Therefore

AnnAnnz < ¢(z)
since
c(x) = N {finitely generated ideals 4 | x € AM} .

The reverse inclusion follows from 4.1.

4.3 CoroLLARY. Let R be a ring with the property that for every finitely
generated ideal A of R, the ideal Ann A is finitely generated and Ann Ann 4
=A. Let M be a flat R-module. Then M s a content module if and only if
for any x € M, the annihilator Annz is finitely generated.

Proor. =-: By 1.6, we have c(rz) =rc(z) for all r € R. Therefore rz=0
implies 7c¢(x)=0, so Annz<Annc(z). Conversely ze€c(x)M implies
Annc(z) < Annz; so Annc(z)=Annz. Since c¢(z) is finitely generated, by
hypothesis Anne(z) is also.

<=: Apply 4.1 and 4.2.
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Note that there exist rings other than absolutely flat rings which
satisfy the hypothesis of 4.3, for example let R=V/m?, where (V,m) is
a discrete rank 1 valuation ring. We now summarize the situation for
an absolutely flat ring.

4.4 CoroLLARY. Let R be an absolutely flat ring, and let M be an R-
module. Then for any x € M, we have c(x)=AnnAnnz; and M is a content
R-module if and only if for any x € M, the ideal Annzx s finitely generated.

5. When are finitely generated flat content modules projective ?

Since finitely generated flat modules are often projective, one must
resort to something like the absolutely flat rings for a good class on
which to test the above question. We shall prove in 5.3 that when R
is a product of fields, then any finitely generated content R-module is
projective; and we shall give an example in 5.4 of an absolutely flat ring
R which does not have this property.

Henceforth in Section 5 let M denote a finitely generated flat content
module. Then M is projective if and only if the rank function is locally
constant [2, p. 138, Thm. 1]. (The rank function is the map ¢ from
SpecR to the non negative integers, defined by o(P)=rkM, for
P e SpecR.) Moreover, M,=0 if and only if ¢(Mp)=0; and by 3.1,
c(Mp)=c(M)Rp. Thus, since by 3.4 c¢(M) is locally either 0 or the unit
ideal, Mp=0 if and only if ¢(M)<P. Moreover, since by 3.4 ¢(M) is
generated by an idempotent,

{PeSpecR | ¢(M)<P}
is an open and closed subset of Spec R, and hence
{PeSpecR | rk M =0}

is an open and closed set. We conclude that if the rank function assumes
at most one non-zero value, then M is projective; and in particular, if
M is cyclic, then M is projective. More generally, it follows from 1.4
that if M is a direct sum of\cyclic modules, then M is projective. We
summarize some of these remarks in the next proposition. One further
fact needed for the proposition is that if every cyclic flat R-module is
projective, then every finitely generated flat R-module is also projective
[7, p. 1356, Cor. 3.1].

5.1 PROPOSITION. Amny finitely generated flat content module which 13 a
direct sum of cyclic modules is projective. Moreover, the following properties
of a ring R are equivalent:
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(i) Finitely generated flat R-modules are projective.

(ii) Finitely generated flat R-modules are content modules.
(iii) Cyclic flat R-modules are content modules.
(iv) Cyclic flat R-modules are projective.

Now consider an exact sequence
0-K—-L->M-0

of R-modules, with L finitely generated free and having a basis of »
elements. Another characterization for M projective is that K is finitely
generated [2, p. 140, Cor. 2]; and since K is a content module by 1.3,
this implies ¢(K) is finitely generated. On the other hand, if ¢(K) is
finitely generated, then by applying to K the same reasoning as applied
above to M, one sees that the set of primes P of R for which Kp=0 is
an open and closed set. But this is just the set of primes at which M
has rank %. In particular, it follows that if M is generated by at most 2
elements and ¢(K) is finitely generated, then M is projective. We shall
now prove that ¢(K) is finitely generated when R is a product of fields
(which is a special kind of absolutely flat ring).

5.2. THEOREM. Let {k;};.; be a collection of fields, let R=T1k;, and let
0>K—>L—~>M-—0 be an exact sequence of R-modules with L finitely
generated free. If M is a content module, then c(K) is principal.

