## ON HÖRMANDER'S THEOREM ABOUT SURJECTIONS OF $\mathscr{D}'$

## W. SŁOWIKOWSKI

## Summary.

Consider an operator  $P \colon \mathscr{D} \to \mathscr{D}$ . It is proved here that for  $P'\mathscr{D}' = \mathscr{D}'$  it is necessary and sufficient that  $P^{-1}$  is sequentially continuous in a certain sense and that it "holds singularities". Roughly speaking, the latter means that for a certain extension  $\overline{P}$  of P, acting no more over infinitely smooth functions, to every compact  $K_1$  it is possible to assign a compact  $K_2$  such that sing supp  $\overline{P}u \subset K_1$  implies sing supp  $u \subset K_2$ . Similar results are actually established not only for  $\mathscr{D}$  but for a certain wide class of  $(\mathscr{LF})$ -spaces. The paper is made selfcontained and includes some results announced in [5] and [6]. It provides an answer to some questions raised by Trèves in the introduction to [8].

For topological spaces  $(W,\mu)$  and  $(V,\nu)$  we write  $(W,\mu) \leq (V,\nu)$  if  $V \subset W$  and if the identical injection of V into W is continuous.

Denote by K the compact subsets of the N-dimensional Euclidean space equal to the closure of their interior. We write

$$\mathscr{D}(K) = \{ f \in \mathscr{D} : \operatorname{supp} f \subseteq K \} ,$$

and by  $\tau_{\mathscr{D}}$  we denote the usual topology of  $\mathscr{D}$ . In what follows,  $(\mathscr{E}', \tau_{\mathscr{E}'})$  shall denote the space of distributions with compact supports with the usual topology of  $\mathscr{E}'$ .

We shall say that a Banach space  $(L, \|\cdot\|)$ , briefly (L), carries singularities over K if

$$(\mathscr{D}(K),\tau_{\mathscr{D}}) \geq (L) \geq (\mathscr{E}',\tau_{\mathscr{E}'})$$

and if  $\mathcal{D}(K)$  is dense in (L).

Consider an open set  $\Omega$  in the *N*-dimensional Euclidean space. A family  $\xi$  of Banach spaces is said to be a *projective component of*  $\mathcal{D}(\Omega)$  if every space from  $\xi$  carries singularities over some compact  $K \subseteq \Omega$  and if the following conditions hold.

1) To every compact  $K \subseteq \Omega$  there corresponds an  $(L) \in \xi$  which carries singularity over K.

2) The family  $\xi$  contains a sequence which is decreasing and cofinal with respect to the relation  $\geq$ .

With every projective component  $\xi$  we associate the space  $L_{\xi}$  which is the union of all L for  $(L) \in \xi$ . A sequence is said to be convergent in  $L_{\xi}$  if it converges in an  $(L) \in \xi$ .

Consider open subsets  $\Omega_1$  and  $\Omega_2$  of the  $N_1$ - and  $N_2$ -dimensional Euclidean spaces respectively and a linear mapping P from  $\mathcal{Q}(\Omega_1)$  to  $\mathcal{Q}(\Omega_2)$  continuous with respect to the usual topologies. Take components  $\xi_1$  and  $\xi_2$  of  $\mathcal{Q}(\Omega_1)$  and  $\mathcal{Q}(\Omega_2)$  respectively. Given  $(L_2) \in \xi_2$ , call  $\{(f_n,g_n)\} \in L_{\xi_1} \times (L_2 + \mathcal{Q}(\Omega_2))$  convergent if  $\{f_n\}$  converges in  $L_{\xi_1}$ ,  $\{g_n\}$  converges in  $L_{\xi_2}$  and in addition  $\{g_n\}$  converges uniformly with all derivatives off a compact for which  $(L_2)$  carries singularities. Let  $\overline{P}_{L_2}$  denote the sequential closure of P in  $L_{\xi_1} \times (L_2 + \mathcal{Q}(\Omega_2))$ . We say that  $P^{-1}$  holds singularities from  $\xi_2$  to  $\xi_1$  if the following condition holds

 $(H^*)_{\xi_2,\xi_1}$ : To every  $(L_2) \in \xi_2$  there corresponds an  $(L_1) \in \xi_1$  such that the domain of  $\overline{P}_{L_2}$  is contained in  $L_1 + \mathcal{D}(\Omega_1)$ .

