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A GENERALIZATION OF THE STRICT TOPOLOGY
J. HOFFMANN-JGRGENSEN

1. Introduction.

In [2] R. C. Buck introduced the strict topology on C(X), where X is
a locally compact Hausdorff space. In this paper we shall extend the
definition of the strict topology to arbitrary Hausdorff spaces and by
use of this topology prove some results on compactness in C(X).

Let X be a Hausdorff space. Then #(X) denotes the Borel o-algebra
(=the o-algebra generated by the closed subsets of X), and C(X) de-
notes the set of all real, bounded, continuous functions on X.

Let m be a real valued finite measure on (X,%(X )). Then |m| denotes
the total variation of m (see for example Definition 4 in Chapter III.1
of [4]), and m is called regular if

(1.1) |m|(4) = sup{|im|(K)| K compact, Kc A} VAe#X).

The set of all real valued, finite, regular measures on (X,.%?(X)) is de-
noted by M(X), and the positive part of M(X) is denoted M _(X).
If Ac X, we can define a seminorm, ||-||,, on C(X) by

Iflly = supseqlf(x)] Vfel(X).
And we can define the closed balls:
B(4,0) = {feC(X) | IfluSa} Va>0.

Using these seminorms we can define 3 topologies on C(X):
The pointwise topology, p, which is generated by the seminorms

{I*lle | 4 is a finite subset of X}.
The compact topology, 2, which is generated by the seminorms
{lI"lla | 4 is relatively compact in X} .

The uniform topology, w, which is generated by the norm ||| x.
It is obvious from the definitions that

(1.2) pcs A cu.
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If fe C(X) and m € M(X), then we may define the bilinear form (-, -) by
(fom) = [ f@) m(da) .
x

Under this bilinear form (C(X), M(X )) becomes a dual pair. The weak
topology on C(X) arising from this duality is called w.

The strict topology, f, on C(X) is the topology generated by the semi-
norms

(1.3) q(f) = Supngl{“n”fHK,,} VfeO(X)

where K,,K,,... are compact subsets of X, and {a,} is a sequence of
positive numbers with lim, , a,=0.

In [2] Buck has defined the strict topology as the topology generated
by the seminorms

r(f) = llgfllx »

where g is a continuous function vanishing at infinity. This definition
clearly works only in the case where X is locally compact, since other-
wise g=0 is the only continuous function vanishing at infinity. It is
easily seen that whenever X is locally compact then the definition of
Buck coincides with the one given in (1.3). It is also rather obvious that

(1.4) wecpcu A cp.

We shall need some notions from general topology. Let X be a Haus-
dorff space. Then

(1.5) X is a k-space, if A< X is closed, whenever 4 nK is compact for
all compact K< X;

(1.6) X is a k*-space, if a bounded map, f, from X into the real line, R,
is continuous, whenever f| K is continuous on K for all compact
KcX,

(L.7) X is almost a-compact, if there exist compact sets K,,...,K,,...
in X such that UP K, is dense in X.

It is obvious that every k-space is a k*-space. Furthermore every
locally compact space, every metrizable space and every space satisfying
the first countability axiom is a k-space.

If X is a o-compact space or a separable space (that is X admits a
countable dense subset), then X is almost o-compact. Furthermore if
there exists m € M(X), such that the support of m is equal to X, then X
is almost o-compact.



A GENERALIZATION OF THE STRICT TOPOLOGY 315

2. Properties of the strict topology.

ProrosITION 1. A subset D of C(X) is S-bounded if and only if D is
u-bounded, and if D is p-bounded then p and K coincide on D.

Proor. Since f<cu it follows that u-bounded sets are f-bounded. So
let D be a u-unbounded subset of C(X), we can then find f, € D and
x, € X, such that |f,(z,)|=n% Let U=NPB({z,},n), then U is a 8-
neighbourhood, which obv10usly cannot absorb D, hence D is f-un-
bounded.

The last statement is trivial.

THEOREM 1. Let X be a completely regular Hausdorff space, then the
following 3 conditions are equivalent:
(1) (C(X),B) is complete,
(2) (C(X),B) is quasi-complete,
(3) X is a k*-space.

Proor. (1) = (2): Trivial.

