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A REMARK ON INVARIANT
PSEUDO-DIFFERENTIAL OPERATORS

ANDERS MELIN

In [4] Stetkeer gave a simple characterization of all Lie groups G' with
the property that every bi-invariant (classical) pseudo-differential oper-
ator P on @ is the sum of a differential operator and an operator with a
smooth kernel [4, Theorem 3.5]. For some Lie groups this result was
strengthened by proving the stronger property that the same conclusion
could be drawn by just assuming the pseudo-local property of P [4,
Corollary 4.6]. In this paper we shall prove that these two properties are
in fact equivalent and therefore (as in [4, Theorem 3.5]) can be charac-
terized by the non-compactness of the corresponding Lie algebra.

Now P, by the left invariance, can be written as a convolution with
a distribution f on G. By the pseudo-local property f has to be smooth
outside the identity element e¢ of ¢ and the bi-invariance of P forces f
to be invariant (i.e. invariant under all inner automorphisms of G).
Hence if f were the restriction of a function F in C*(G) to G\ {e}, then
f—F would be a finite sum of derivatives of the Dirac measure at e im-
plying the decomposition of P as the sum of a differential operator and
an operator with a smooth kernel. We are therefore led to introduce the
following definition:

DeriniTiON 1. We shall say that the Lie group ¢ (Lie algebra g) has
the property (*) if every invariant function in C*°(G'\ {e}) (C=(g\ {0}))
is the restriction of an element in C°(G) (C*(g)).

Invariance is of course defined with respect to the group of inner
automorphisms of @ respectively the adjoint group Int(g) of g. If Int(g)
is compact we shall say that g is a compact Lie algebra.

It will also be convenient for us to introduce a representation of all left
invariant pseudo-differential operators on G' by symbols defined on the
dual of the Lie algebra of G. The bi-invariance of the operators will then
be reflected by the invariance of the corresponding symbol. When doing
this we shall use the characterization of a pseudo-differential operator
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as a Fourier integral operator with a special kind of phase function as
introduced by Hormander in [1, Section 2.3].
We can now state our Theorems.

THEOREM 2. a) A connected Lie group G has the property (*) if and only
if its Lie algebra is not compact.
b) A Lie alyebra g has the property (*) if and only if g is not compact.

TrEOREM 3. Let G be a connected Lie group.

a) If the Lie algebra of G is not compact then every bi-invarsant pseudo-
local operator on G is the sum of a differential operator and an operator with
a smooth kernel.

b) If the Lie algebra of G is compact then one can find a bi-invariant
(classical) pseudo-differential operator on G which does not have this decom-
position.

Proor or THEOREM 2b. We first remark that if Int(g) is compact
then we can find an Euclidean norm on g which is invariant under this
group. Since this norm has a singularity at the origin only, we see,
that the non-compactness of g is a necessary condition. On the other
hand as was proved by Stetker [4, p. 112] if g is not compact it will
contain a non-trivial nilpotent element w, that is an element w with
adw=+0 but (adw)™=0 for some power m. Theorem 2b will therefore
follow from the following result:

Levmma 4. Let N+0 be a nilpotent linear transformation on R™ and
fe C®(R?\ {0}) be invariant under the corresponding one-parameter group
{exptN} generated by N. Then f is the restriction of a function in C%(R™).

Proor. When Nz +0 then expfN z is a non-constant polynomial in
¢t and therefore tends to infinity when ¢ tends to infinity. If « belongs
to the unit ball B then the orbit of x must intersect the boundary of B.
Let P be a differential operator invariant under exptN. Then by a con-
tinuity argument P™f being constant along the orbits must be bounded
in the punctured unit ball. If M is the set of elements in C*(R"\ {0})
which represent functions in L2, ,(R"), the space of all locally square
integrable functions, then we let Ext denote the extension map from M
to the set of distributions on R™.

Since Extf is smooth outside the origin, Lemma 4 will be established
as soon as we can construct a (constant coefficient) differential operator
@ on R” which is stronger than all first order differential operators and
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such that @QmExtf belongs to L% ,(R") for all non-negative integers m.
(See [3, Section 3.2].)
If P(£) is a complete polynomial, that is if

A(P) = {neRr: P(&+itn)=P(&) for all £eR?, teR} = {0}

then as is proved in [2, Theorem 2.17] some positive power of P(D)
(where D with D;= —i0/dx; is the gradient vector) will be stronger than
all first order differential operators. Therefore Lemma 4 will follow from
the next two lemmas. Notice that when n=2 or more generally when
rank N =1 then f is independent of one of the coordinates in a suitable
basis and is therefore smooth, so we do not have to bother about these
cases.

