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BOUNDARIES FOR NATURAL SYSTEMS IT

R.M. BROOKS*
1. Introduction.

In this paper, we consider the following problem. Let (X,A4) be a
natural system with X a locally compact, Hausdorff space. Suppese
B, is a unitary subalgebra of 4 such that

(i) B, is k-dense in 4,
(ii) B, consists of bounded functions only, and
(iii) the natural injection of X into M ; is topological, where B is the
uniform closure of B in Cp(X).

What is the relation between the Shilov boundaries of 4 and B?
Specifically, we want to compare 9pnX with 0(X,4) and 05 with the
limit in M p of the family {0(K,A4): K compact, K < X} (9(X,A4) is the
limit of this family in X). This is the problem one encounters when a
uniform F-algebra is generated by a finite family of elements, each with
bounded spectrum. In this case, B, can be any algebra between the
algebra of polynomials in the generating family and the (Banach)
algebra of all elements which have bounded spectra.

Our main results are (with (X,4), B,, and B as above):

(1) (X, 4)nX°c0znX c0(X,A), where each containment can be proper,

(2) if X is dense in My, then 05N X =0(X, 4), although it is often the
case that 0(X,A) is not dense in 05, and

(3) 9pctopliminf{9(K,A4): K compact, K< X}, and in general, this is
the most one can say.

2. Preliminaries.

We include here the statements of the relevant results from [2], [4],
and [8].

DzrFINITION 2.1. A system is a pair (X,4) where X is a Hausdorff
space and 4 is a subalgebra of C(X) which satisfies (i) 4 contains the
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constant functions, and (ii) the weak topology on X determined by A
is the given topology. If, in addition, (iii) every compact-open (k-)
continuous homomorphism of 4 onto C is a point evaluation mapping
determined by a point of X, we call the system natural.

DrrintTION 2.2, Let (X, 4) be a natural system, and let K be a com-
pact subset of X. The A-convex hull of K is the set

K™ ={zeX : |a@)| <lalx, acd},

where ||-||x denotes the supremum-on-K seminorm on C(X).

DEriniTiON 2.3. Let (X,4) be a natural system, z e X.
A (x) = {K : K compact, KcX,ze K"}.

Minimal elements of the set are called supports for xz. The point z is
called tndependent if {x} is the only support for .

Lremma 2.4. Let (X,4) be a natural system, x € X. The following state-
ments are equivalent.

(1) x 2s tndependent.

(2) If K is a compact subset of X and if x € K”, then x € K.

(3) If K is a compact subset of X and if x € K, then x € 9(K,A4), the
Shilov boundary of A|K in K; equivalently, the Shilov boundary of the
Banach algebra (A|K)~.

DeriniTiON 2.5. The closure of the set of independent points (of a
natural system) will be denoted 0,(X, 4) and called the Rickart boundary
of (X,A4).

DrriniTION 2.6. Let (X, 4) be a natural system. The type II boundary
05(X, A) is toplimsup {o(K,4) : KX, K compact}.

This is not the definition of 04(X,4) originally given in [2], but is
shown in [4] to be equivalent. Definitions 2.1, 2.3, and 2.5 are given
by Rickart (our name for the boundary) in [8]. The following results
are proved in [4].

Lemma 2.7. Let (X,A4) be a natural system with X locally compact.
Let K be a compact subset of X. Then

9,(X,4) N K® (K, A) < (9,(X,4)nK® U bdyK .
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Lemma 2.8. Let (X,4) be a natural system with X locally compact and
let xe X. The following statements are equivalent.

(1) x e X\04(X,A).
(2) There exists a base for the topology at x consisting of relatively com-
pact neighborhoods U such that 0(U,A)cbdy U.

THEOREM 2.9. Let (X,A4) be a natural system with X locally compact.
Then 0,(X,A)=0,(X,4).

We denote this common boundary o(X,A4).

3. Main results.

In this section, we shall always assume that the space underlying
our natural system is locally compact. We shall use extensively the
following easily verified fact. Let Y be a locally compact Hausdorff
space, and let S Y. Then S is locally compact if and only if S is open
in S. Finally, when we have X< Y, we shall write “K € X for “K is
compact and K £ X", always reserving the letter “K” for compact sets.

