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A THEOREM ON CONVERGENCE TO A LEVY PROCESS

ANDERS GRIMVALL

1. Introduction.

Let X, 1, X2+ - s X1 ®=1,2,..., be a double sequence of random
variables such that
(1) Xy 15X n 2« - Xp 1, are independent for every n
and
2) lim,_, ., max;P(|X, ;|>¢) = 0 forevery ¢é>0.

For the study of the asymptotic behaviour of the partial sums:

m
(3) Sum = Xns m=12,...k,n=12,..,
=1
it is natural to consider a sequence of random broken lines:
(4) Y.t =0 if 0=t,0St<ty;,
= Sn,m_yn,m if tn,m§t<tn,m+1’ O<m<kn 5
= Spr, if t=t,, =1,

where 0=t,,<t,;<...<t,, =1 is a set of division time-points for
each n=1,2,... and 7y, , are adjusting constants. Y ,(f) is a random
process whose sample functions are in the space D[0,1] of all functions
on [0,1] with no discontinuities of the second kind. The space D[0,1]
with the Skorohod topology is a Polish space, i.e., a topological space
homeomorphic with a complete separable metric space. Let P, be the
probability law governing the sample function of Y, and hence a regular
probability measure on D[0,1] for every n. Thus the study of partial
sums S, ,, is reduced to the problem of convergence of the sequence {P,}.

Suppose that {P,} is weakly convergent. Then {S,,,n=1,2,...}
is necessarily convergent in law, because S, , =7Y,(1). Suppose con-
versely that {S, ; }, is convergent in law. Then we can find y, ,, and
tn,m such that {P,} is conditionally weakly compact. This is the main
result of our present paper. Prohorov [1] discussed similar problems for
the following special cases:
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(@) Xp1,Xp 9.3 Xp x, are identically distributed, where we can take
VYnm=0 and t, . =mk,.

(b) X, 1, X525 - -» X, 1, satisfy the Lindeberg conditions, where we can
take 7n,m=E(Sn,m) and bnym= V(Sn,m)/V(Sn,k,,)'

In the general case we are going to discuss in this paper we will use

the central value and the dispersion to determine y, ,, and ¢, ,,.

In Section 2 we will first review the definitions and the basic properties
of the central value and the dispersion following Ito [2] and then prove
a few new facts which will be used in Section 3. In Section 3 we will
prove our main theorem on convergence to a Lévy process and use
it to show the equivalence of several definitions of the infinitely divisible
laws.

2. Definitions and elementary facts about dispersion and central value.
Following [2] or [3] we adopt the following definition.

DeriniTION. The central value y =4(u) of a one-dimensional probability
measure y is defined to be the unique real number y such that

farctan (x—y) u(dx) = 0.
R1

The dispersion é(u) is defined by
8(u) = ~log [ [ ele=v! u(dz) idy) .
R2

For a realvalued random variable X with probability law x we have the
natural definitions y(X)=y(u) and 6(X)=0(u).
A measure y, is called a factor of u if u=p, *u,.

ProposITION 1. Let @y be the characteristic function of X. Then

d¢
1482

oX) = —log 2=t [ lpx(®)P
R1

ProrosITION 2. t=4, (the §-distribution concentrated at c) if and only
if 0(u)=0 and y(u)=c.

ProrosrrioN 3. If X - Y ip., then 6(X) - 6(Y) and y(X) — y(Y).
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ProrosiTioN 4. §(X) — 0 if and only if X —y(X) - 0 i.p.

ProrositioN 5. If X and Y are independent, then §(X) < (X + Y) with
equality if and only if Y =const. a.s.

ProrosITION 6. Let M be a set of one-dimensional probability measures
and M' the set of all factors of probability measures tn M. Then
{u' —y(u')} e g 18 conditionally compact if M is conditionally compact.

2.2. Further properties of the central value and dispersion.

For the proof of our main result we need some more facts about
central value and dispersion.

LemmA 1. Given ¢>0 and ¢>0, we can find d=d(s,c) such that if
X+ Y)-8X)<d for some random variable X independent of Y with
&(X)=Zc, then 6(Y) <e.

Proor. First we note the following fact: If [—a,a] is a compact
interval and B a Borel set contained in [—a,a] such that |B|zc¢>0,
then for some constant K=K(c,a)>0 and for all z and all B of the
above type,

(5) j (1—coséz) df 2 K x?/(1+a?) .

