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A REPRESENTATION THEOREM FOR A CONVEX
CONE OF QUASI CONVEX FUNCTIONS

S. JOHANSEN

0. Introduction and summary.

It was conjectured by Brens [4] that if a family of quasi convex func-
tions defined on R is closed under addition, then it could be transformed
into a family of convex functions by a monotone transformation of the
domaine of definition.

In this paper we give the proof of this conjecture and apply it to the
problem of estimating a parameter from a one parameter statistical
problem with unimodal likelihood function, see van Eeden [6].

A quasi convex function defined on R is just a function which is first
decreasing and then increasing. The elementary properties are listed in
section 1.

It should be noted that a sum of two quasi convex functions is in gen-
eral not quasi convex. The condition that a family of quasi convex func-
tions is in fact closed under addition is thus a strong condition.

The family of convex functions on R is clearly closed under addition
and one could ask whether a family of quasi convex functions closed
under addition is infact a family of convex functions. This can not be
true since quasi convexity is invariant under homeomorphic transforma-
tions of R and convexity is not.

We can however, turn the problem around and ask if we can choose
a transformation of R, depending on the family in question, such that
in the new scale, the functions become convex. This is done in Theorem
2.8. Under differentiability conditions we can give an explicit form for
the transformation, Theorem 2.4.

Since convex functions have derivatives whereas quasi convex func-
tions need not, the condition on the family in fact implies that the func-
tions considered as measures on R are equivalent.

In Section 3 we prove that for a family of quasi convex functions
which is invariant under translation we can transform the domain of
definition by a logarithm in order to get convexity.
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Section 4 gives a representation for a convex cone of functions which
are increasing at zero, that is, functions which are negative, zero and
then positive. These are essentially derivatives of quasi convex func-
tions. Section 5 applies the result of Sections 2 and 3 to the problem of
estimating in a statistical problem with a unimodal likelihood function.

The content of the results applied to this situation is that instead of
assuming unimodality plus upper semi-continuity we can as well by
reparametrizing assume that the likelihood function is logarithmically
concave.

In a paper on mean values [1], Brgns has considered mean values
defined by families of quasi convex functions and discussed their prop-
erties. Brens, Brunk, Frank and Hanson [3] and Brens [2] discuss
generalized means as mean values of families of convex functions, see
also Huber [9]. In this context our result states that up to a monotone
transformation one gets the same mean values from convex functions as
from quasi convex functions.

As is well known asymptotic properties of the maximum likelihood
estimator depend on the smoothness of the likelihood function. So the
parametrization used here is one in which the best asymptotic results
can be proved.

1. Quasi convex functions.
1.1. DeFinITION. A function f: R — R is called quasi convex if

zelz,y] = f)=f(x) vi(y).
There are several equivalent definitions of a quasi convex function. We

list some of these in Lemma 1.2.

1.2. LEmMMA. A function f is quasi convex if and only if one of the follow-
ing conditions is satisfied:

(1.1) [fSa] convex for all a € R .

(1.2) f@)<fy) = f)sf@), for [zy]<[u],
that is, <, y<v.

(1.3) fw)>f@©) = f@)2f(y), for [z,yl<[u,v].

Proor. Omitted.

1.3. DerFiNiTION. For a quasi convex function f we define the extended
real numbers
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m(f) = inf{z| y>2 = f(y)=f(»)}
sup{z | y<z = f(y)>f(z)}

1

and

m(f) = sup{z | y<x = f(y)2f(x)}

— inffz | y>o = f)>/@)}.

It is easily seen that m(f) and m(f) are well defined and that m(f)=<
m(f). It follows that f is non-increasing on the interval J— oo, m(f)] and
non-decreasing on Jm(f),co[ and therefore constant on lm(f),m(f)[.

1.4. DEriNtTION. A function f: B — R is called strictly quasi convex
if for all [z,y] < [u,v] we have

f@<fy) = fw)<f@),
f@)>f@) = f@@)>f(y).