TueoreM 3.1. Let (X,A4) be a natural system with X locally compact
and Hausdorff. Let B, be a subalgebra of A such that

(a) 1€ B,,

(b) B, is k-dense in 4 (“k” = compact-open topology),

(¢) 2: X - My 4s topological, where B is the uniform closure of B, in
Cy(X), the bounded continuous functions on X to C, and My is the spec-
trum of the uniform Banach algebra B, and ¢ is the natural injection.

Then (on tdentifying X and 1(X)s Mg):

(1) o(X,4)n X°copn X <co(X,4),

(2) a(X A)yn X%=085n X9,

(3) of X 1is dense in My, then 0(X,4A)=05n X, and
(4) each containment in (1) can be proper.

Proor. We consider X to be a locally compact subset of M 5 and will
denote by b” the extension of be B to M.

(la) Fix € X9 Assume z¢0yz. There exists an open subset U
of X° such that x€ U, U=UZX is compact and contained in X and
such that Unogz=0. Let V be any X-neighborhood of x contained in U.
(We show that 9(VX,4)cbdyx VX.) We know that B(V,B)gbdyMB(V)
(Rossi’s local maximum principle, [9]). But bdyy,(V)=09z;. By
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definition, By is the uniform closure of B|V. This is just AV =Ay,
since Byc 4 is k-dense, and V is a compact subset of X. Hence, we
have o(V,4)cbdyxV for all V containing z such that V<U. By
Lemma 2.8, we have that x ¢ 9(X, 4).

(1b) Let € X be a strong boundary point for B. Fix a compact
set K, in X such that xe K, and let K,cK € X. (We show that
z€d(K,A).) Let W be an X-neighborhood of . There exists an M -
neighborhood W’ of x such that W nX=W (since W is open in X
which is open in X). Choose b € B such that

16 Mlars = 167(@) > 116" llag g -

We can assume that [b7(z)|=1 and [|67|[yp; < 2. Choose a € 4 such
that |la —b||x < . Then

llallew < la(@)] = llallwox -

Since {WnK: W is an X-neighborhood of 2} is a neighborhood base
at x in K, we have x € 9(K,A). Hence, if x € X is a strong boundary
point for B, then x € 9(X,A4).

We now fix xe Xndg, and fix an X-neighborhood U of z. Let U’ be
an M g-neighborhood of x such that U'nX=U. By Theorem 3.3.15
of [7], there is a strong boundary point ¢ for B in U’. But then ¢ € 0
and 0,< X since B is a uniform algebra on X, so pe XnU'=U and
Uno(X,4)+0. Since U was an arbitrary X-neighborhood of z, we
have z € 9(X,A)X=0(X,A).

(2) By (1), 9(X,4)nX°co5;nX'co(X,4)nXO.

(3) If X is dense in M g, it is open and (2) yields the conclusion of (3).

(4) This will be shown in Examples 3.6 and 3.7 below for situations
even more specialized than natural systems.

Let 4 be a uniform F-algebra with identity. Then the Gelfand trans-
form is a topological isomorphism from A onto (47,k). We identify
A and A", and let 4, be the set of all a € A such that |la|ly, <co. It is
easily verified that (4,,|||lr,) is a uniform Banach algebra.

CoROLLARY 3.2. Let A be a uniform F-algebra with identity and assume
that the spectrum M 4 of A 1is locally compact. Suppose B is a (uniformly)
closed subalgebra with identity of (Ao, |- llar,) such that

(a) B is k-dense in A, and
(b) e*: M, > My (¢nduced by i: B< A) 13 topological.



BOUNDARIES FOR NATURAL SYSTEMS, II 285

Then (on identifying M 4 and ¢*(M 4)), we have the same conclusions
as tn Theorem 3.1.

Dzrintrion 3.3. Let A be a uniform F-algebra with identity. The
subset S< A generates 4 if the smallest k-closed subalgebra of A which
contains § is 4 itself. If S generates 4, then § induces a continuous
injection s: M, — CS by s(¢)={p(@)}scs- We shall call S a faithful
generating family for A if this map s is topological.

We note that there are uniform F-algebras for which (1) 4 is singly-
generated, but cannot be faithfully generated by any countable set, and
(2) A is singly-generated and there exist a,b € 4 such that {a} is faithful
while {6} is not. For examples of these, see [3]. In the first example,
M 4 is not locally compact. We conjecture that if M , is locally compact
and A is singly-generated, then one can find a faithful generator. This
is made at least plausible by the fact that if M , is locally compact and
A is separable, then M , is metrizible. Since the requirement that a
generating family for 4 be faithful is important in the next theorem,
we give some equivalent statements of this fact.