B
Now let X and Y be independent random variables with characteristic
functions g5 and ¢y, respectively. Then

X+T)-8X) = [ (I, —1,),
where

d¢
1+

f P f l9x(E)F(1 = Ipr (©)P)

1+?

If §(X)<cweget n=l,=me*=K,(c)>0, and

1= lpp ()2 = [ (1-cosé) u(de)

for some probability measure u. By interchanging the order of integra-
tion,

—cos £x

I = f u(dz) f Pl e dt
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Now choose K,= K,(c) such that (%, d&/(14£%)=1K,. Then

Ky

[ lx@rdga+e 2 3K, .

—Ks

Let E={&; || K,, |px(§)22 1 K,/K,}. Then we have

lpx(£)2 dE/(1+&2) < 2K, 3 K,|K, = }K,
[-K2, Ko]\E

and therefore

[lox@raga+e) = 45, 1Bl 2 1K
E

By (5) there exists a constant K;= K;(c) such that

T cosfx
b e |
2 —wﬂ z) | lex(é)? T e dé

1—
f” 8K, 1+K2f( coséw) df 2 f 2”(d)
It follows that
I, I,(e8X+1)-8X)_ 1)

f l1+x /() = 71:::, N K, X180 = f (DD 1) .

Observing that

J ——; ulda) >0 = (¥) >0,

the lemma is proved.

LemMMA 2. Given ¢> 0 there exists a d=d(e) >0 such that, for all k and
X,,X,,...,X; independent,

P(Xy+... +Xk)—E}°=1 Y Xj)l <

as soon as 6(X,+ ... +X;)<d.
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Proor. Assume that the lemma is false. Then for some £>0 we can
find a double sequence X, ;,X,,,...,X, ,n=12,... of random
variables such that:

X1 Xn,2+ - -»Xn, 1, are independent for each =,
(X 1+ Xpot ...+ Xy ) >0a8s n—>o00,
V(X'n,l) = ?’(Xn,z) = ... = 7(Xn,kn) = 0’ n=1’2:3,' L)
P( X1+ Xpot. .. +Xpp )l 26 n=1,23,....

It is easy to see that we can assume that (X, +...+X, ;)¢ as
n — oo.

Let ¢, ; denote the characteristic function of X, ;. Then we have,
by Proposition 4,

(6) (pn,l(f) (pn,2(§) ST ‘pn,k,.(f) — gibe |

Letting £y=n/e in (6) we get

[ j €08 &g fhy, 1(dx) +1 f sin&gx ,u,n’l(dx)]. ..

—00 —c0

[‘f cos&g iy 1. (d) +14 f sinéyx ,un,,c”(dx)] - —1.

—00 —00
Since ¢, ;(¢§) 3 1 uniformly in j as n - o, we have

(o]

3 [ sinég u de)

—00

> 1

for all n large enough, where 3’ denotes the sum over all positive or all
negative terms. Further,

_ Eox+ H,(x)2?

. x+ H, (x)x?
SINEyX = —_—
%o 1+a?

, arctanzx =
1+ a2

’

where H,(x) and H,y(x) are bounded on the real line. By assumption

> f &, arctanz u, ;(dr) = 0.

Therefore
© [Hy(@) — £ H ()]0
1422

fin,j(da) | > 1,

=

—00
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and so we can find a constant ¢> 0 such that

(7) 1f1+ 2,un,(doc)>c>0 for all n .
J=

On the other hand it follows from (6) that

@n,1(E)12 @n,2(E)? - -« |@n i ()23 1 a8 0 —>o00.
Therefore

kn kn ¥
2 (1=]on (6)?) = z f (1 —coséx) i, ;(dr) 30 as n - oo
J=1 J=1 oo

(fin,; denotes the symmetrization of 4, ;), and from this

1

kn

S (=g, (&)B dé >0,
5=t
which implies
(8) 2 f — 2yn7(dx)—>0 oS 7 os oo

Comparing (7) and (8) we can see that Lemma 2 is proved, when we have
verified :

Lemma 3. If p is a one-dimensional probability measure with y(u)=0
and if fi denotes the symmetrization of u, we have

[

Proor. We can assume that m > 0, where m is a median of y, that is,
u(—oo,m]= % and y[m, o) = 1. First we note that

=f1+
2

1 00
> —
1+x2" = 6f 2”(dx)

_L o W) dy)

=
!