Theorem 1. The adjoint mapping P' is a surjection, that is,  $P'\mathcal{D}'(\Omega_2) = \mathcal{D}'(\Omega_1)$  iff  $P^{-1}$  is sequentially continuous from each  $L_{\xi_2}$  to some  $L_{\xi_1}$  and there exist projective components  $\xi_1$  and  $\xi_2$  such that  $P^{-1}$  holds singularities from  $\xi_2$  to  $\xi_1$ .

Theorem 1 can easily be expressed also for  $\Omega_1$  and  $\Omega_2$  being differentiable manifolds. However, the most important fact is that in the Theorem the condition for P is invariant with respect to automorphisms of  $\mathcal{D}$ . This makes it possible to formulate an analogue to Theorem 1 for P acting within a certain pretty large class of  $(\mathcal{LF})$ -spaces and then provide a proof using purely functional analytic tools.

The case where P is the convolution operator was investigated by Hörmander in [2]. One of the results of Section 4 of [2] can be expressed as follows.

Theorem. If P is a convolution operator transforming  $\mathscr{D}(\Omega_1)$  into  $\mathscr{D}(\Omega_2)$ , then for P' to map  $\mathscr{D}'(\Omega_2)$  onto  $\mathscr{D}'(\Omega_1)$  it is necessary and sufficient that  $P^{-1}$  is sequentially continuous from  $\mathscr{D}(\Omega_2)$  to  $\mathscr{D}(\Omega_1)$  and that to every compact  $K_2 \subset \Omega_2$  there corresponds a compact  $K_1 \subset \Omega_1$  such that for  $u \in \mathscr{E}'(\Omega_1)$  (\*) sing supp  $\overline{P}u \subset K_2$  implies sing supp  $u \subset K_1$ , where  $\overline{P}$  is the natural extension of P.

It is easy to see that (\*) implies  $(H^*)_{\xi_2,\,\xi_1}$  for  $L_{\xi_2}=\mathscr{E}'(\Omega_2)$  and  $L_{\xi_1}=\mathscr{E}'(\Omega_1)$ .

Because of the particular choice of the projective components, this version is not invariant under automorphisms of  $\mathscr{D}$ . It would be interesting to find out if for a P which admits an extension to a continuous mapping from  $\mathscr{E}'(\Omega_1)$  to  $\mathscr{E}'(\Omega_2)$  and has  $P^{-1}$  sequentially continuous from  $\mathscr{D}(\Omega_2)$  to  $\mathscr{D}(\Omega_1)$ , fulfilment of the condition  $(H^*)_{\xi_2,\xi_1}$  for any pair of components implies its fulfilment for the special components which decompose  $\mathscr{E}'(\Omega_1)$  and  $\mathscr{E}'(\Omega_2)$  respectively.

Consider the following property concerning families of sets. Given any two families  $\mathscr{F}_1$  and  $\mathscr{F}_2$  of subsets of a fixed set, we say that  $\mathscr{F}_1$  does not overrun  $\mathscr{F}_2$  if to every  $U_1 \in \mathscr{F}_1$  there corresponds an  $U_2 \in \mathscr{F}_2$  such that  $U_1 \cap \bigcup \mathscr{F}_2 \subset U_2$ , where  $\bigcup \mathscr{F}_2$  denotes the union of the sets from  $\mathscr{F}_2$ .

In this paper we shall consider the  $(\mathcal{LF})$ -spaces  $(X,\tau)$  as in [1] fulfilling the following additional requirement.

