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CERTAIN ¢-TRANSFORMS

SNEH D. PRASAD

1. Introduction.

In this note we have obtained certain inversion theorems for some
series transforms, which can be expressed as basic integrals. Use has
been made of the g-Laplace transform, its inversion and convolution

theorems.

2. Notations.
Let

[a], = [¢°], = (1—g*)(1—¢**)... (1 —¢*+ 1), [a]p=1, |g| < 1.

( -1 )r q}r(r+1)
[a], =————.
qar[l - a]r

(1+4ba—1¢d)

W for any arbitrary index « .

(@+b), = a* [I35%,
The basic hypergeometric ,D,-series is defined as

|zl <1

e [aler
1¢1[a9b7x] - =0 [b]r[l]r’

The basic integral is defined as
“
[ 1@ d@sa) = t(1-0) S0 0'f 02 -
0
The rth basic differential of f(x) is given by

— 1L (— 1Y gU-D
f(’)(.’l:) —_ (q_ ]_)—rx—-rq—ir(r—l) z;;() [7' J+ ]j[(l] ) q f(q'“fx) .
j
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The functions e, (x) and E (z) are defined as follows:

zr
eq(x) = (l_xj;' = =0 [_ﬁ;’ lef<1.

( — l)rqir(r—l)wr

(1],

Ey(x) = (1-2) = 2720

As a g-analogue of the Gamma function we define

eq(9%)

Tol) = ellq) (1—q)*V

a+0,—1,-2,-3,....

The basic analogues of sinxz and cosx are given as follows:

. _ o ( — l)r x2r+l
BHIQ(x) h Zr=0 [1]2r+1 ’
- 1) 27
cos,(x) = S‘;O(—[l%——gf——.
2r

&S (), the g-Laplace transform of f(t), as defined by Hahn [1] is given by

17 N £ S (Y
JIO = 1= ! Blas2) f@) dlasa) = = 3o =

The convolution theorem for g¢-Laplace transforms of the functions
F(t) and G(t) as stated by Hahn [1] can be expressed as

1
LFOLG0 = 4, L—E—q [ P ati—teq) diesa)],
where ’

At —txq] = °°=0 Ar(t—th)r if Q@) = 210 A,t' .

3. Results.
TrEOREM 1. If

A 1
BN o) = 1= [ P toq) -t Diainscat] deia)
0



326 SNEH D. PRASAD

then
Bt |
(8.2) f(t) = g f gt —taq] (wt)v+m-o—1 D[ —a;n+m—o;xcig®] d(x;q)
0

provided that
(i) |te|<1 and |tcq* <1,
(ii) = and m are positive integers such that n+m>R(x)>0,

(iii) f(0)=0=f'(0)=...=fm"D(0),
g(0)=0=g'(0)=... =g"1(0),

(L—g)m+
(1 - q)oc—l ( 1- Q)n+m—a—1 ’

(iv) 4B=

where

fli—taq) = 32, A(i—taq), if f(t) = S A0,
and

glt—twq] = 372, B,(t—taq), f g(t) = 322, B

Proor. Let [ f(t)=F(s) and [l.g(t)=G(s). Now under the stated
conditions, we have
smF(s)

(1—g™

qls f (m)(t) =

This can be obtained by a repeated application of a known result due
to Hahn [1, 9.7].

Further, the convolution theorem when applied to functions f™(t)
and 1,9, [a;x;ct], gives

(1=9)a-q(1 —gcs1) 8™ F(s)
(1=g)™(1—cs™)g

1
t
= s [ﬁ ff""’[t—txq] (xt)*-1,Dy[a; o cxt] d(x;59) 4 -
0

Taking g-Laplace transform on both sides of (3.1), we get

_A(1—q), (1 —g%cs71)y, 8™
¥ = i gm(—cs,,

F(s).
This gives

_ (1—gymn (1 =081 = D1 8"G(5)
A(1=9) 1 1= Qpam—gma (L—g%8™ ) 8mtm==  (1—g)*’

