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COMMUTATIVE n-GORENSTEIN RINGS

IDUN REITEN and ROBERT FOSSUM*

1. Introduction.

The purpose of this article is to expand on Bass’ theme that Goren-
stein rings are ubiquitous (Bass [4]). The article arose out of observa-
tions by the first author who examined several connections between
various results which have appeared in the literature in the last few
years.

In this section we introduce common terminology and give some
results about the class of rings which we will consider. The general
standing assumption is that all rings are commutative with identity,
that all modules are unitary. Except in the last section, all rings are
Noetherian, and most modules are of finite type, the exceptions being
easy to identify. With these preliminaries in mind, recall that a local
ring 4 is Gorenstein if injdim ,4 <oco. Bass [4] has given other equiv-
alent conditions which will be used throughout. Also recall that the
depth of the local ring 4, depth 4, is the length of a maximal 4-sequence
in the maximal ideal of 4.

Now Ischebeck [11] discussed a family of rings which he called
G,-rings (no doubt G for Gorenstein). He says a ring 4 is G, if 4 pos-
sesses the two properties

(T,—1) If htq = n—1, then A, is Gorenstein

(S,) depth 4, = inf(n, htq)

for all prime ideals in SpecA.

We also say that 4 is S, or 4 is T, _,, respectively.

Ischebeck proved the following statements to be equivalent
(Theorem 3.15 in [11]):

a) A4 is G,, (that is, (S,,) and (T,_;)).
b) For each A-sequence x,,...,x;, i=n—1, the total quotient ring of
A[XAx; is quasi-Frobenius.
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c) If B~ E'—» ... is a mintmal injective resolution of A, then
grade E7 2 inf (n,j).
(Here, by definition, grade £ =inf,, zgrade (4/Ann Am).)

c')  In the situation of c), grade B7 > j for j<n.

d)  Forall M, gradeExt (M, A)=inf (n,j).

Other statements equivalent to these were discovered by Auslander
and Bridger [1]. Let M be an A-module (of finite type) and

Fi,>Fy>M->0

an exact sequence with F; free as an A-module for each ¢. Let M~ =
Hom ,(M,A). Then the sequence induces an exact sequence

0>M" -F," -F,” -DM)-0,
D=D(M) being the cokernel of F,” — F,”. Auslander and Bridger
say that M is k-torsionfree if Ext,(D,A)=0 for j=1,...,k. This

notion is independent of the resolution F, — F,. In fact, it can be
shown that there is induced an exact sequence

0 - Ext1(D,4) > M - M"> - Ext 2(D,A) >0,

which shows that M 2-torsion free means M is reflexive.
Now say M is an nth syzygy if there is an exact sequence

O-M->F, ,-~F, ,—~...>F,

with each F; free (of finite type). If M is n-torsion free, then M is an
nth syzygy. The equivalence of the two concepts is another characteriza-
tion of G,rings. The following, in fact, are equivalent (Auslander—
Bridger [1]):

d) For all M, gradeExt /(M,A)2j for j <n.
e) For all M, if 0> K, >F,—> ... >Fy— M — 0 s exact with
each F; free, then K, ., 18 (n+ 1)-torsion free
(write Q"1 IM =K, ,, so QM =M, Q"M =Q(Q"1M)).
f) For all M and all r,1 ZrSmn, if
0O->K,,~F,»~...>F,—-M->0

18 exact with each F; free, then K, ., is (r+ 1)-torsion free.
g)  depthd, <n smplies A, is Gorenstein.

There is also another characterization due to Auslander, obtained
from [6, VI (5.3)].

h)  In a mintmal injective resolution of A, flatdimE:<¢ for ¢<mn.
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It is h) which Auslander has taken as a basis for his generalization
to the non-commutative case. We will use his terminology, and call the
rings n-Gorenstein rings.

Let us examine the situation for low n. If A4 is 0-Gorenstein, then
(i) depth4,zinf(htq, 0)=0, and (ii) htq<0 implies 4, is Gorenstein.
So every ring is 0-Gorenstein.

If A is 1-Gorenstein, then A has the properties:

(i) depthd4,zinf(htq, 1) and (ii) htq<1 implies 4, is Gorenstein.