There exists an  $(\mathscr{LF})$ -space  $(L, \downarrow) \leq (X, \tau)$  which is the strict inductive limit of Banach spaces such that the family of Banach subspaces of  $(L, \downarrow)$  does not overrun the family of Fréchet subspaces of  $(X, \tau)$ , where by a Banach (Fréchet) subspace we understand any subspace which is Banach (Fréchet) in the induced topology. We shall denote by  $\mathscr{F}(X, \tau)$  the family of all Fréchet subspaces of an  $(\mathscr{LF})$ -space  $(X, \tau)$ .

A locally convex space  $(L_{\xi}, \downarrow_{\xi})$  is said to be a strict p-component of  $(X, \tau)$  if  $(X, \tau) \ge (L_{\xi}, \downarrow_{\xi})$ ,  $(L_{\xi}, \downarrow_{\xi})$  is the strict inductive limit of a sequence of Banach spaces, and if to every  $Z \in \mathscr{F}(L_{\xi}, \downarrow_{\xi})$  there corresponds a  $U \in \mathscr{F}(X, \tau)$  such that Z is contained in the closure of U in  $(L_{\xi}, \downarrow_{\xi})$ . Clearly, all elements of  $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$  are Banach spaces.

A strict p-component is fully described by the family  $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$ . We shall consider the family of all unit balls of spaces from  $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$ . This family consists of all closed, absolutely convex bounded subsets C of  $(L_{\xi}, \downarrow_{\xi})$ . Then

$$L_C = \bigcup_{1}^{\infty} nC \in \mathscr{F}(L_{\varepsilon}, \downarrow_{\varepsilon})$$
.

We shall denote by  $\xi$  the family of all C for which additionally  $X \cap L_C$  is dense in  $(L_C, \downarrow_{\xi})$ . Notice that the Minkowski functional  $\|\cdot\|_C$  of C induces on  $L_C$  the topology  $\downarrow_{\xi}$ . We shall often write briefly  $\xi$  for  $(L_{\xi}, \downarrow_{\xi})$ .

The definition of  $\xi$  in [7] does not coincide with the one given here. It is, however, easily verified that every family, as defined here, can be uniquely extended to fulfil requirements of [7] with preservation of the space  $(L_{\xi}, \downarrow_{\xi})$ . Conversely, to every  $\xi$ , as defined in [7], there corresponds a strict p-component  $(L, \downarrow) \geq (L_{\xi}, \downarrow_{\xi})$ . Notice that in [7], p-components are not assumed Hausdorff while here we deal only with Hausdorff components.

The family of all strict p-components  $\xi$  of  $(X,\tau)$  such that  $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$  does not overrun  $\mathscr{F}(X,\tau)$  we denote by  $\mathscr{P}(X,\tau)$ . For  $\xi_{1},\xi_{2}\in\mathscr{P}(X,\tau)$  we write  $\xi_{1}\leq \xi_{2}$  if  $(L_{\xi_{1}}, \downarrow_{\xi_{1}})\leq (L_{\xi_{2}}, \downarrow_{\xi_{2}})$ .

For locally convex spaces  $(V_i, v_i)$ , i = 1, 2, we write

$$(\,V_{\,1}, \nu_{\,1}) \, \, {\rm A} \, \, (\,V_{\,2}, \nu_{\,2}) \, = \, (\,V_{\,1} + \, V_{\,2}, \nu_{\,1} \, {\rm A} \, \nu_{\,2})$$

for the inductive limit of those spaces, that is for  $v_1 \wedge v_2$  is set the finest locally convex topology such that  $(V_1 + V_2, v_1 \wedge v_2) \leq (V_i, v_i)$  for i = 1, 2.

Consider a pair  $(Y,\sigma)$  and  $(X,\tau)$  of  $(\mathscr{LF})$ -spaces and a continuous linear mapping P from  $(Y,\sigma)$  to  $(X,\tau)$ . Take  $\xi\in P(Y,\sigma)$  and  $\xi\in P(X,\tau)$ . We say that  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\zeta$  or we write briefly  $P^{-1}\in (M)_{\xi,\zeta}$  if the following condition holds.