(2) = (3). Let f be a bounded map from X into R, such that f| K is
continuous for all K a compact subset of X. Let fx=f|K; since X is
completely regular and K is compact, there exists gz € C(X) such that

9x(®) = fx(*) VxeK VYK compact,
loxlx = Iflx VK compact .

Hence {gx | K compact} is a bounded subset of (C(X),B) by Propo-
sition 1. Let us order £ (X)={K | K compact subset of X} by inclusion.
If {K,}cX(X) and {a,} is a sequence of positive numbers with
lim,,_, . a,=0, then for every ¢>0 we can find N =1, such that

€

@, < ———— ¥Yn=N
"2 flx+1
If L,K2UL, K;, then
l9x —9Lllx, = O VnsN
and
l9x—9Lllx, = 2lflx VnzN.
Hence

SuPngl{“n”gx—gL“K,.} <e,

forallLKe.}f(X)WithLKDU 1 K;.
This shows that {gx | K € #'(X)} is a generalized bounded g-Cauchy
sequence. Hence by assumption {gx} is f-convergent, and since f is
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the only possible limit of g5, we see that f e C(X), which means that X
is a k*-space.

(8) = (1). Let {f,} be a f-Cauchy sequence. Then obviously we can
find a real function f on X such that f, —, f uniformly on every compact
subset of X. Hence f| K is continuous for all K compact, and since X
is a k*-space, f is continuous. Suppose that f is unbounded, then we can
find z,, € X with |f(z,)| 2 2n for all n = 1. On the other hand there exists
&g such that

Ifu(xn)_fﬁ(xn)l =n fo,ﬁglxo Vanzl.
Taking limit over 8 we find
|fao(x'n) —flx,)l =n Vuzxl

and so |f,(z,)|2n for all nz1, which contradicts the fact that f, is
bounded.

Hence fis bounded and so f € C(X). But this implies that & -lim_f,=f,
and since g has a base around 0 consisting of 2 -closed sets, we find that
p-lim, f,=f, which shows that (C(X),) is complete.

THEOREM 2. Let X be a completely regular space, then the dual of
(C(X),B) equals M(X).

Proor. Let m e M(X), and put

F(f) = ffdm VfeOX).

X

We shall then prove that F is $-continuous. By regularity of m we can
find compact sets K; < K,< ..., such that

Im|(X\NK,) <22 VYnzx1.
If ||fllg,s 272 for all n2 1, then
IF(f)l = 1+ |m|(X),

and so F is f-continuous.

Let F be a f-continuous linear functional on C(X). Then F is u-con-
tinuous since fcu. So, if X is the Stone-Cech compactification of X,
we find that there exists m € M(X), such that

F(f) = [fain vieow),
X

where f is the unique extension of f to X.
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We shall now prove that X is #m-measurable and m(X\ X)=0. Let
K,cK,<... be compact sets and a,<a,=<... positive numbers with
lim a, = oo, such that

n—>00

IF(f)] =1 er nf=1B(Km%) *
Let fe N2, B(K,,a,) and f its extension to X. Then

[ 11 =sup“ | ofan

x

Blg<1, §e 0@)}

= sup{|Fgf) | lgllx=1, geC(X)} = 1,

since gf € NP B(K,,a,) for all g e C(X) with |jg||x=1. Hence we have
shown that

(2.1) [f1aim s 1 ve Nz BK,a,) .
X

By regularity of m there exist open sets ) nin X such that ﬁn 2K, and
(O, NK,) S a7t Vnzl.

By complete regularity of X there exists a continuous function, fn, from
X into [0,a,] such that

fix) =0 forzek,
a, forzé¢U,.

Il

Then

Ifullg; =0<a; V1Zjsan,
and

”fn”K, = Ay = a; Vj;’n s

where f,=f,| X, and so f, belongs to NP B(K;,a;) for all n21. So by
(2.1) we find
al|(ZNK,) = anlil (O \K,) + anii|(X\T,)

l+fﬂﬂ@§2-
X

il

IIA

Since lim,,_, . a, =0 we have lim,_, |#®|(X \ K,)=0, hence
l(X\NUFK,) =0,

and since £\ X< X\ UK, we find that X\ X is an #-null set. So,
if we put
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m(B) = m(B) VBe#X),
then m € M(X) and

F(f) = [fam vicom),
X
which proves the theorem.