But perhaps it is easier to look at condition b). It says that 4 is 1-Go-
renstein if and only if the total quotient ring of 4 is quasi-Frobenius.
If 4 is 2-Gorenstein, then 4 has the properties:

(i) depthd4,zinf(htq, 2) and (ii) htq<2 implies 4, is Gorenstein.

Vasconcelos [19] has called a 2-Gorenstein ring a quasinormal ring.
There is yet another characterization of n-Gorenstein rings which
comes about from considering the Cousin complex C(A4) [17].

i) C(4) is a minimal injective resolution of A up to C*~*(A) [18].

Finally we give a characterization in terms of quotient categories:
Let C be the Serre subcategory of the category of A-modules determined
by the injective modules E(4[p), where depth 4, <n. That is

C = {M; Hom,(M, E(A[p))=0; depthA,<mn}.

Let ¥ denote the corresponding quotient category (see [9]). Now it
is easily seen that C={M; M,=0; depth4d,<n}. Using the fact
that minimal injective resolutions are preserved when passing to the
quotient category, we get as another equivalent statement:

) idgd<n.

2. Change of rings.

In this section we will consider changes of rings, and determine cases
in which the property of being n-Gorenstein is preserved. The first
result is general in nature, while the result about power series extensions
does not seem to follow directly from it.

Some notation is necessary in order to state the first result. Let
b € Spec 4, denote by k(p) the residue class field of the local ring 4,.
If p: A > B is a ring homomorphism, the fibre of ¢ at p is the ring
k(p) ® 4B.
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ProrosiTioN 1. Let ¢: A - B be a ring homomorphism making B into
a flat A-module.

(i) If B s a faithfully flat A-module and is n-Gorenstein, then A s
n-Gorenstein.

(ii) If A ¢s n-Gorenstein and the fibres of ¢ are n-Gorenstein, then B is
n-Gorenstein.

Proor. Statements (i) and (ii) are known to be true with Gorenstein
instead of n-Gorenstein; (ii) by Hartshorne [10, V (9.6)]), and (i) from
the formula

[3] Ext, (M,A) ® ,B = Extz(M®_B,B).

A different proof is given in [21]. Further, if p =4, choose 8 = B minimal
such that ¢~1(B)=p. Then depthd, =depthBg [14, p. 154]. Hence
(i) follows from the property g). To see (ii), let § =B, and set p =¢~1(B),
and use the formula

depth 4, + depth (By/pBy) =depth By,
and property g).

CoROLLARY. a) If A 4s an n-Gorenstesn ring, then A[t] is n-Gorenstein
(where ¢ is an indeterminate).

b) If A is an n-Gorenstein ring and S is a multiplicatively closed subset
of A, then S~1A is n-Gorenstein.

¢) If m is an ideal in the radical of A and the m-adic completion A is
n-Gorenstein, then A is n-Gorenstein.

Proor. We prove c) first. As m is in the radical of 4, the completion
A — A is faithfully flat. Hence c) follows from part (i) of Proposition 1.
To see the two other statements, it is enough to consider the fibres of
the homomorphism. The fibres of 4 - A[¢] are regular rings and hence
certainly n-Gorenstein. The fibre of 4 —S-1A4 at p is either k(p) or
zero depending on whether Snyp is empty or not.

Part a) could also be proved directly, using localization arguments
and the corresponding result with n-Gorenstein replaced by Gorenstein.
In fact, 4 Gorenstein implies A[f] Gorenstein is proved in [15]. This
is also a special case of the following result of I. Beck:

ProposiTiON 2. Let N be an A[t]-module. Then id 4y N <1+id N.

The case of power series adjunction is not so simple. The problem
in trying to apply Proposition 1 appears when one attempts to show



COMMUTATIVE n-GORENSTEIN RINGS 37

that the fibres of 4 — A[[¢]] are n-Gorenstein. This can be avoided
by a direct attack on the problem. (Sharp remarked that the fibres
behave nicely when A4 is a quotient of a Gorenstein ring.) This is done
in our next result.