F(s)
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that is,
s S (?)
= o Lo {trtm—=—1,0,[ —a; n+m—o; 2eq®]} L, {g™ ()}
A( 1- q)a—l (1 - Q)n-#m—a-l e
(1—gym+n

- A(l - Q)a—l (1 - Q)wl‘-m—a—l
¢ 1
"ol {1——q f g™t — tag] (wt)yr+m—e—t Dy —a; n+m—o; ateg®] d(z;9)1 s
0
which in turn implies
Bt |
10 = (= [ ¢~ tegatpn -ty —a; mtm—a; ateq®] dasq)
0
To verify theorem 1, let us take m=0,n=1 and f(¢)=1-1,9,[b;8;dx]

with ¢?d=c,|dz|<1 and R(x+pf—2)>0. We have then

flt—txq] = 32, Mﬂ drir+B-1

[61.[11,

and hence (3.1) gives

A1 —q) g [+ Bl t*+E2
(1-¢°),

g(t) = 19:[a+b; x+B; dt] .
This gives

gl(t) — A(l—q)“_l(l_Q)“’Fﬁ—l[“'i'ﬂ]mt“'l'ﬂ—ﬁ
(1—q)(1=q),45(1 =),

If we put this value in the right hand side of (3.2) we get f(f).

1Dila+b; x+B—1;4dt].

Special cases of theorem 1.
(i) If a=«, then under appropriate conditions

1
g(t) = {% f SOt —twg] (xt)* -1 e (cat) d(x;q)
0
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implies
Bt |
f@) = T4 f gt —txg] (wt)y™+m=="1, D[ — & m+m — ; wteq”] d(®;q) -
0

(ii) If c=0, m=0 and 4 =(Iy(«x))~? then, under appropriate conditions

9t = (l—q—— f flt—taq) ()~ d(z3q)

implies

f(t) = gt —txg] (xt) 1 d(=;q)

(1- Q)P(n—fx)f

which is the basic analogue of the following well-known result that, if,

t
1
—_ _ o—1
90 = 7z Of ft—a)atda,
then

t
f gt —x)anr>Ldx .

fo = I'(n—«) ]

(iii) If c= — }d and @ - o, we see that

1
A(1—q),_ 2t '
”EI_Z;——dtrr [ $omte~toqatyie-nyj,_(atd) diasq)
0

g(t) =

implies

girr-0( — 1)rarirdr

Bt |
10 = 1=, [ ¢t tenatyn-et 32, d(30),
0

[n+m—a],[1],47

where ,j,_,(t) is the basic analogue of the Bessel function and is given by

—1)
(«],[1],

aJat) = (3x)>- lEr=o (3)?r .

( )a—l

(iv) f a=4, x=3% and ¢= —1, then

g@t) =

1
2i-g) of Flt— tag | Bt (1)} d(z39)
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implies
1

f gt —tag) @ty m=2, 0, — b; n+m—; —atgh] d(;q) ,

7%
where Erf, (z) is the basic analogue of the error function and is defined as

Erf,(x) = 2en—t ,@,(%; §; —2?], |#|<1.

THEOREM 2. If

A 1
g(t) = 1——— f [t —txq] sin, (axt) d(x;q) ,
0
then
1
Bt a?(xt)min-l  (xp)min-3
_ (n) d ;
f(t) 1-— J [t txq][ [1]m+n~1 +[1]m+n—3J (x q)
provided

(i) m and n are positive integers,
(ii) 4B = (1—gy™*"a™t,
(iii) f(0) = 0 = f'(0) = ... = f™-D0) and
9(0) = 0 =g¢'(0) = ... = g=0).

TuEOREM 3. If
1
At
= 1=, | St te cosy (o) dizsa),

0
then

Bt | n (trym+n—2 g2 (fx)m+m )
10 = =g [ et [ e

provided
(i) n and m are positive integers,
(ii) AB = (1—gq)m*",
(iii) f(0) = 0 = f'(0) = ... = f@D(0) and
g(0) =0 =g'(0) = ... = g=0).

Proofs of theorems 2 and 3 are similar to that of theorem 1.

I am grateful to Professor R. P. Agarwal for his kind guidance through-
out the preparation of this note.
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