CoroLLARY 1. If X is a completely regular k*-space then the Mackey
topology on C(X) arising from the dual pair (C(X), M(X)) is complete.

THEOREM 3. Let X be a completely regular space, then the following 4
statements are equivalent:
(1) X is compact,
(2) p=u,
(3) (C(X),p) is bornological,
(4) (C(X),B) is barrelled.

Proor. (1) = (2): Trivial.
(2) = (1). If B=wu then there exist compact sets K,cK,<... and

ositive numbers a, = a,> ... with lim a, =0 such that
1 2 n—>00’'n

Iflx £ Supngl{“anHK,,} .
Let N be chosen such that a, <% for all ®=N. Then I claim that

KIV=X .

Suppose this is not the case, then there exists a point z,e X\ K.
By complete regularity of X there exists a continuous map, f, from X
into [0,1] with

f@)

1 for x =z,
0 for xeK,.

Then
Ifllx =1 > % 2 supuzy{a,]lfllx,}

which contradicts the choice of {K,} and {a,}.

(2) = (3): Trivial.

(2) = (4): Trivial.

(3) = (2): Let T be the identity map from (C(X),p) into (C(X),u),
then 7 is a bounded linear operator by Proposition 1, and so by as-
sumption 7' is continuous. That is § 2% and since the converse inequality
is trivially satisfied, (2) follows.

(4) = (2): Let S be the unit ball in C(X), that is,
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8 ={feCX) | Iflx=1}.

Then S is a weakly closed barrel in ((X), and so by assumption § is a
B-neighbourhood of zero. That is, f2u, and so (2) follows.

3. w-compact subsets of C(X).

THEOREM 4. Let X be a completely regular k*-space and A a relatively
countably compact subset of (C(X),w). Then the closed balanced convex
hull of A is w-compact.

Proor. This is an immediate consequence of Corollary 1 and 24.1 (1)
p- 316 and 24.5 (4) p. 328 in [5].

THEOREM 5. Let X be an almost o-compact completely regular space and
A a relatively countably compact subset of (C(X),w). Then A is relatively
sequentially compact in (C(X),w).

Proor. Let K,,K,,... be compact sets in X such that UP K, is dense
in X. Let

d(f.0) = 3 2" Avotan | =1l .

Then d is a locally convex metric on C(X), which generates a topology
weaker than . So by Theorem 2 and 24.1 (3) on p. 314 of [5] the theo-
rem follows.

THEOREM 6. Let X be an almost g-compact Hausdorff space and A a
relatively countably compact subset of (C(X),p). Then A is relatively
sequentially compact in (C(X),p).

Proor. Let K,,K,,... be compact subsets of X such that UP K, is
dense in X and let {f,} be an ordinary sequence in 4.

By Krein’s theorem (see for example 24.5 (1) on p. 327 of [5]), and
the usual diagonalization method we can find n; <n,< ... such that

f*(x) = limj—>oofn7(m)

exists for all ze UPK,. If fis a limit point of { f,nj}, then obviously

f(x)=f*) for all ze UPK,, and since UP K, is dense in X we find

that {f,} has at most one limit point in (C(X),p). But { o} 18 relatively

countably compact in (C(X),p), and so { [fn;} is convergent in (C(X),p).
That is, 4 is sequentially compact in (C(X),p).
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ProvrosrTioN 2. If X is a Hausdorff space and A a u-bounded relatively
sequentially compact subset of (C(X ),p), then A is relatively sequentially
compact in (C(X),w).

Proor. Immediate consequence of Lebesgue’s dominated conver-
gence theorem.

Combining the Theorems 4, 5, 6 and Proposition 2, we find,

THEOREM 7. Let X be a completely regular, almost o-compact k*-space.
Then the following T statements are equivalent for a u-bounded subset A
of C(X).

(1) A is relatively countably compact in (C(X ), D).

(2) A is relatively sequentially compact in (C(X),p).
(3) A is relatively compact in (C(X),p).

(4) A is relatively countably compact in (C(X),w).

(5) A is relatively sequentially compact in (C(X),w).
(8) A is relatively compact in (C(X ), w).

(7) The closed balanced convex hull of 4 is w-compact.