Proor. Let {m,} be the image in M of a finite basis of L. Since finitely
generated ideals of R are principal, ¢(K) is generated by

4 = {r+0eR | there exists > r.m e M such that r(3 r,m,)=0
and > r,R=R};

and since for every r € R there exists an idempotent ' € R such that
(r)=(r"), we may assume that the elements of ¥ are idempotents. Let
a; be the element of R defined by a;(j)=9;;, and let

G’ = {a;| there exists re ¥ such that a;r=a;}.

Then ¥'<¥; and it follows from the defining properties of the @, and
%' that if there exists an ideal (@) such that every element of ¢’ is in (a),
then every element of ¢ is also in (a). Thus, it remains to show there
exists an element a € ¢(K) such that every element of ¥’ is in (a). For
any a; € ¢', there exist r;, € R such that a,(3r,,m,)=0 and Yr; R=R.
Define r, by r (t)=r;,(¢) if a,€ ¥’ and r,(1)=1if a; ¢ ¥'. Then 3r.R=R
and a,(3r,m,)=0 for every a; € ¥'. But since M is a content module,
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the annihilator of every element of M is finitely generated (by 4.4) and
hence principal; so Ann(Xr,m,)=(a) for some a € R. Then a € ¥ and
hence is in ¢(K), and a, € (a) for all a, € F'.

5.2 CoroLLARY. If R is a product of fields and M is a finitely generated
content R-module, then M is projective.

Proor. By induction on #=the minimum number of generators for M.
If n=1, the corollary follows from 5.1, so assume n>1. Let 0 - K —
L - M - 0 be an exact sequence of RB-modules with L free of rank =.
By 5.2, we have ¢(K)=(e) for some idempotent e of R. Let

V(e) = {PeSpecR | ecP}.
Then
V(e) = {PeSpecR | Kp=0} = {PeSpecR | rtkMp=n}.

Then the rank of (1—e)M is n on V(e) and 0 elsewhere. Thus, the rank
function for (1 —e)M is locally constant, and hence (1 —e)M is projective.
On the other hand, eM has rank<n—1 at every prime; and hence by
[5, p. 197, Prop. 4.2] or [10, p. 75, Prop. 18.2], eM can be generated by
n—1 elements. Since e} is a content module by 1.4, it follows from the
induction hypothesis that e is also projective. Thus, M =eM@(1 —e) M
is projective.

The following example is due to W. Heinzer.

5.4 ExamMPLE of an absolutely flat ring R and a finitely generated
(flat) content R-module M such that M is not projective.

Let R’ =QN, where N denotes the positive integers and Q the rationals.
We call an element f e QN eventually constant if there exists an integer
1o such that f(¢)=f(j) for all 7,j=14,; and we say that f is eventually a
if there exists ¢, such that f(i)=a for all + > ¢,. Let R be the subring of R’
consisting of

{feR'| fis eventually constant} ,

and let P_ denote the ideal of R consisting of
{feR'| fis eventually 0} .

Let 2’,y’ be the elements of R’ defined by z'(t)=1 for all 4, and y'(z)=1¢
for all ¢; and let M be the R-module ='R +y'R.

First we shall check that M is a content module. By 4.4, we must
show Annz’ is finitely generated for every z'=oax'+py € M, (x,8 € R).
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If x and f§ are not both eventually 0, then there exists an integer n,
such that 2’(z)+0 for 7 =mn,; and hence rz’' =0, r € R, implies 7(:) =0 for
12 ny. It follows that in this case Annz’ is finitely generated and is con-
tained in P_ . On the other hand, if x and § are both eventually 0, then
2z’ is eventually 0; and hence there exists n, such that if » denotes the
element of R defined by r(¢)=0 for 1<mn, and r(¢)=1 for 22=n,, then
r € Annz’. But every ideal containing such an r is finitely generated, so
again Annz’ is finitely generated.

Now let 0~ K - L —>M -0 be an exact sequence of R-modules
with L free on two generators x,y which map onto z',y’. We shall show
that ¢(K)=P,, and thus that ¢(K) is not finitely generated; this in turn
implies M is not finitely presented and hence is not projective. The
ideal ¢(K) is generated by

{reR| r(xx'+py')=0 and («,8)=R}.