LeMMmA 5. Let f satisfy the hypothesis of Lemma 4 and let P(£) of degree
<n be a polynomial invariant under {exptN*} where N* denotes the ad-
joint of N. Then (P(D))mExtf e L?(R*) for all non-negative integers m.
This is also true if P is replaced by a product of polynomials satisfying the
same hypotheses.

LrMMma 6. Let N be a nilpotent linear transformation on R™ with rank
N2=2 (so that nz3). Then there exists a polynomial P on R™ with the
Sfollowing properties:

(1) P is a product of homogeneous polynomials of degree less than n.

(ii) Each factor of P is invariant under {exptN*}.

(iii) P s complete.

Proor or LEMMA 6. We shall first prove Lemma 6 when rank V=
n—1. Choose a vector v € R such that N*~lv+0 and set &,=(N*1v,&)
when £ e R® and 1<k=<n. Then there is a unique polynomial P on R"
satisfying the conditions:

(1) P is homogeneous of degree n—1.
2) P() = (v,exp(—§&,_1N*) & when &, =1.

Notice that the degree of the right-hand side of (2) is at most n—1
when &,=1 and that the hyperplanes &, =constant are invariant under
{exptN*}. Hence when &, =1

P(exptN*¢£) = (v, exp(—¢&,_1N*—t£, N*) exptN*¢&)
= (v, exp(—§,1N%)E),

80 P(&)=P(exptN*¢&) satisfies (1) and (2) and therefore equals P(£).



A REMARK ON INVARIANT PSEUDO-DIFFERENTIAL OPERATORS 293

It remains to check the completeness of P. We may choose a vector
£ in R* with &, =1 and &,=0 for ¢ < n. Since A(P) being a linear subspace
is invariant under {exptN*} and therefore under N* the coefficient of ¢
in the polynomial P(£+tN*7) must vanish if n € A(P). But this coeffi-
cient is just {(Nv,%), for by (2)

P(§+tN*n) = (v, exp(—in,N*) (§+tN*p))

and (v, N*&)=§£,=0 since n>2. Replacing n by (N*)in (¢20) we con-
clude that 7, =0 for k> 2, and then repeating the same arguments with
7 instead of N*n we get =0.

We now turn to the general case. Since N* is nilpotent we can write
Rr=3@V,; where each V; reduces N* and the rank of the restriction
of N* to V,; equals dim V; — 1. We may assume that n,=dim V; is greater
than 1 for all j. Since there are no complete, invariant polynomials on
the two-dimensional subspaces in this decomposition we can not build
up P from polynomials defined on these subspaces directly. To each V;
we associate a vector v; such that N"'v;=%0 and such that v; is orthog-
onal to V, for j+k. If £ € R* we set

§ =(N"Pn,8), & = (N6 .

When dim V; > 2 we construct a polynomial P; as in the first part of the
proof and set P;=1 when dim V;=2. Then

(3) P(§) = Hj P](E) Hr<s (Er+§s_"§s+§r‘)
satisfies (i)—(iii).

The invariance of P follows almost immediately from its definition
if we note that

(exptN*&);~ = &~ +t&;+, (exptN*§);+ = &+,

Assume that n and N*y belong to A(g,,) where q,,(&)=§,1&,~—§&.E,,
r<s. Then the coefficient of ¢ in q,,(&+tN*n) equals &.tn,+— &yt s0
n,t=n,+=0. Then inserting # instead of N*y we also conclude that
7,~=mn,"=0. Since

A(P) = nj,r,.s (A(Pj) n A(qrs))
we easily see that A(P)={0}. This completes the proof of Lemma 6.

Proor or Lemma 5. We shall prove that
(4) Pn Extf = ExtP»f (P=P(D))

for all m = 0. (Notice that P has different meanings in the two sides of
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the equation.) Assuming that (4) holds for m we set g=/Pmf. Then if
P Extg=ExtPg we get

Pmi1Extf = P Extg = ExtPg = ExtPm+f,

Since g satisfies the same hypothesis as f it will therefore be sufficient to
prove (4) with m=1. We have to show that if ¢ belongs to C,(R%)
(i.e. belongs to C*(R?) and has compact support) then

(3) J @) P(—D)g(x) dx = [ () P(D)f (%) dx .