Levma 3.4, Let A be a wuniform F-algebra with identity. Suppose
that S genmerates A and S is at most countable. The following statements
are equivalent.

(1) S is fasthful.

(2) {aos™t: ae A}y 0(4), where A=s(M ,), with the product topology
from CS,

(3) The Gelfand topology is the weak topology on M 4 determined by S.

(4) s maps discrete subsets of M 4 to discrete subsets of A.

Proor. (1) and (3) are clearly equivalent. (1) < (4) is easily verified
since 4 is a k-space (it is metrizible) and s is topological if and only if
it is proper (Lemma 1.3 of [3]). Finally, (1) <= (2) can be proved by a
simple neighborhood chase.

THEOREM 3.5. Let 4 be a uniform F-algebra with identity and assume
that M , is locally compact. Suppose there exists a faithful generating family
S for A such that Sc A,. Let B be the closed subalgebra of A, generated
by S. Then we have the conclusions of Theorem 3.1.

Proor. By Corollary 3.2, it is sufficient to prove that i*: M, — My
is topological. We have the following commutative diagram
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My My

C

cs— Y., cs

b

where «(p)={p(a): a €8}, f(y)={y(a): a €8} for pe M4, ye My. By
assumption « is topological, and § is always topological (M ; is compact).
Hence, +* is topological and Theorem 3.5 follows.

ExampLE 3.6. We give an example showing that the first containment
in Theorem 3.1 (1) can be proper. Let

X ={(eC: |f|=1, arg& +0},

and let 4 be the k-closure on X of the polynomials in z. Then (X,A4)
is a natural system, X is locally compact and if we let B denote the
uniform closure on X of the polynomials in 2z, then M g is the closed unit
disc, 0p the unit circle, and X° is empty (relative to Mg). Thus,

0 =3X,4)nX°¢ 0,nX = X, 4) = X .

ExampLE 3.7. We now show that the second containment can be
proper. Let X={¢eC: }<|£|£1, arg& +0}, and let 4 be the k-closure
on X of the polynomials in z. Then (X,A4) is a natural system, X is
locally compact,

AX,4) = {EeX : |gl=}or [£l=1}.

We let B be the uniform closure on X of the polynomials in z. Then
B is again the (closed) disc algebra, M 5 the unit disc, 05 the unit circle.
Further, 9(X,4) n X°={¢e X: |§|=1}, 95nX =0(X,4) n X°, but 9(X,4)
is properly larger.

We note that in both examples, we were in the very special situation
of Theorem 3.5; hence, our examples work for all of Theorem 3.1, Cor-
ollary 3.2 and Theorem 3.5.

We now consider the hypotheses of Theorem 3.1; namely that B,
be k-dense in A and that ¢: X —~ My be topological. Without the first
of these assumptions, the problem would be meaningless. For example,
we could have 4 =Hol(C) in which case 4,~C, and there is no relation
between M, and M, from which any information about A can be
obtained.

ExampLE 3.8. Let X={(s,) eR?: 0=Zs<2n, 05t=<1}, let g: X > C
be defined by g(s,t) =(— 4t + 1)e?®. Then X is locally compact, o-compact,
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and ¢ is continuous. Let A be the k-closure of P(g) in C(X). Then
(X, 4)is a natural system (in fact, 4 is a uniform F-algebra and X is M ,):
Let ¢: A — C be k-continuous. Then ¢ is completely determined by the
value of ¢ at g, call it A. If 1 € g(X), then ¢ is evaluation at some z € X.
Suppose 2 ¢ g(X). We shall show that the continuous function g,: X — C
defined by g,(x)=[g(x)—A]'is in 4. Fix a compact subset K of X and
e>0. We may assume K is of the form {(s,t) € X: 0<s=<c<2a} for
some ¢. Then
g(K) = {£eC : }<|¢|£1,0=argé<c}

is polynomially convex and compact. The function
fi=aog 1 g(K)~C

is just f,(&)=(&£—A4)~! which is holomorphic in a neighborhood of g(K).
By Runge’s theorem (see, for example, p. 257 of [10]), there exists a
polynomial p such that ||f;—p|l x) <e. Then for z € K,

g:(x) — p(g)(2)| = |fi(g(=))—p(9@)) < ¢,

and g, € A. So g—2 is invertible in 4. But ¢(g—21)=¢(g)—1=0, a con-
tradiction. Hence, ¢(g) € g(X) for each p e M, and M, =X.