ProrosiTioN 3. Let A be a local ring with maximal ideal m. Let x be
a regular element in m. If A[(x) is n-Gorenstein, then so ts A.

Proor. We first show that if 4/(x) has the property S,, then each
prime ideal q in 4, with htq ==, contains an A-sequence of length n.
Let htqz=n.

If xeq, consider a maximal A-sequence z,%,,...,z; in q. Then

Zg,...,z; mod (z) is a maximal sequence in qf(z). Since 4/(z) is S,,
g/(x) is a minimal prime ideal over the ideal generated by x,,...,z;
mod (z), if 4<n. Hence g is minimal over (z,z,,...,%;). Since 4 is

Noetherian, htq <+, and we conclude that ¢ =n.

If z¢q, let a=(x)+q and choose p minimal over a such that
gradeA/p =graded/a. Then htp/(x)=n. For, otherwise let x,z,,...,x;
be a maximal A-sequence in p, with ¢<n. Then z,,...,x;,” would be
a maximal A’-sequence in p’ (where ' denotes reduction modulo (x)).
By property (S,) for 4/(z), p’ is minimal over the ideal (z,’,...,z;").
Hence p is minimal over (z,z,,...,%;), so htp<i¢<n. But p>q, and
htq=n, a contradiction.

Now A4/(x) has property S,, so there is an 4-sequence z,x,,...,%,
in p. By choice of p, the elements x,,...,z,,; can be taken from a.
Let z;=r,x+f;, with f,eq. Then z,f,,...,f,.1 i8 an A-sequence. For
suppose ¥ f, € (). Then y z, € (z), hence y € (x). Now go by way of
induction, using the fact that any permutation of an A-sequence is an
A-sequence for a local Noetherian ring 4. We then conclude that
Soso o s fnsa is an A-sequence in q. This completes the proof of the first
part.

Assuming that A/(x)=A’" is n-Gorenstein we want to show that 4,
is Gorenstein for htq<n. Let q be a prime ideal with htq<n. If z €q,
then ht(q/(x))<n—1. Hence A’ =A4,[xA, is Gorenstein. This implies
4, Gorenstein.

If x ¢ q,1et a=(x) +q, and let p be minimal over a such that grade 4/p =
gradeAd/a. If htp’ =2 n, we can find an A-sequence z,%,,. . .,z, of length
n+11in p, hence in a and by the same argument as above, an A-sequence
Sore o o sfns1 Of length n in q, which is a contradiction to htq<n. Hence
htp’ <n, which implies 4’ =A4,/xA, is Gorenstein. Hence A4, is Goren-
stein, and consequently also 4,. This completes the proof of Proposi-
tion 3.
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CoroLLARY. If A 1is n-Gorenstein, then A[[t]] is n-Gorenstein (and
conversely).

Proor. The property of being n-Gorenstein is local. Furthermore
tis in the radical of A[[t]]. Let I be a maximal ideal of A[[t]], m=Mn 4.
Then A[[t]]g/tA[[t]]gn=A,,. As A, is n-Gorenstein, A[[¢]]y, is n-Goren-
stein.

The other change of rings results are rather easy, and also expected.

ProrosiTion 4. a) If A[3x; A is 1-Gorenstein for all A-sequences y,. . .,;
of length at most n—1, then A is n-Gorenstein.

b) If A is local, depthA =2n—1, and if 4/(xy,...,2,_,) is 1-Gorenstein
for all A-sequences of length m—1, then A is n-Gorenstein.

c) If A is n-Gorenstein, then A|Ax is (n— 1)-Gorenstein whenever x
s regular in A.

These statements follow immediately from condition b) in the first
section.

It should be remarked that the proofs of Proposition 1 and 3 yield,
with little modification, the results that power series or polynomial
adjunction preserves normality. In particular, 4 is S, implies A[[¢]]
and A[t] are both S, by the proofs. It is well-known that 4 regular
implies A[t] regular, so the corresponding result follows for prime ideals
of codimension one.

3. Duality.

The second author (Fossum [8]) has generalized some results which
Roos first established for regular rings. The techniques used in Fossum
[8] apply to n-Gorenstein rings. In some instances the statements are
sufficient as well as necessary in order that the ring be n-Gorenstein.