2
f 2#(dw)u(dy)+ [ [ o e

20 y=0

f Zﬂ(d z)

a:>0 z<0
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and from this also
L F @—mp

I S A,
2_00 1+ (x—m)?

v

u(dz) .

If u(—o00,0] = &, it follows immediately that

1 [ a2
Iz 35 | Tomsda),
—00

so it is enough to consider the case u(—o0,0]<4&. Then

and

Since

%ni% = f arctan (—x) u(dx) f arctanz p(dx)

x<0 z>0

v

tarctanm = }arctan2m ,

we first get m < } and then we have

22 ; 22
>
[ Tmmdn 2 [ L
<0 r=-2m
2 f m arctan (—x) u(dz)
< -2m
3
= 1 f m arctan (—z) u(dx)
<0
3
=3 f m arctanz u(dz)
x>0
2m
3
= —; f arctanz u(dz)

1\
~ §
O;.’N
sl“‘
8
(3]
"’;
9.:
Il
|
zem e
:‘i
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Therefore ,
m
[ i) s 5 [ fopudn s o1,
x
and so we have
o0 xz 2m xz
f 1+x2‘u(dx) - f+ f * f 1+x2’u(dx) = 161,
—00 <0 0 x=2m

LEMMA 4. Given ¢>0 and ¢>0 we can find a d=d(g,c)>0 such that
(X +Y)-6(X)<e for all pairs (X,Y) of independent random variables
satisfying 6(Y)<d and 6(X) <c.

Proor. Use Proposition 1.

3.1. A theorem on convergence to a Lévy process.

Let X, 1,Xp,2- - > X, 1,» #=1,2,..., be a double sequence of random
variables subject to conditions (1) and (2). Assume further that X, ;
has distribution u, ; and that

(9) Hpa * Bp2 ® oo ¥ Uy g, e # s
where é(u)>0. Define for fixed w e (2,%,P) and ne N a broken line
0 if 0<t<t,,
Yn,m(t) = Sn.m - z;"=1 7(Xn,j) + tn,m z;k21 y(Xn,j) lf tn,m é i< tn,m-i-l
. if t=1.
We take

¢ —_ 6(:“11,1* AR */un,m)
n,m 6(

)
:un,l*' . '*:un,kn)

n=12,.... Then Y, (t) defines a distribution P, in the function
space D[0,1], which is assumed to have the Skorohod topology
([4, p-109]). Without restriction we can assume that D[0,1] is a com-
plete separable metric space ([4, p.113]). We are going to prove

THEOREM 1. The sequence {P,}, of distributions in D[0,1] defined
above 1s weakly conditionally compact and every limit distribution P cor-
responds stochastically to a process X, (w), t € [0,1], continuous in prob-
ability and with independent increments (a Lévy process). Moreover,
X,(w) has prebability law p.

3.2. Prohorov’s lemma.

MERd (2

n=1,2,..., of random variables, and a family of division time-points

We now consider an arbitrary double sequence X, ;,j=1,2,...,k
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tnpi=12,...,k,, n=12,.... We construct the random broken lines
with vertices (Z,, . Z;’;lffn,j). In Prohorov [1, p.193] the following
lemma is proved.

Lemma 5. The sequence {P,}, of distributions in D[0,1] defined by the
above-mentioned random broken lines is conditionally compact and every
limit distribution for {P,}, corresponds stochastically to a continuous
process with independent increments if

(i) 0,=max;(t, ;—1tp ;j—1) >0 as n > oo,

(i) max g P{QWMX,,,,.] >3} +0asd->0,
uniformly in n for every fixed 2> 0,

(iii) max, P{IEWM X'n,]’l >} >0
uniformly in n as 4 — co. The maximum in (i) and (iii) is taken over all
A of form (t, ;,t1<[0,1].

REMARK. The proof in [1] is not completely correct because Lemma 2.4
on p. 182 is false. But using a similar theorem given by Billingsley
in [4, p.125], we can easily correct Prohorov’s proof, and proceeding in
this way we automatically get a proof in the case when D[0,1] has the
Skorohod topology. (The topology used by Prohorov is in fact equiva-
lent to the Skorohod topology.)