 $(M)_{\xi,\zeta}$ : To every  $B \in \xi$  there corresponds a  $C \in \zeta$  such that to every  $U \in \mathscr{F}(X,\tau)$  there corresponds a  $V \in \mathscr{F}(Y,\sigma)$  in such a way that  $P^{-1}$  maps  $PY \cap (L_B + U)$  into  $L_C + V$  and that it is continuous from  $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$  to  $(L_C, \downarrow_{\xi}) \wedge (V, \sigma)$ .

We say that  $P^{-1}$  is  $\Lambda$ -continuous from  $(X, \tau)$  to  $(Y, \sigma)$  or we write briefly  $P^{-1} \in (M)$  if the following condition holds.

(M): To every  $\zeta \in \mathcal{P}(Y, \sigma)$  there corresponds a  $\xi \in \mathcal{P}(X, \tau)$  such that  $P^{-1} \in (M)_{\xi, \zeta}$ .

We say that  $P^{-1}$  holds singularities from  $\xi$  to  $\zeta$  or we write briefly  $P^{-1} \in (H)_{\xi,\zeta}$  if the following condition holds.

 $(H)_{\xi,\zeta}$ : To every  $B \in \xi$  there corresponds a  $C \in \zeta$  such that for every  $\{y_n\} \subset Y$  tending to y in  $(L_{\zeta}, \downarrow_{\zeta})$  with  $\{Py_n\}$  converging in  $(L_B, \downarrow_{\xi})$   $\land$   $(X, \tau)$  we have y belonging to  $L_C + Y$ .

We say that  $P^{-1}$  totally holds singularities or we write briefly  $P^{-1} \in (H)$  if the following condition holds.

(H): To every  $\zeta \in \mathscr{P}(Y, \sigma)$  there corresponds a  $\xi \in \mathscr{P}(X, \tau)$  such that  $P^{-1} \in (H)_{\xi, \xi}$ .

We say that  $P^{-1}$  is sequentially continuous on components if to every  $\zeta \in \mathscr{P}(Y,\sigma)$  there corresponds  $\xi \in \mathscr{P}(X,\tau)$  such that  $P^{-1}$  is sequentially continuous from  $(L_{\xi}, \downarrow_{\xi})$  to  $(L_{\xi}, \downarrow_{\xi})$ .

A *p*-component is said to be reflexive if  $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$  consists of reflexive Banach spaces. From now on we shall assume that to every  $\xi_1 \in \mathscr{P}(X, \tau)$  there corresponds a reflexive  $\xi_2 \in \mathscr{P}(X, \tau)$  with  $\xi_1 \leq \xi_2$ .

THEOREM 2. The adjoint P' of P maps the dual X' of  $(X, \tau)$  onto the dual Y' of  $(Y, \sigma)$  iff  $P^{-1}$  is  $\Lambda$ -continuous from  $(X, \tau)$  to  $(Y, \sigma)$ .

THEOREM 3. The mapping  $P^{-1}$  is  $\Lambda$ -continuous from  $(X,\tau)$  to  $(Y,\sigma)$  iff it is sequentially continuous on components and totally holds singularities.

THEOREM 4. Take  $\zeta, \lambda \in \mathcal{P}(Y, \sigma)$ . If  $\zeta \geq \lambda$  and  $\lambda$  does not overrun  $\zeta$ , then if  $P^{-1}$  holds singularities from some  $\xi \in \mathcal{P}(X, \tau)$  to  $\lambda$ , it holds singularities from  $\eta$  to  $\zeta$  for any  $\xi \leq \eta \in \mathcal{P}(X, \sigma)$ .

Remark. Denoting by  $\overline{P}_B$  the sequential closure of P in  $(L_{\xi}, \downarrow_{\xi}) \times [(L_B, \downarrow_{\xi}) \wedge (X, \tau)]$  the condition  $(H)_{\xi, \xi}$  is equivalent to the following condition.

 $(H^*)_{\xi,\zeta}$ : To every  $B \in \xi$  there corresponds a  $C \in \zeta$  such that the domain of  $\overline{P}_B$  is contained in  $L_C + Y$ .