The homomorphism M - M~ ~ for any A-module M has an analogue
when Ext (M, A) vanishes for small 5. In fact there is a natural map

M - Ext ¢ (Ext (M, A),4)

provided grade M =+ (and M is of finite type). The kernel and cokernel
of this homomorphism are of the form Ext ,*+1(D,4) and Ext +2(D,4)
for a suitable D (see the Introduction where the result for =0 is stated).

If M is an A-module of finite type, there is a unique submodule M(s)
of M maximal with respect to the property that grade M(s)=q.
(Then M(0)=M and in general M(s)2M(3+1).)
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In order to make the connections clear, it may be wise to state the
pertinent result in Fossum [8].

ProposiTION. Let A be locally Gorenstein. Let

L(M) = Ext i(Ext (M, A4),4) .
Then
(i) LyL(M)) = L(M),
(i) grade M 21 implies M(i+1) = Ker(M — L (M)),
(iii) gradeExt  J(Ly(M)) = j+2 for j>1,
(iv) L{(M@3)) @ Ly(M), and
(v) gradeCoker(M (i) > L,(M)) = i+2.

It is seen that (i) is true if 4 is ¢+ 1-Gorenstein. Now by e) a ring 4
is 1-Gorenstein if and only if each dual is reflexive. This has the obvious
generalization.

ProrosiTioNn 5. A is an (n+ 1)-Gorenstein ring if and only if for all
1=0,1,...,n and for all modules M with grade M =1 it is the case that
L;(Ext (M,A)) =~ Ext (M, A4).

Proor. If 4 is an n+ 1-Gorenstein ring then the statement about
the modules follows from a generalized version of the proposition above.
Suppose that the second statement in the proposition holds. Let
xy,. . .,%;, 1 <n, be an 4-sequence and let M be an 4[> Ax;-module. Then

Ext,{(M,A) ~ Hom,(M,A’) and L;(BExt,(M,4)) ~ Ext*(M,A4)

implies M~ is a reflexive A’-module (4’ =43 Ax;). Since M is arbitrary,
any dual is reflexive. Hence A’ is a 1-Gorenstein-ring. Hence A4 is
(n + 1)-Gorenstein.

Statement (ii) in the previous Proposition is seen to hold for n-Goren-
stein rings by considering the sequence

0 - Ext +(D(Q! M), A) > M - L(M) - Ext +*(D(2' M), A) -~ 0,
(where £2¢ M is the ¢th syzygy of M as defined in e) of the Introduction),

which is exact in case grade M 24, and then using d).

This leads to another characterization which generalizes the state-
ment: 4 is 1-Gorenstein if and only if each torsion free module is torsion-
less (Vasconcelos [19]).
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ProrosiTION 6. 4 48 an n+ 1-Gorenstein-ring ¢f and only if
M(j+1) = Ker(M - Ly(M))
forall j=0,1,...,n, and all M with grade M =j.

Proor. The one implication follows from statement (ii) as generalized
above. Suppose the module statement is true and let us try to establish
that 4 is n+ 1-Gorenstein. Let A'=A4[3x;,A where x,,...,x;, j<nu,
is an A-sequence. Let N be a torsion free A’-module, that is, N (1)=0.
(Torsion free means no regular element of A’ is a zero divisor. So N ,(1)==0
would give a submodule of grade =1 which would have a zero divisor.
So N is torsion free if and only if N(1)=0.) Hence N (j+1)=0, so
N — Ly(N) is an injection. This gives that N -~ N~ (7 with respect
to A’) is an injection, so NN is torsionless. Hence A’ is 1-Gorenstein,
so 4 is n+ 1-Gorenstein.

Both Propositions 5 and 6 have stronger statements when 4 has
some unmixedness conditions.

ProrositioN 7. Let A be such that depth A, =n for all maximal ideals
m of A. Then the following are equivalent:

a) A is (n+1)-Gorenstein.
b) grade M == implies L,(Ext "(M,A4)) ~ Ext"(M,A4).
c) grade M =n implies M(n+1) = Ker(M — L,(M)).