We have already observed that every such r is in P_,. On the other hand,
if §; is defined by 6,(j) =0 if ¢ 5 and d,(j) =1 if ¢ =4, then d,(z' + B;y') =0,
where f; is defined by £,(j)=0 if ¢+j and g;(¢)= —1/i. Thus, J; € ¢(K)
for all ¢; and since the d; generate P_, we have P <c(K).

6. Content algebras.

Let R’ be an R-algebra; whenever R’ is regarded as an R-module, it
will be done so with respect to the scalar multiplication given by the
R-algebra structure. We shall call R’ a content R-algebra if it satisfies
the following axioms:

(i) R’ is a content R-module.

(ii) (Faithful flatness) For any r € R and f e R’, the equation ¢(rf) =

re(f) holds; and ¢(R’')=R.

(iii) (Content formula) For any f,g € R’, there exists an integer n>0

such that e(fy)e(g)™=e(f)elg)™+L.
Note that by 1.6, (i) and (ii) merely assert that R’ is a faithfully flat con-
tent R-module. The following are consequences of the definition:

(6.1) a) If I’ denotes the identity of R’, then c¢(l')=R.
b) The defining homomorphism of R into R’ is injective.
c) g € R’ is a zero-divisor of R’ if and only if there exists r4+0e R
such that rc(g)=0.
d) For any f,g € B', ¢(fg) Sc(f)c(g), and if e(g) = R, then c(fg) = c(f).

The first example of a content R-algebra that comes to mind is that
of a polynomial ring over R in any number of indeterminates. More
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generally, if G is any torsion-free abelian group, then the group algebra
of G over R is a content R-algebra [8]. These are all free B-modules (and
hence trivially satisfy (i) and (ii)). We shall give in 6.3 further examples
which are not free, but first we need a localization theorem.

6.2. THEOREM. Let R’ be a content R-algebra, let S' be a m.s. of R',
and let S=8'NR. If for every s' € 8’, ¢(s')nS=+¢, then R'g is a content
Rg-algebra, and for any fe R', 8’ € §’,

crs(fl8') = cr(f)Bs .

Proor. fecgy(f)R' because R’ is a content R-module. Therefore
fl8' € cp(f)R's, and hence cgy(f[s') =cg(f)Bg. Conversely, f/s' € AR'g,
A an ideal of R, implies s"'f € AR’ for some s'" € §’. Therefore cg(s"f) = 4,
and hence cg(s"f)RBg< ARg. But cg(s'f)cg(s” )" =cg(s” ) cg(f), and by
hypothesis cp(s"')Rg=Rg. Therefore, cg(s'’f)Rg=cgp(f)Bg. Thus,
cr(f)Rg< ARg. Since any ideal of Rg is of the form 4ARg, we then have
cr(f)Bs<cpy(f/s’). This proves the equality of the theorem. The
axioms for a content R-algebra now follow.

Note that the condition on S’ in the above theorem is satisfied when-
ever 8'=R'\ P’, P’ a prime ideal of R’; for then s’ ¢ P’ implies cp(s’) &
P'nR, and hence cgx(s')nS =+ ¢.

6.3 ExampLES. (a) Let R’'=R[X], X an indeterminate, and let
8 = {feR'| ¢(f)=R}.

Then R’y is usually denoted R(X), and 6.2 asserts that R(X) is a content
R-algebra. If we take R to be a quasi-local domain whose residue field
k is finite or countable and whose quotient field K is uncountable, then
the ring R(X) is a content R-algebra which is not a free R-module (and
hence which is not even projective since projective implies free over a
quasi-local ring). For, R(X) is R-free implies the dimensions of the k-
vector space k(X) and the K-vector space R(X)®jpK are equal by
[4, p. 418, Prop. 8], and this is not the case by [4, p. 125, Thm. 8].