It follows that a strictly quasi convex function is quasi convex, and that
it is strictly decreasing on ]—oo,m(f)], constant on Im(f),m(f)[ and
strictly increasing on [m(f), .

and

1.5. LemMA. The family of quasi convex functions is closed under point-
wise limits and pointwise supremum.

Let us recall the definition of lower-semi-continuity:

1.6. DeFINITION. A function f: R — R is called lower semi-continu-
ous (Ls.c.) if [f<a] is closed for all a € R.

1.7. LemMa. A lower semi-continuous quasi convex function f is left
continuous when it is increasing and right continuous when decreasing.

An l.s.c. quasi convex function f determines a non-negative measure
on the interval [m(f),co[ by the relation

y*a,b[ = f()~f(a), m(f)sa<b

and a non-negative measure on ]— oo, 7(f)] by

y~la,b] = —f(0)+f(a), a<bzm(f).

If y+>0 and y~> 0 then
inf f(z) > —o
and
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f(x)—inf f(x) = y*]—oo,a[ — y~]x,00[ .

An ls.c. quasi convex function can thus be considered as a measure on
R, whose positive part and negative part are concentrated on half lines.
We shall finally give the relation between functions which are increasing
at zero and quasi convex functions.

1.8. DeFINITION. The function k: R - R is increasing at zero if

<y, h(z)>0 = h(y)>0,
and
<y, My)<0 = h(z)<O.

This is easily seen to be equivalent to the conditions

x<y, h(x)=0 = h(y)20,
and
<y, h(y)=0 = h(x)£0.

This was the definition used in Brunk and Johansen [5].

1.9. DeFintTION. If % is decreasing at zero, then we can define the
extended real numbers

m*(h) = sup{x | k(z) <0} = inf{x | A(x)> 0}
and
m*(h) = inf{z | k(x)=0} = sup{z | h(x)<0}.

It is easily seen that m*(h) and m*(k) are well defined and that A is
positive on the interval Jm*(h), o[, negative on ]—oco,m*(k)[, and zero
on Jm*(h), m*(h)L.

1.10. LeMMA. Let h be increasing at zero and locally integrable, then

@ = [ hw du
0

18 strictly quasi convex and continuous. Further m(f)=m*(k) and m(f)=
m*(h). If h is right continuous, then D+*f(x)=h(z).

It should be emphasized that a derivative of a strictly quasi convex
function f need not be increasing at zero. In order that this be true we
need to know that the derivative does not vanish outside the interval

[m(f), m(f)].
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2. Convex cones of quasi convex functions.

In the following we shall work with a class @ of real valued functions.
There are four conditions that will be needed:

A. The functions in @ are quasi convex.

B. The functions in @ separate points, in the sense that for any x<y

there exist fe @, g € @, such that
f(®) < fly) and g(x) > g(y).
C. The set @ is a convex cone, that is,
feQ, ge@, a=0, b20 = af+bge@.

D. The functions in @ are lower semi-continuous.

We shall immediately prove the main theorem on cones of quasi convex
functions.

2.1. THEOREM. Let @ be a convexr cone of quasi convex functions that
separates points, that is,  satisfies conditions A, B, and C.

Then
< I —gw) < fo) -fw)

9y)—g(x) — fly)—f(@)

for any intervals [x,y] < [w,v] and for any g and f in Q, such that
f@) < fly) and g(w) > g(v).

(2.1)

Proor. Let [z,y] and [u,v] be given and choose f and g as indicated.
By the quasi convexity of f and g we know that

f(w) = f(v) and g(x) = g(y).
Let us consider the function
k=af+bg.

By condition C we know that k € @ whenever a =0 and b= 0. We now
want to choose a and b such that k(x) < k(y) since then k(u) < k(v) which
turns out to be the desired inequality.