After a change of variables the left-hand side of (5) can be written as
a sum

(6) [ @e"P(—Dle)((1-v)e'®) dy + [ f()e"P(—Dle)(yg'(y)) dy

where f*(y)=f(ey) and p € C;®(R") equals 1 in a neighbourhood of the
origin. In the first term we can integrate by parts and get after another
change of variables

J (L —v(y/e)) p(y) P(D)f dy

which tends to the right-hand side of (5) when ¢ tends to 0 since P(D)f
is bounded. It remains to prove that the second term of (6) tends to
zero. But this is obvious for the integrand is bounded by a constant times
¢ since deg P < n and it has its support in a fixed compact set independent
of &. The last statement of Lemma 5 follows by a slight modification of
the proof.

The proof of Theorem 2b is now complete.

For the proof of Theorem 3 it will be convenient to have a simple
description of the left-invariant pseudo-differential operators on G.

Derintrion 7. (Cf. [1, Def. 1.1.1 p. 83]) Let V be a real finite dimen-
sional vector space, D be a gradient vector and ||-|| denote some norm
on V. A symbol on V of order m and type g is a function a =a(0) € C°(V)
such that
(7) . supy ([|6]jedes@-m |Q(D)a(6)|) < oo

for all homogeneous polynomials @. If (7) holds for all m € R we shall
say that @ has order —oo. Two symbols are called equivalent if they
differ by a symbol of order — .

We shall also say that two pseudo-differential operators are equiv-
alent if their difference has a smooth kernel.

TaEOREM 8. Let G be a connected Lie group with Lie algebra g and
exponential map exp. Then P is a left invariant pseudo-differential operator
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on G of order m and type p,1—p, (0> %) if and only if there is a symbol
a(0) on g* of order m and type g so that the difference P — T where

(8)  Tu(h) = [[yxge ¥ ?a(O)p(Y)u(bexpY)dYdo, wueCy™(G)

has a smooth left invariant kernel whenever y € Cy™(g) equals 1 in a neigh-
bourhood of the origin. The correspondence between P and a is one-to-one
after reduction to equivalence classes and then differential operators corre-
spond to polynomials. If both v and a are invariant under the action of
Int(g) then T is a bi-invariant pseudo-differential operator.

Proor. That a left invariant pseudo-differential operator can be rep-
resented by (8) follows from the pseudo-local property of P and the fact
that P via composition with the map exp (which is locally a diffeo-
morphism near 0 € g) can be regarded as a pseudo-differential operator
in a neighbourhood of 0 € g. The choice of y is of course inessential.

On the other hand the singular integral operator 7' in (8) is left in-
variant. It is therefore sufficient to prove that 7' is a pseudo-differential
operator in a neighbourhood of the identity element ¢ of G. We may
therefore again regard 7' as an operator on g.

Introducing v(X)=wuoexp(X), where z=exp X when the support of »
is close to e, we have to prove that

(9) Lo(X) = [[,xqee~F a(f)u(expX exp ¥) dY d6

is a pseudo-differential operator in some neighbourhood of 0 € g. After
a change of variables, Y =®(X,Z), defined by the equation

expX expY = expZ,

L has the form of a Fourier integral operator with phase function
9(X,Z,0)=D(X,Z)- 6. The restriction of ¢ to the 6-variable is critical at
(X,Z,0) if and only if expX =expZ and therefore if and only if X=2
when X and Z are close to the origin. Therefore L is a pseudo-differen-
tial operator by [1, Section 2.3].

The remaining statements follow from standard facts about pseudo-
differential operators together with some computations involving
changes of variables in (8). Notice that a(f) is the restriction to 0x g*

of the symbol of P when P is regarded as a pseudo-differential operator
on g.

With these preparations it is now easy to prove the remaining asser-
tions, Theorem 2a and Theorem 3. We let g denote the Lie algebra of
@ as before.
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Proor or TarorREM 3b. Set a(0)=(1+]0|]>)-! where ||:|| denotes an
Euclidean norm on g* invariant under the compact group (Int(g))* and
choose y e Cy*(g) invariant under Int(g). The corresponding pseudo-
differential operator 7' defined by (8) is then bi-invariant and not equiv-
alent to a differential operator by Theorem 8.

Proor or THEOREM 2a AND THEOREM 3a. The sufficiency part of
Theorem 2a follows from Theorem 2b since the composition of an in-
variant function on @ with the exponential map gives an invariant func-
tion on g. Note that in the proof of Theorem 2b we only need the fact
that f is smooth in some punctured neighbourhood of 0 to show that the
singularity at 0 is removable. This part of Theorem 2a also implies
Theorem 3a by the remarks in the introduction. The necessity part of
Theorem 2a follows from Theorem 3b and the same remarks. In fact,
if Int(g) is compact the operator 7' defined in the proof of Theorem 3b
gives an invariant function f in C°°(G \ {e}) which is not the restriction
of an element in C(@).
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