The rest of this paper shall be devoted to verifying Theorems 2, 3 and 4, and here we notice that Theorem 1 is an easy consequence of these theorems. Indeed, the not overrunning conditions are certainly fulfilled for projective components of  $\mathcal{D}(\Omega)$  as they were defined here. This is because neither the family of Fréchet subspaces of  $\mathcal{D}(\Omega)$  nor any component of  $\mathcal{D}(\Omega)$  can be overrun by the "ultimate" component which is the decomposition of  $\mathscr{E}'(\Omega)$  into Banach spaces (of course not a strict decomposition). Joining Theorems 2, 3 and 4 with the Remark, we obtain Theorem 1 as a trivial corollary.

Proposition 1. Let  $\xi \in \mathcal{P}(X,\tau)$  and  $C \in \xi$ . Then  $(L_C, \downarrow_{\xi}) \wedge (X,\tau)$  is again an  $(\mathcal{LF})$ -space and it is the inductive limit of  $(L_C, \downarrow_{\xi}) \wedge (X_n, \tau)$  for every decomposition  $\{X_n\} \subset \mathcal{F}(X,\tau)$  of X.

PROOF. Since  $\{(X_n,\tau)\}$  is strict,  $\{(L_C, \downarrow_\xi) \land (X_n,\tau)\}$  is strict as well and thus  $\liminf_C (L_C, \downarrow_\xi) \land (X_n,\tau)$  is an  $(\mathscr{LF})$ -space. A seminorm on  $L_C + X$  is continuous in  $(L_C, \downarrow_\xi) \land (X,\tau)$  iff it is continuous in every  $(L_C, \downarrow_\xi) \land (X_n, \tau)$  and the Proposition follows.

We shall write  $P\zeta \ge \eta$  if for every  $B \in \zeta$  there is a  $C \in \eta$  such that  $P(Y \cap B) \subset C$ . This simply means that P is continuous from  $(L_{\zeta}, \downarrow_{\zeta})$  to  $(L_{\eta}, \downarrow_{\eta})$ . We also put

$$I_{(U\cap C)^{\circ}} = {}_{df} \bigcup_{1}^{\infty} n(U\cap C)^{\circ}$$
,

where  $^{\circ}$  denotes the polar in U'.

LEMMA 1. If  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\zeta$ , and if  $\eta \in \mathcal{P}(X,\tau)$  is such that  $\eta \leq \xi$  and  $P\zeta \geq \xi$ , then setting U = PY we have  $U \in (ACC)_{\eta,\xi}$ , that is, U fulfils the following condition.

 $(ACC)_{\eta,\xi}$ : To every  $B \in \xi$  there corresponds a  $D \in \eta$  such that for every  $Z \in \mathcal{F}(X,\tau)$  we have

$$L_B \cap (U \cap Z)^- \subset (U \cap L_D)^-,$$

where the closures – are taken subsequently in  $(L_B, \downarrow_{\xi}) \land (X, \tau)$  and in  $(L_D, \downarrow_n)$ .

PROOF. Take  $B \in \xi$  and adjust  $C \in \zeta$  according to  $(M)_{\xi,\xi}$ . Subsequently, take  $D \in \eta$ ,  $D \supset B$ , in such a way that it is  $P(Y \cap C) \subset D$ . Fix Z and take a sequence  $\{Py_n\} \subset U \cap Z$  convergent to some x in  $(L_B, \downarrow_{\xi}) \land (Z, \tau)$ . From  $(M)_{\xi,\xi}$  it follows that  $\{y_n\}$  converges to some y in  $(L_C, \downarrow_{\xi}) \land (V, \sigma)$  for some  $(\mathscr{F})$ -subspace V of  $(Y, \sigma)$ . Hence,  $y_n = c_n + v_n$ , where  $\{c_n\}$  tends to some c in  $(L_C, \downarrow_{\xi})$  and  $\{v_n\}$  tends to some v in  $(V, \sigma)$ . Since  $P(Y \cap C) \subset D$ , the sequence  $\{Pc_n\}$  has a limit d in  $(L_D, \downarrow_{\eta})$  and we have  $Py_n = Pc_n + Pv_n$  converging to  $x = d + Pv \in L_B \subset L_D$ . Thus  $Pv = x - d \in U \cap L_D$  and  $P(c_n + v)$  tends to x in  $(L_D, \downarrow_{\eta})$  which concludes the proof.