CoroLLARY. If grade M 214 implies M(i+ 1) =Ker(M — L,(M)) for all
1 and all M, then A is Gorenstein.

In Fossum [8] a modification of a theorem in Auslander-Buchsbaum
[2] is given, such modification being related also to results in Vasconcelos
[20] and Fossum [8]. However, the result does not cover the Auslander—
Buchsbaum nor the Vasconcelos result because it is assumed that the
ring is Gorenstein. Using the more general notion of n-Gorenstein
rings and the results of the Proposition which hold for, say n + 2-Goren-
stein rings, it is possible to give a most general result of this nature
which includes all the previous ones as special cases.

ProrosiTioN 8. Let A be (n+ 2)-Gorenstein and let N be an A-module
with grade N=n and N(n+1)=0. Let M be a submodule of N and set
Q=N[M.
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a) If M=L,(M), then Q(n+2)=0.
b) If N=L,(N) and Q(n+2)=0, then M =L (M).

Proor. a) The module Ext»-1(Ext»1(Q, 4), 4) is 0 if all the hypotheses
hold and A4 is n-Gorenstein. Further,

Q(n+1) = Ker(Q —~ L,(Q))

if 4 is (n+ 1)-Gorenstein. So the result follows.
b) grade(L,(M)/M)zn+2 if A is (n+ 2)-Gorenstein. Hence the pro-
position is valid.

Ischebeck [11] has considered a filtration on an 4-module, which in
certain cases coincides with the grade filtration. Ischebeck’s filtration
UM is obtained from a convergent spectral sequence and he compares
it with the grade filtration, that is, his filtration coincides with the grade
filtration up to » if 4 is an n-Gorenstein-ring. This condition is also
sufficient (Corollary 3.26 of Ischebeck [11]) yielding yet another charac-
terization of an n-Gorenstein-ring.

Other results which Ischebeck obtains concern properties of nth
syzygies. His Proposition 4.6 asserts that, for an n-Gorenstein ring 4,
an A-module, M, of finite type is an nth syzygy if and only if each
A-sequence of length at most » is an M-sequence. This is related to
Vasconcelos’ result [19] which says that for any 2-Gorenstein ring,
a module is reflexive if, and only if, each 4-sequence of length at most 2
is an M-sequence. For a 1-Gorenstein ring A, M is second syzygy if
and only if it is reflexive. In case n=1, 4 is 1-Gorenstein if and only if
every finitely generated torsion free module is torsionless (Vasconcelos
[19]). A partial converse to Ischebeck’s result for n=2 is

ProrosrTION 9. If A is a ring which satisfies the condition
“Each A4-sequence of length at most n(n=1,2) is an M-sequence implies
M is an nth syzygy”
then A, is Gorenstein if htq < 1.

Proor. Let htq < 1. Let a be the contraction in 4 of an ideal a, in 4,.
Then p € Ass4/a implies p<q. For if fe 4 is such that pf<a where
p€Assdfa and if pEq, then fea, since a is a contraction. Hence
depth 4,22 implies depth(A4/a),21, which implies deptha,>2. Since
a is torsionless, depth 4,2 1 implies deptha,>1. Hence

deptha, 2 inf(2,depth4,) .
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By Ischebeck [11], we conclude that each A-sequence of length at most 2
is an a-sequence. So by assumption, a is a 2nd syzygy. The assumption
for the case n=1 yields a 1-Gorenstein ring, so we can conclude that
a is reflexive. Hence each ideal in 4, is reflexive, so 4, is Gorenstein.

4. Non-Noetherian rings.

Many of the results which hold for normal integral domains hold
also for Krull domains, especially those results concerning reflexive
properties of modules with suitable finiteness conditions. It is our
desire to consider a suitable setting in which some of the results in
the previous sections hold, even in the non-Noetherian case, and which,
at the same time, cover the known results for Krull domains.

Beck [5] has considered modules (and rings) for which certain of the
modules in a minimal injective resolution have some finiteness property.
Say an injective module E is Z-injective if any direct sum of copies
of F is also injective. (This definition must be made for a module over
a not necessarily Noetherian ring. For it is a fact that a ring is Noetherian
if, and only if, each injective module is Z-injective.)