3.3. Proof of Theorem 1.

We now return to the theorem on convergence to a Lévy process
stated in Section 3.1. First we prove that the Prohorov broken line
Yn,w(t) determined by the double sequence Xn’j,j= 1,2,...,k,n=1,2,...,
defined by

X'n,f = Xn,i_Y(Xn,j) s

and the time-points £, ,,=0(up 1%« %ty m)[0(thy 1% . ¥,y ) satisfies
the conditions in Lemma 5.

(i) Since O(up, 1% . %ty x,) = 0(u) >0 as n — oo, condition (i) follows
immediately from Lemma 4 and the fact that d(u, ;) - 0 uniformly
in j as n — oo,

(ii) Using Lemma 1 we get

SUP 100Dy jea X, ;) ~ 0 uniformly innasd > o .

From Lemma 2 we have

SUP| 44 ]y(ztw.e 4 Xn,j)l - 0 uniformlyinnasd -0,
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and so by Proposition 4,
SUP|41<q P{]ZWM XM| >2} — 0 uniformlyinnasd—0.

(iii) We can choose n, so large that

IZ,,,,-M V(Xn,i)_y(ztn,fe" X5l =1

for all 4 with |4]<n,. Since A ={u, 1*...*u,y,}, i conditionally
compact, the family

M = {/"n,m*:un,mﬁ—l*' "*:un,p'—zjgm y(:un,j) : lémé—pékn’
by mrtmsto- - - rtnp € A, 4] 771}

n,m>’n,m+1s

is also conditionally compact by Proposition 6. Since D[0,1] is a com-
plete separable metric space, .#’ is tight. Therefore, given £>0, we
can choose 1 so large that

P{lzwm X, i|>3mg1} < Jengt forall 4, |4] < nyt.

If now 4 is an arbitrary subinterval of [0,1] of form (¢, ;t], we can
for all large enough # divide it into at most 2n, intervals of form (¢, ,,t],
each one of length at most n,~1. Therefore taking A large enough,

P{igwed X.i|>% <& foralldandalln,

which proves (iii).

Lemma 5 can now be applied. We see that {P,}, is conditionally
compact and every limit distribution P corresponds stochastically to
a Lévy process X, (w),te[0,1]. Let {P,} be a subsequence converging
weakly to P. If m, is the projection, which takes Y(-)e D[0,1] into
Y (1), then m, is continuous and therefore,

Pq -5 P > Pq:rtl‘l — Pn1.
But P, =, is the prohability law of 3F, X, ;, that is,
Py = pga*tga* - * gy~ 2581 ¥(hg5) »
and Pz,-1is the probability law of X,(w). Since
Po1*lga*- - *llgp —> {88 ¢ > oo,

there exists a constant ¢ such that

(10) i1 v(pgy) > as ¢ oo,

and X,(w) has the probability law u—ec.
From (10) it follows that {Zj’f’”ly(X,,,j)},, is bounded. Therefore we
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can easily see that Lemma 5 can also be applied to the random broken
lines Y, ,(¢f) in our theorem. In this case also every limit process
X,(w), t €[0,1], is such that X,(w) has the probability law u.

REMARK 1. The sequence {P,}, in the theorem is not convergent in
general, as is easily seen.

REMARK 2. Since Lévy’s decomposition of the sample path of a Lévy
process can be proved directly [3, Section 1.7], the theorem in this
note can be used to prove the equivalence of the following characteriza-
tions of an infinitely divisible distribution.

(i) There exists a family {u,}, of distributions such that u=pli*
for all n.

(ii) There exists a family {u, p}n ; of distributions such that

/"n,l*fun,z*"'*:un,k,.—w"” and ﬂn,j[—8’+8] -0

uniformly in j as » — o for every ¢> 0.

(iii) There exists a Lévy process X,(w), ¢t €[0,1], such that u is the
probability law of X,(w).

(iv) The characteristic function ¢,(z) of u can be written in the form

@,(2) = exp{imz— jv2?+ [3 (e — 1 —duz/(1 + u?)n(du)}

where v >0, n(du) 20, and [ (u2/(1+u?)) n(du) < c.
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