(b) Let (V,m) and (V',m’) be discrete rank 1 valuation rings such
that V< V', mV'=m’, V|m is canonically isomorphic to V’/m’, and V’
is integral over V. Such rings exist by the example of F. K. Schmidt
[12-11,p. 62]. By 2.1, V' is a content V-module and the content function
is defined by

c(x’) = N{miV' | 2’ e m'V'}.
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Since mV'=m’, c(x')=m", where n is the V’-value of 2’, and it follows
that c(x'y’)=c(z')c(y’) for all «’,y’ € V'. Thus, V' is a content R-algebra.
On the other hand, V'’ is not a free V-module; for since the dim of
V'[m' over V[m is 1, if V' were free, we would then have V'=Vz' for
some ' € V’. But then 1=rx’, where r € ¥V, and hence 2’ € V and V=V",
a contradiction. Moreover, since V' is integral over V, V' cannot be a
localization of any intermediate ring (# V') between ¥V and V’. Thus,
V' is an example of a content R-algebra which is not a localization of a
free R-subalgebra. (The above argument arose from a conversation with
W. Heinzer, who originally suggested using the completion for V’).

It seems difficult in general to determine when an R-algebra of the
type R(X) of 6.3 (a) is free or not. Related to these considerations is
the question of whether the trace and content coincide for such rings.
We shall digress briefly here to prove that they do coincide on a certain
subring of R(X).

Let then (R,m) be a quasi-local ring, and let R’'=R[X]g, where

8 = {feR[X]| f=14+a, X+ ... +0a,X", a;em}.

Note that by the same argument as in 6.3 (a), R’ is not a free R-module
if, say, R is a domain and R/m is finite or countable and R is uncount-
able; and also R’ is a content R-algebra by 6.2. In addition R’ has the
pleasant property that the R-algebra homomorphisms of R’ into R are
exactly the homomorphisms obtained by substituting an element of R
for X. Thus, if for 2’ € R’ we denote by T*(2') the ideal of R generated

by
{h(z') | heHomp(R',R) and h is an R-algebra homomorphism} ,

then T*(z')<T(z') <c(x’).
6.4 THEOREM. Let (R, m) be a quasi-local ring, and let R' = R[X]g., where
8 = {feR[X]| f=1+a, X +...+a,X", a;em}.
Then T*(x')=c(x') for every ' € R’ if and only if R|m s infinite.

Proor. =: If R/m is finite, then there exists an integer n>0 such
that «®—a =0 for all x € R/m. Then T*(X" — X)<m. However,

o(Xr—X)=R.

<=: Since c(f/s')=c(f) and T*(f|s')=T*(f), for fe R[X] and &' € §’,
it suffices to show c(f) = T*(f). Let

f=a+a, X+ ... +a, X", a,eR.
Math. Scand. — 5



66 JACK OHM AND DAVID E. RUSH

Since R/m is infinite, there exist r,,. . .,r, € R such that IT,;_;(r;—r;)¢m.
Consider then the n+1 linear equations in n+1 unknowns a,,...,aq,
given by f(ro)=by,...,f(r,)=b,. The coefficient determinant D is just
the Vandermonde, which is not in m by the choice of the r;. Then D is
a unit of R, and hence by Cramer’s rule [4, p. 330], we have a; € (b,,. . .,b,)
for t=0,...,n. Thus,

C(f) = (aO" . "a’n)c(bow . ?bn)CT*(f) .
We conclude this section with a generalization of Theorem 1.5 of [9].

6.5 THEOREM. Let R’ be a content R-algebra, and let I' be an ideal of R’.
If for every maximal ideal m' of R', I',. is a principal ideal of R’',. and
(I )or=0 or R,.r, then R'[I' is a flat R-module.

Proor. Let m’' be a maximal ideal of R’, and let m=m'nR. Then
R’,. is a content R, -algebra by 6.2, and I',, is a principal ideal of R’,,
such that ¢(I’,,)=0 or R,,. If we show R',./I',. (which is isomorphic
as an R,-module to (R'(I'),.) is R,-flat, we will be done by [2, p. 116,
Prop. 15]. In other words, it suffices to prove the theorem under the
hypothesis that R’ is quasi-local with maximal ideal m’ and R is quasi-
local with maximal ideal m.