We let B be the uniform closure on X, hence on X, of polynomials
in g. All such functions identify the lines {(0,¢): 0=<¢<1} and
{(2n,8): 0<t=<1} in the obvious way so we can consider B on R =
{€: $£|&]£1}, and B is the closure there of polynomials in z. Thus,
M g is the closed disc, 0 the unit circle.

Finally, g injects X into M g,

g(0(X,4)) = {£eC : |§| =4, |£|=1, or argé=0},
since 0(X,4) is just bdy.XnX, and g(0(X,4))ng(X)° contains
(€ : 1<lES1, argt=0)

which is not contained in 9;ng(X). Thus, the conclusions of 3.1 cannot
in general be obtained without restricting the nature of the map of
X to M.

We now consider the additional hypothesis which allows the sharper
result 0,N X =0(X,4): X is densein M. We shall look at this hypothesis
in the setting of Theorem 3.5, where S is a finite faithful generating
family for 4, Sc4,, and B is the Banach algebra generated by S.

Since 8 is faithful, we consider M ,< M ;< C» for some n(=-cardS).
Let S={ay,...,a,}. The image of M, in C* under s is just the joint
spectrum o 4(a,,...,a,). Similarly, og(a,,...,a,) is the image of My
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under the “same” map. We know that ¢,(a,,...,a,) is polynomially
convex. It is dense in op(a,,...,a,) if and only if o (a,,...,a,)" is also
polynomially convex. In case n=1, we can say a little more: o (a)" is
exactly o4 (a) (see [1]). Thus, M, is dense in My exactly when the
A,-spectrum of the bounded generator for 4 is polynomially convex.

The question of the density of X in My for larger B is much more
difficult. For example, if 4=Hol(U) for U open in C or open and
holomorphically convex in C?, then 4,=H>(U) and the density problem
is just the corona problem.

We now turn to the second problem from the introduction: the
relationship between 05 and My—1lim {(K,4): K € X}.

THEOREM 3.10. Let (X,A4), By, and B be as in Theorem 3.1, If X is
dense in Mg, then
0p < top lim inf{o(K,4): K € X},

where the limit is taken in My.

Proor. We first show that if ¢, is a strong boundary point for B,
then @, belongs to topliminf{9(K,4)}. Fix an open set U containing
@y, and choose b € B such that

1= [6"la = 167(po)l > % > " arpno -

Choose K, € X such that K°n {p: |b"(p)|>2}+0. (We can do this
because X is locally compact and dense in M .) Fix K € X such that
K,c K (and show Uno(K,A)=+0). If Und(K,A)=0, then UnK is
open in K and 9(UnKXE,A)cbdyx(UnK¥) by the local maximum
principle. But it is easily verified that bdy . (UnKX)cbdy, , Us Mz\U.
We can choose @ € 4 so that |a—b|x<%. If x € bdyg(UnKK), then

la()] = [67(@)|+1 < }

(16| <} on Mg\ U). But there are points X in KnU where |a”(z)| > §,
a contradiction of the fact that we should have

llallzazr = “a”bdyx(mm .
Thus,

@, € top lim inf {0(K,A4)} .

Since this set is closed, and 0y is the closure of the strong boundary
points, the conclusion follows.

ExampLE 3.11. We show that in general one cannot obtain
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top lim sup {0(K,4)} < 0p

(hence, it is not in general the case that 0z =toplim {9(K,4)}). Consider
A=Hol(U), B=H*(U), where U is the open unit disc. Then B=4,
is k-dense in 4, and by Carleson’s result (see [5]) +: U — M  is topological
and has dense range. It is shown on pages 174-175 of [6] that 0y is a
proper subset of M5\ U. We shall show that

toplimsup {0(K,4)} = Mp\U.

Fix pe Mx\ U, K,€U, and a neighborhood V of ¢. (We must show
that there exists K € X such that K, K and Vno(K,A4) +d). Choose
¢ € ¥nU such that

I£] > sup{|¢] : e K,}.
Let K={¢eU: |§|=2||}. Then K,c K€U, ebdyy KnV=0(K,A)nV.
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