Let ¢> 0, and let

a=g@)—gy)+ec>0,

b=fy)-fl) >0.
Then

k(y) —k(z) = a(f(y) -1 (=) +b(9(y) —9(x)) = o(f(y)-f(x)) > O
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and therefore k(u) =< k(v) which reduces to

< g(v) —g(w) éf(v)—f(u) < o
9(y)—g@)+c ~ fly)—f(=)

Now let ¢4 0 and we get the inequality (2.1) which proves the theorem.

2.2. CoroLLARY. Let Q satisfy A, B, and C. Then any f e Q is strictly
quast convex.

Proor. The result follows from (2.1) and the definition of a strictly
quasi convex function.

2.3. CoroLLARY. Let @ satisfy A, B, C, and D. Then all functions in
@ are continuous.

Proor. Let [x,y]<[u,v], and let f(x)<f(y) and g(u)>g(v). By (2.1)
we geb
<=9 Sl =fl)
9@ —9@ — fy)-f(=)

Now fis left continuous at v. We therefore let « 1 v. Then f(u) — f(v) and
therefore g(u) - g(v). Thus ¢ is left continuous. However, ¢ is right con-
tinuous at v if v <7(g). Hence ¢ is continuous in the interval ]— oo, 7(g)].
Thus all left branches are continuous, and using the same type of argu-
ment we get continuity of all right branches, and thereby continuity of
all functions in Q.

The statement of Theorem 2.1 above is loosely speaking that a differ-
ence quotient of any increasing branch dominates the difference quotient
of any decreasing branch. It is therefore tempting to try to separate the
increasing and decreasing part of the function by a function r in such a
way, that ‘

r(v) — r(u)

r(y) — r(x)

lies between the two difference quotients of relation (2.1). Once the
existence of such an r has been established we can prove our main re-
sult, namely that Aor—! is convex for any % € @, see Theorems 2.4 and 2.8.

In order that the construction be better understood we shall first give
a proof using strong assumptions about the functions in ¢, namely that
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they have continuous second derivatives. With this assumption the con-
struction will be quite explicit.

2.4, THEOREM. Let Q satisfy the conditions A, B, and C and assume
Jurther that all functions in @ have continuous second derivatives, and that
the first dertvatives are increasing at zero. Consequently we can define

ro(x) = inf D log Df () ,
where the infimum is taken over all f e Q for which Df(x)> 0, and

r(x) = f exp (4 ro(u)du) dt .
0
Then the inequality

< g(v) —g(u) < r(v) —r(u) _ f(v)—f(u) <o
gy)—gx) ~ ry)—rx) ~ fly)—f(x)

holds. Further for any f € Q, we have that for1 is convex.

Proor. Let z € R and choose f and g such that
Dg(z) < 0 < Df(2)

By the continuity of the derivatives it is possible to find z, y, %, v such
that x <y <z<wu<v and

Df(x) >0 and Dg(v) < 0.
Clearly

f®) < fly) and g(u) > g(v)
so that

<9(v) g(u) _ fo)—f(u
9(y)—g(x) f(y) f

We now multiply by (y—=2)/(v—u) and let ty and v{u. Then we
obtain

< oo

< Dg(u) Df u)
Dg(y) Df(y)

Taking logarithms and dividing by «—y we can let |z and ¥ 1 2z, and
we get

Dlog(—Dg(z)) £ DlogDf(z)

Now we define r, as indicated in the theorem. Then r, is upper semi-
continuous and therefore measurable, and
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Dlog(~Dy(2)) < ro(2) < DlogDf(2)

whenever Dg(z) <0< Df(2).

Now integrating, exponentiating and integrating again yields the
desired inequality.

In order that for—! be convex it is necessary and sufficient that

Dr(x) D*f (x) — Df (x)D?r(x) = 0
which reduces to

D3 (x) o D?r(z)

DL DI®) = Dy 2 Dria)

= D logDr(z) = ry(x)

whenever Df(z)> 0, and

DY() _ Dr(a) _

Dlog(~Df@) = G S s = o)

whenever Df(x) <0. Thus the r, and r constructed immediately trans-
forms f into a convex function.