If ¢(I')=0, then I'=0 and R’'[I’ is R-flat. Therefore assume ¢(I’')=R.
Then I'=fR’, fe R', implies c¢(f)=R. If gel', g=fh, he R'. Then
c(g)=c(h). But g=fh € f c(h)R’ since R’ is a content R-module. Therefore
gefec(g)R =c(g)l’; and hence by 1.3 and the remark following 1.3,
R'[I' is R-flat.

7. Trace modules.

In analogy with content modules, we shall define an R-module M to
be a trace module if for every x € M, we have x € T(x)M. Here T'(x)
denotes, as before, the ideal of R consisting of

{h(z) | heHompg(M,R)}.

Since 7'(x) <c(x), the trace modules are exactly the content modules for
which the content and trace functions coincide. Moreover, since 7'(rx) =
rT'(x) for r € R, it follows from 1.6 that every trace module is a flat
content module, while 2.2 is an example of a flat content module which
is not a trace module, and (by virtue of Theorem 7.3) example 5.4 gives
a finitely generated flat content module which is not a trace module.



CONTENT MODULES AND ALGEBRAS 67

The following properties of trace modules are immediate consequences
of the definitions and the analogous properties for content modules.

7.1 PROPERTIES. a) If M =@ M,;, then M is a trace module if and
only if each M, is. As an application, every projective module is a trace
module. Examples of trace modules which are not projective are given
by 6.4. However, we shall prove below that every finitely generated
trace module is projective.

b) If M is a trace R-module and § is a m.s. of R, then Mg is a trace
Rg-module and T'g (x/s) =T g(x) Bg. (Apply 3.1.)

c) If M is a finitely generated trace module, then T'(M) is generated
by an idempotent. This follows from 3.4, since trace and content coincide
for trace modules.

d) If A4 is an ideal of R and M is a trace R-module, then M/AM is a
trace R/A-module.

We shall now prove a theorem which answers the trace module ana-
logue of the question of Section 5. First, we shall recall some elementary
facts.

7.2 Facrs. a) Let M be a finitely generated R-module. Then M is
projective if (and only if) there exist non-nilpotent elements a,...,a,€ B
such that (ao,...,a)=R and such that M, is E,-projective for ¢=
0,...,¢t (where M, denotes the localization of M at the m.s. of R con-
sisting of powers of a,). Apply [2, p. 138, Thm. 1].

b) If M is an R-module and x € M, then 7T'(z)=R if and only if 2R is
free and M =xR@®M’. This follows by observing that the homomorphism
R — M defined by r — rx splits if and only if 7'(x)=R. Note also that
if Mpis Rp-free of rank n at some prime P, then (M')p will be Rp-free
of rank <n.

7.3 THEOREM. Every finitely generated trace module is projective.

Proor. We proceed by induction on n=maxg,;,, where g,, denotes
the rank function of the module M. (One can restrict attention to finitely
generated modules having coefficient rings which are quotient rings
with respect to multiplicative systems of a fixed ring.) If n=0, then
M =0 and hence is projective. Now let M be a finitely generated trace
R-module such that maxg,,=n2=1. Now T(M)=(e), where e is idem-
potent, by 7.1 (c). Therefore there exist z,,...,2,€ M and h,,...,h €
Homp(M,R) such that e=h (2,)+ ... +h(x,). Let

ay=1—e, a,=h(x,),...,0;,= hyx).
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It suffices by 7.2 (a) to show M, is R, -projective for the a; which are
not nilpotent. Since T'(M)=(e), we have M, =0; and thus M, is R, -
projective. Consider then the R,-module M, , for i21 and a; not nil-
potent. Then T'(x,/1)=T(x;) R, by 7.1 (b), and hence T'(x;/1)=R,, since
a; € T'(x;). Therefore by 7.2 (b), M,,=M'®M", where M’ is free and
maxgy-<n. But M, is a trace E,-module by 7.1 (b), and hence M"
is a trace R, -module by 7.1 (a). Therefore by induction hypothesis, M"’
is pro]ectlve and thus M, is also projective.
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