Now let M be an R-module. Let 0 > M - E° > E'— ... be a
minimal injective resolution of M. Say M has property B,, or is B,,
if B is Z-injective for 0 <j <.

For example, every module is B, for a Noetherian ring and for every n.

Now a B,-module of finite type has the following properties (Beck [5]).

(i) If # is M-regular and if M is B, (n=1), then M/xM is B,_,.

(ii) If M is B,, then the set of divisors of zero is the union, in R, of
the prime ideals of R associated to M and Ass M is a finite set.

(iii) R is B, as an R-module, if, and only if, the total quotient ring is
Noetherian. (Let S be the set of regular elements in E. Then R is B,
if, and only if, S-1R is Noetherian.)

(iv) If 0-N"-N > N"—-0 is an exact sequence of R-modules,
and if N is B;,, and N” is B, then N’ is B, ,(r>0).

(v) If M is B,,, then M, is B,, for all prime ideals .

(vi) If M is B,,, and if Extz/(R[a, M)=0 for 0 <j <n, then a contains
an M-sequence of length »+ 1.

(vii) if each R-sequence of length at most ¢ is an M-sequence and if
Ris B;_,, then M is B,_,.

(Beck writes n.d. M=n if M is B, and not B, ,;.)
Now let R be a commutative ring. (Note that we have changed
notation slightly. Before rings were denoted by 4, and they were
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understood to be Noetherian. As mentioned before, the rings in this
section are not (necessarily) Noetherian.) Say R is G, if R is B,_,,
if B, is Gorenstein whenever htq<n and if depth R, zinf(htq,n).

We now consider B,_,-rings instead of Noetherian rings, and find
that some of the characterizations of n-Gorenstein rings hold for these
rings as well. Still others would have been valid if we had considered
B,-rings, but then our class of rings would not have contained the
Krull rings for n=2. For other characterizations, one sided implications
are true. We leave out the cases where M of finite type would have to
be replaced by several of the F; in a free resolution being of finite type,
with one exception, which is needed for Proposition 12. We then proceed
to study the cases n=1,2, where better results can be obtained.

ProrositioN 10. Let R be B,_;. Then a), b), g) and h) are equivalent.

Proor. a) <= g) is as in the Noetherian case. The proof of a) <= b)
follows Ischebeck’s proof [11], since the facts he uses about Noetherian
rings still hold for B, _;-rings, by the properties already listed. Finally,
g) <> h) follows by using that Eg,(M,)=E(M),, if E(M) is Z-injec-
tive (*).

Of the onesided implications we give

PropositioN 11. Let R be a B,,_;-ring.
) If gradeEi 21, t<n, then R is a G, '-ring.
) If grade E* 2 min (¢,n), then grade Ext?(M,R)Zmin(¢,n); M of finite-
type. (If gradeE=14; ¢ <n, then grade Ext!(M,R)=14; ¢ <n.)
) If R is G,', then gradeExt*(M,R) 21, §<n, where in

F,~ ... Fi->F,—~ M,

bO =

W

all F; are of finite type.

Proor. 1) follows as in Bass [4], using again observation (*).
2) Let 0 > R - E° — ... — E™ be a minimal injective resolution of R.
Let f € Hom (M, E%). Then

Annf = Anne; n...n Anne,, e¢;eEt.
By assumption grade(Anne;) > min(n,:). If grade(Annf) <min (n,?), we
could use R is B,_, to conclude grade(Annf)=grade(Anne;) for some j,

a contradiction. Since Ext!(M,R) is a subquotient of Hom (M, E?)
we are done.
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3) We first show that if for an R-module N, grade N =¢<n, then

t = gradeN 2 ming, ygradeq = min ydepth R, .

qeSupp

For let z;,...,x; be a maximal R-sequence in Annm, m € N. Then

by i) and ii) above, R/> ;R is By,. Hence there is only a finite number

of associated primes p, so Annm <p, some p with gradep =depth B, =1.
Hence to show gradeExt(M,R)=1, ¢ <n, it is sufficient to show

depthR,<t<n = Ext‘(M,R),=0.