Let us now turn to the general case where no extra regularity is as-
sumed except lower semi-continuity. The problem then is to replace
the two differentiations, the infinum and the two integrations by oper-
ations which do not involve differentiation.

The tool necessary for this is similar to the integration of a function
of intervals employed in a different context but for the same purpose
by Goodman and Johansen [7]. For a systematic account see Hilde-
brandt [8].

2.5. LemMa. Let Q satisfy the conditions A, B, and C. Then the function

h(v) — h(u)
h(y) — h(z)

where the infimum is taken over all b € Q with h(x) < h(y), is submultiplica-
tive, that 1s,

\ ’m([x,?/],[u,”]) = inf

IA

m([z,y], [u,v]) m([w,v],[s,?]) = m([z,y],[s,2]), [x,9]<[w,v]<[s,¢],
and subadditive, that is,

IA

m([2,y], [u,9]) + m([z,y],[v,w]) = m((zy],[w,w]), [zy]<[u,v]<[v,%].
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Further

gv)—glu) _

< m(y, (w0 < LT
g(y)—g(x)

@2 o< = f@) - @)

whenever g(u)>g(v) and f(x)<f(y).

Proor. The inequality (2.2) follows directly from (2.1) and the prop-
erties of m follow from those of the difference quotient of & € . Notice
that 0 <m < oo,

The problem now is to replace m by a difference quotient of r.

2.6. LeMma. The function m, defined by

ml([x’y]» [’u,'U]) = inf :b:} m([x'byi]:[xi+17yi+l]) ’

where the infimum is taken over all z,,y,,. . .,%,,y, with

[x’y] = [xl’yl] <...< [xn,yn] = [u:v] ’
18 multiplicative and satisfies the tnequality
L 90— g(w) ORIO)

o) =g = MBIRID = 5T <

Jor g(u) >g(v) and f(2) <f(y).

Proor. The multiplicativity follows easily from the definition, and
that it still satisfies the inequality follows from the fact that the differ-
ence quotients of f and g are multiplicative for the intervals considered.
Now let us choose intervals

. < [xmyn] <...< [xp?/]] ’
such that

limn—»ooxn = limn—»ooyn = —oo.

Then for any [z,y], there exists an n, such that
[0, ¥n] < [%,9].

Let us now define

My (%, Yuls [2,9])

my ([xm yn]i [xp yl])

my(2,Yy) =

for » sufficiently large. The multiplicativity ensures that the definition
of m, does not depend on n.

Math. Scand. 30 — 20
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2.7. LemMmA. The function m, 18 subadditive, 0 <my< oo, and
m1([90,?/],[“,v]) = mz(u,”)/mz(xay) .

Proor. The subadditivity follows from that of m and the relation to
m, from the multiplicativity of m,.

2.8. LeMMA. The function my defined by
my(u,v) = inf JT7T ma(w;,u,,)
where the infimum is taken over all wy,uy,. .., u, With u=u,<...<u,=v,
18 additive and satisfies the inequality
go) = gu) _ my(u,0) _ ()~ f(w)
9@ —g@) — my(z,y) — f(y)—flx)

Proor. The additivity follows from the construction, and the inequal-
ity is satisfied since the difference quotients are additive.

Now take a sequence

such that 4, - — oo and define
r(w) = mg(thy, u) —Mg(ty, uy) .
We can now state and prove the main theorem.

2.8. THEOREM. Let Q satisfy the conditions A, B, and C. Then there
exists a strictly increasing function r, such that

g@)—g(w) _ r(v)—r(w) _ f(v) —f(u) < o
9y —g@) T ry)—r@) " f)-f)
for all f and g in Q, such that f(x) <f(y) and g(u) > g(v).
If further @ satisfies condition D, then r is continuous and hor-1 is con-
vex for all h € Q.