4. The Stone-Weierstrass theorem.
THEOREM 8. Let X be a Hausdorff space and F a subset of C(X) satisfy-
ing:
(a) If g.fe F, then max(f,g) and min(f,g) belong to F.
(b) Jaz=1 such that: Y K compact, Y b >0 there exist functions f,g € F with

f@zb vVeeK and |flx < ab,
giz) £ —b VezeK and Jg||x < ab.

Then a function b € C(X) belongs to the f-closure of F if and only if it
satisfies:
(¢) For all x,y € X and &> 0, there exist an f e F with

If(@)—h@)| <& |fH)-hEy) <e.

Proor. The “only if” follows trivially from the fact that f2p. Now
let & be a function satisfying (¢) and let K,,K,,... be compact sets,
@q,Qs,. .. positive numbers with lim, , a,=0 and £¢>0. Let us put
a,=1 and

b=|hllx+e c= Supngo{a’n} .

Then we choose N such that
(4.1) a, < e(ab+|hlx)t Vrz=N.
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Let K= U}LK,. Then K is compact. Let y € K be fixed for a moment.
Then to each x € K we can find f, € F with

@) =)l < ec, | fylx)—h(z)| < ec™t.

If U,={z| fo(2) <h(z)+ec~1}, then U, is a neighbourhood of z for all
z € K. By compactness of K there exist z,,...,z, € K with

K¢ Ur,U,,.
Let g,=max(f,,,...,fs,)- Then g, € F for all y € K and clearly

g,(x) < h(z)+ec? VzeK Vyek,
9,(y) > h(y)—ec™t VyekK.

If V,={ze X |g,(2)>h(z)—ec'}, then V, is a neighbourhood of y for
all y e K. By compactness of K there exist y,,...,y, € K, with

K cUp,v,.
Let g=min{g, ,...,9,,}. Then g€ F and obviously
lg(x)—h(z)| < ec! VzekK.
Let g, and g, belong to F such that

(@) 2 b = [h|x+e Vzek,
gal®) S —b VzeK,

and |g;/lx Sab, ¢=1,2. Then
hO = max {gz, min {glsg}}

belongs to F, and it is easily seen that

ho(x) = g(x) vx € K ’
hollx < ba .
Hence we find by (4.1) that
an”h_’hOHKn = a’n“h_g”K,, =¢ Vl§n§N’
anlb—hollx, < a,(hlx+ba) S ¢ VazN
which shows that & belongs to the §-closure of F.
CoROLLARY 2. Let X and Y be completely regular spaces, and T an
algebra homomorphism from C(X) into C(Y) such that T(1x)=1y and T

is (B, B)-continuous. Then there exists a conlinuous function ¢ from Y into
X such that T is given by

Tf = fot VfeO(X).

Math. Scand. 30 — 21
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If T is an algebra isomorphism from C(X) onto C(Y) and T is a (8,B)-
homeomorphism, then t becomes a homeomorphism of Y onto X.

Proor. Let X and ¥ be the Stone-Cech compactifications of X and
Y. Then by Theorem 26 in Chapter IV.6 of [4] there exists a continuous
map £ from ¥ into X such that

(Tf)y) = f(y) VfeCX) VyeY,

where f is the unique extension of f to X.
I claim that £ maps Y into X, so let y, € ¥ and suppose that £(y,) =
2¢ X. Now let

F = {feC(X) | f@)=0}.

Then obviously F satisfies (a) of Theorem 8. Let K be a compact subset
of X and b>0. Then, since 2 € \X < X\ K, there exists a continuous
map, f, from X into [0,b], with

foy=0 if
b if

z,
K.

m

(]
]
Hence (b) in Theorem 8 is satisfied. Since

F =TgeC(Y) | g(yo)=0},

F is B-closed. Let h e C(X) and ¢>0 and «,y € X. Since 2 ¢ X we can
find fe F with f(x)="h(z) and f(y)=~h(y). So by Theorem 8, F equals
O(X), which is obviously impossible. That is, {(¥)< X, so if t=£| ¥, then
t is a continuous map from Y into X with T'f=fo¢ for all f € C(X).

If T is an algebra isomorphism and a homeomorphism, then we can
find a continuous map, s, from X into Y such that

T-1g = gos VgeO(Y).

Now it is easily seen that s={-1 and so ¢ is a homeomorphism.
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