By assumption, R, is Gorenstein, so Exti(M,,R,)=0. One can then
conclude Ext?(M,R),=0, using F; free of finite type; j <s.

We now consider the cases n=1,2.

ProrosiTioN 12. Let R be a By-ring.

a) R s Gy if and only if each torsionfree module of finite type is torsionless.
b) Let R be G,'.

i) If M (of finite type) is a 2nd syzygy, then M is reflexive.

ii) If also M~ is of finite type, M reflexive, then M is a 2nd syzygy.

Proor. a) Since the total quotient ring of R is Noetherian, Vasconcelos’
proof [19] shows that the module statement implies that R is G,’. In
order to show that R is G, implies the module statement, he uses the
fact that ~ commutes with ring of quotient formation. But since
0> M — S-1 M is exact (S being regular elements in R, and M torsion-
free) and since S-1M is torsionless (because S—1R is Gorenstein of dimen-
sion 0), we can find a map f: M — R taking a given m=0 to f(m)=+0
in R by first finding an S-'R-homomorphism S-1M — S-1R such that
the image of m/1 is not zero, and then lifting to R, using the hypothesis
that M is of finite type.

b) i) Consider 0 - 22 M — F, - ' M —~ 0 where F, is finitely ge-
nerated and free. There is an' exact sequence [12]

0>T—>T"" - Extp!(Q* M,R) - 0
with T =Coker ((2' M) - F,”). Take duals again to get
0—Ext (@' M,R)” T 7 - T7.
But by 3) of Proposition 11,
grade Extg! (' M,R) = 1
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(since F,,F, are of finite type), hence Extz! (2! M,R)” =0, and T =
22 M is reflexive.

ii) For the other implication, suppose F, - Fy— M~ - 0 is exact
with F, of finite type and F; free. Then we get the exact sequence

0->M-—>F,—~>F,

with F, free of finite type and F,, being a direct product of copies of R,
torsionless. Hence K =Coker(M — F,) is torsion less. K is of finite
type so it is a submodule of a free module of finite type. Hence M is
a 2nd syzygy.

Next we verify that Ischebeck’s Proposition 4.6 in [11] also holds
for G,'-rings.

ProrposiTioN 13. If R is a G,'-ring, then the following statements about
an R-module M, with M and M~ of finite type are equivalent:

(i) M s a 2nd syzygy.

(ii) Each R-sequence of length at most two is an M -sequence.

Proor. Suppose, more generally, that R is B, and that M is an (n+ 1)th
syzygy. Then there is an exact sequence

O-M->F,>F, ,—~...>F,

with each F; free of finite type. Since each F; is B,, it follows, by in-
duction, (iv), and the fact that Coker(F, — F,) is B,, that M is B,.
Further M is B,, and hence, pR, contains an M -sequence of length 7,
t<n+1, if, and only if,

Exti((R[p)p, M,) =0 for 0=j<i.

Thus depth M, 2inf(n+ 1, depth R,).

Now we conclude the proof that (i) implies (ii) by modifying a proof
by Ischebeck, which itself is a modification of a proof of Samuel. So
suppose M satisfies (i).

Let n=0. Then depth M, 2inf(1, depthR,). So depth M, =0 implies
depth B, =0. Let q be a prime ideal contained in the zero divisors on M.
Since M is By, q is contained in one of the finite numbers of prime ideals
p of R associated to M. Then depth M, =0, so depthR,=0. So p
is a prime ideal contained in the zero divisors of R. Hence Z(M)<Z(R)
(Z(2)=the set of zero divisors of M). So each R-sequence of length
one is an M-sequence.
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Now suppose »>0 and that each R-sequence of length at most n
is an M-sequence. Let z,,...,x,,; be an R-sequence. Then x,,...,2,
is an M-sequence. From depth M, 2inf(n+ 1, depth R,) it follows that
depth M’ zinf(1, depth R';) (where ' denotes reduction modulo
Xyy. ., %pyy and P23 Ra;). Also M is B, implies M’ is B,. Hence the
result follows from the case n=0.