(2.2) 0 <

Proor. Let us define r as above. Then
my(u,v) = r(v)—r(u)
and from Lemma 2.8 it follows that

g0 —gw) _r)—rw) _fO)-f) _
9y)—g9@@) = myx,y) T f(y)—flx)

IA

(2.3)
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Taking reciprocals throughout we can repeat the argument of Lemma
2.8 in order to replace m,(z,y) by r(y) —r(x), and this completes the proof
of the inequality.

Let finally the functions in @ be lower semi-continuous, that is, @
satisfies D. By Corollary 2.3 all functions are continuous and it easily
follows that r is continuous and strictly increasing.

Convexity of hor—! is proved if

hy) —h@) _ () —h(w)
ry)—r(@) = 1(o)—r(w)

for [z,y] < [u,v].

If Rh(x)<h(y), then this follows immediately from (2.3) for f=h. If
h(z) 2 h(y) and h(u)>h(v), then we can use the left hand side of (2.3)
for g=nh.

Finally, if A(z) = h(y) and h(u) < h(v), the convexity relation is trivially
satisfied.

3. Translation invariant families of quasi convex cones.

Let us consider some special cases of the above results. Let there be
given a quasi convex function f which is not monotone and define

Q= {h| Mx)=2",a;f(x—x), 2;€R,0,20,i=1,...,n,n=1,2,...,
zeR}.
Then @ satisfies conditions B and C.

3.1. Lemma. Let Q satisfy condition A, that is, assume that all functions
m Q are quast convex. Then f is continuous.

Proor. We have seen in Corollary 2.3 that if an increasing branch is
continuous at a point, then all decreasing branches are continuous at
the same point. But by translating the decreasing branch of f we get
that it is continuous of all points. A similar argument gives the con-
tinuity of the increasing branch and thereby continuity of the function.

3.2. THEOREM. Assume that Q satisfies A, and further that f has a con-
tinuous second derivative and that the first derivatives are increasing at zero,
then there exists a constant ¢, such that

f(ctlog(cx+1))
18 convex.
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Proor. We can apply Theorem 2.4 and define 7,(x) as before, that is,
ro(z) = infD log D7, a,Df(z—x;),
where the infimum is taken over all z,,...,z,, a,,...,a, for which

ZLl a;Df(x—x;) > 0.

It is seen here that ry(x) is a constant independent of z. Call this c.
Then we can choose

x

r(x) = fexp ([6 cdu) dt = c1(e=—1),

0

where this is interpreted as « if ¢ =0, in which case the function fis convex
from the beginning.

Another example where simple results can be obtained is if f is sym-
metric around 0. But here we can also give a direct proof.

3.3. THEOREM. Lzt f be a quasi convex function, such that f(x)=f(—=x),
and such that

n
i1 aif (m—x;)
s quast convex for all z,,...,xz,, a;20,...,0,20 and n=1,2,.... Then

[ 18 convex.

Proor. We know from Lemma 3.1 that f is continuous. Choose x; <z,
and consider the function % defined by

W) = f(@)+f(@—x,—2,) .
Then % is quasi convex and we therefore have

B(3(2+25)) < A(x;)vh(zy)
or

F(3 (@1 +20)) +f( = 3y +25)) £ (f(21) +F(—2)) V(f (%) +(—2,))
or

2f (3(@y +25)) < fly)+f (=) -

Together with continuity this inequality gives convexity.

4. Convex cones of functions which are increasing at zero.

We shall apply the results of Section 2 to convex cones of functions
which are increasing at zero.
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4.1. TaEOREM. Let K be a convex come of functions which are locally
integrable, right continuous, and increasing at zero, and assume that K
separates points, that is, for any x there exist h and g in K, such that h(x) <
0<g(x).

Then there exists a function k> 0, such that hk is non decreasing for any
he K.

Proor. The cone @ defined by

Q = {f| f®) = [Gh(u)du, h € K}

satisfies the conditions A, B, C, and D of Theorem 2.8.

According to Theorem 2.8 there exists a function r satisfying the rela-
tion (2.2). Now the measure determined by r is dominated by the measure
determined by f, but this again is absolutely continuous with respect to
Lebesgue measure. Thus r has a derivative and D+r(x) exists except for
z in some null set.

Let us now choose x<y<wu<wv and choose # and u, such that D+r
exists. We further choose g and fe @, such that D*g(u)<0<D*f(x).
Now multiply (2.2) by (y—=)/(v—u) and let v{u and y | z. We get

Dtg(u) _ D*r(u) _ DHf(u)
D¥g(s) -~ D*r(a) = DH(@)

(4.1)

Right continuity of D*f and D+*g implies that D+r is right continuous
when defined. We therefore define

ko(x) = Dtr(z+0).
By right continuity (4.1) extends to

Drglu) _ ofw) _ D*f(u)

) Dige) = k@) © DY@

which implies that k,>0. We can therefore define k by

k(x) = (ko(x))~* .
Then % has the desired property.

We have tried to reduce the theorem for functions which are increasing
at zero to the corresponding theorem for quasi convex functions. It is
however possible to prove the theorem directly using the methods of
Section 2 and in this way to avoid the condition on right continuity of .
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5. Application to estimation from a unimodal likelihood function.

Let us consider a one parameter statistical problem given by the
positive densities
f(x,0), 0eR.

For each set of independent observations x,,...,z, we define the likeli-
hood function
Lxl,...,xn(e) = ?=1 f(xia 6) .
5.1. DeFiniTION. We call L unimodal if —loglL is quasi convex for
all z,,...,z, and strictly unimodal if —logL is strictly quasi convex.

5.2. LeEMmaA. If the functions

—longl,...,m,,(e)
are quasi convex, then

(5.1) -7 a;logL,(0)

8 quasi convex for any x,eR, 0,20, i=1,...,n.

Proor. By repeating k; times the observation z;, we get that

— 201 k; log L, (6)

=1

is quasi convex for any integers k;, ¢=1,....,n. Now let k,(N), ¢=
1,...,m, N=1,... be chosen such that

limy_, k,N)/N =a;, i=1,...,n.

It follows that also (5.1) is quasi convex.

5.3. THEOREM. Let us assume that in a one parameter problem with
positive density, the likelihood is unimodal and wpper semi continuous. Let
us further assume that the likelihood functions separate points.

Then there exists a function r, which is strictly increasing and continu-
ous, and such that if we reparametrize by v=r(0) then the likelihood function
becomes logarithmically concave.

Proor. The proof follows from Theorem 2.8 by considering the cone
generated by the likelihood functions.

5.4. THEOREM. In a translation parameter problem, where the second
derivative of the likelihood function is continuous, and the derivative 18
increasing at zero, there exists a constant c, such that in the parameter
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T = cllog(cH+1)

the likelihood function is logarithmically concave.
Proor. This follows from Theorem 3.2.

5.5. THEOREM. Assume that the likelihood function has a continuous
derivative, and that the likelihood equation

Dlongl,...,zn(G) =0

has a unique solution for any z,,. . .,z, and any n=1,2,... . Then one can
reparametrize the problem in such a way that

D longl,.__,xn(G)

becomes non increasing.
Proor. This follows from Theorem 4.1.

Notice that in the 0-parameter the likelihood functions must be con-
tinuous, whereas in the z-parameter they have right and left derivatives.
This seems to indicate that for results on asymptotic distribution of
estimates, we have found the proper parametrization where, say, asymp-
totic normality can be proved. For results on consistency of estimates
we can use the original parametrization since it only requires continuity
of the likelihood function.
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