Now we wish to show that if each R-sequence of length at most two
is an M-sequence, then M is a 2nd module of syzygies. Write F — M~ — 0
with F free of finite type. Then 0 — M~" — F is exact. Since M is
torsion free and hence torsionless, it follows that M <M~ and hence

0O-M->F ->N->0

is exact. N is of finite type, and we must show N is torsion free. The ring
R is 8,, so depth M, 2inf(2, depth B,). Furthermore M is B,, so N is
B, and hence depth N, 21 (if depth R, = 2). If depth R =1, R, is Goren-
stein, we are in the Noetherian case, and the usual proof carries through.

There now follows the corollary.

CoroLLARY. Let R be Gy, M and M~ modules of finite type. Then M
ts reflexive if, and only if, every R-sequence of length at most two is an
M -sequence.

We remark the first part of Proposition 13 could have been proved via
“M 2nd syzygy = M reflexive = Each R-sequence of length =<2 is
an M-sequence’, since the last implication is easily seen. But we have
proved something more general.

The corresponding result for a Krull domain is a little better.

ProrosiTioN 14. Let R be a Krull domain (so in fact R is G, with the
additional assumptions that R is R, and is an integral domain). If M
18 of finite type, then M is reflexive if, and only if, each R-sequence of
length at most 2 is an M-sequence.

REeMARK. Here the assumption that both M and M~ are of finite
type is weakened to M of finite type. However, M of finite type implies
M~ is an R-lattice, which is usually good enough for most purposes.

Proor or ProrositioN 14. The necessity follows by using the left
exactness of the Hom functor. Suppose, then, that each R-sequence is
an M-sequence (length at most two). We know M is torsionless and
M is By, so M”7|M is B,. We want to show M~ ~ =M, so it is suf-
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ficient to show Ass(M~~[M)=¢. If htp=2, then péAss M~ ~|M,
as in [19]. If htp <1, then (M), =(M,)" (see [7]), so (M~ ~|M),=0,
since R, is Gorenstein. Hence Ass M~ ~|M=0.

5. Conclusion.

We list here the conditions considered in this article and note the
equivalences. Once again A4 denotes a Noetherian ring, p is a prime ideal.

n: depthd =inf(n,htp) for all p.

o

T,: A, is Gorenstein for those p with htp <n.

R,: A, is regular for those p with htp <n.

G,: AisS, and T,_, or A is n-Gorenstein.

B,: R has a minimal injective resolution 0 - R — E° -~ E' — ... and

Ei 48 X-injective for j <n.

The following conditions are equivalent:

(a) AsG,.

(b) For each A-sequence x,,. . .,x;, ¢ <n, the total quotient ring of A[3 Ax;
s quasi-Frobenius.

(¢) If EO—E'—~ ... is a minimal injective resolution of A, then
grade E7 > inf (n,§) for all j.

(d) For all M of finite type, gradeExti (M, A)=inf (n,j).

() If 0>K—>F,,y—~> ... >Fy—>M—0 is exvact with each F; free
of finite type, then K is (n+ 1)-torsion free.

& If0O>-K—>F,~...>Fy—> M- 0 is exact with F; free of finite
type, then K is torsion free, for 0 =r=<mn.

(g) depth A, <n tmplies A, is Gorenstein.

(h) flatdim E* <4 for ¢ <n.

(i) The Cousin complex C(A) is a minimal injecttve resolution of A
up to C*~2(4).

(j) idgA <mn, where € denotes the quotient category determined by
E(A[p), for depth A4, <n.

(k) For all M of finite type with grade M =235, 0=<j=<n,

(1) M(j+1)=Ker(M — LyM)) for all j, 0<j<n—1, where grade M = .
(m) Ischebeck’s filiration is the grade filtration up to M(n).

AppED 1N PROOF. Michel Paugam [C. R. Acad. Sci., Paris, Sér. A 274
(1972), 821-823] has announced results similar to those found in section
2. Also Eagon [Math. Z. 109 (1971), 109-111] has shown that there are
n-Gorenstein rings which are not n+ 1-Gorenstein for all integers =.
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