Put  $(L_A',\|\cdot\|_A')$  = the adjoint of  $(L_A,\|\cdot\|_A)$ . Write  $U\in (A_0)_{\eta,\xi}$  if the following condition holds.

 $(A_0)_{\eta,\xi}$ : To every  $B\in \xi$  there corresponds a  $D\in \eta,\, D\supset B$ , such that to every  $\varepsilon>0$ , every  $Z\in \mathscr{F}(X,\tau)$  and every  $z'\in L_{D}{}'$  vanishing on  $U\cap D$  there corresponds an  $x'\in X'$  bounded on  $X\cap B$  and vanishing on  $U\cap Z$  such that  $\|\bar x'-\bar z'\|_{B}{}'<\varepsilon$ , where  $\bar x'\in L_{B}{}'$  denotes the extension of the restriction of x' to  $X\cap L_{B}$  and  $\bar z'$ , denotes the restriction of z' to  $L_{B}$ .

We then prove the following lemma, cf. [5, Proposition 2]. (The property  $(A_0)$  seems to be related to the notion of orthogonality introduced in [3] by Pták.)

LEMMA 2. If  $\xi$  is reflexive, then  $(ACC)_{\eta,\xi} \subset (A_0)_{\eta,\xi}$ .

PROOF. Notice that  $(A_0)_{\eta,\xi}$  amounts to the following statement. Given  $B \in \xi$ , we can find  $D \in \eta$ ,  $D \supset B$ , such that for every Fréchet subspace Z of  $(X,\tau)$  the closure of the subspace

$$V_1 = \{ \overline{x}' \in L_B' : x' \in L_{(X \cap B)^\circ}, x'(U \cap Z) = \{0\} \}$$

with respect to the norm  $\|\cdot\|_{B}$  contains the subspace

$$V_2 = \{\bar{z}' \in L_B' \colon z' \in L_D', z'(U \cap L_D) = \{0\}\}$$
.

Due to reflexivity of  $\xi$ , it is sufficient to show weak\* density of  $V_1$ , that is, if for  $z \in L_B$  all functionals from  $V_1$  vanish on z, then all functionals from  $V_2$  vanish on z as well.

The space  $V_1$  consists of the restrictions to  $L_B$  of functionals from

$$V_1 = \{x' \in M' : x'(U \cap Z) = \{0\}\},$$

where  $(M,\mu)=(L_B,\downarrow_\xi)$   $\land$   $(X,\tau)$ . Hence, to prove the Lemma, we have to show that from  $(ACC)_{\eta,\xi}$  it follows that if for  $z\in L_B$  all functionals from  $V_1$  vanish on z, then all the functionals from  $V_2$  vanish on z as well. The first part of this means that  $z\in (U\cap Z)^-$ , where the closure  $\bar{}$  is taken in  $(M,\mu)$ , and the second part amounts to  $z\in (U\cap L_D)^-$ , where the closure  $\bar{}$  is taken in  $(L_D,\downarrow_\eta)$ , so that the above-stated implications amounts to the inclusion from  $(ACC)_{\eta,\xi}$  and the Lemma follows.

LEMMA 3. (Cf. [7, Theorem 5.1].) Consider  $\xi, \eta \in \mathcal{P}(X, \tau), \xi \geq \eta$ , and  $\lambda \in \mathcal{P}(Y, \sigma)$ . If  $P^{-1} \in (M)_{\eta, \lambda}$  and  $PY \in (A_0)_{\eta, \xi}$ , then  $P' \in (NO^*)_{\xi, \lambda}$ , that is, P' satisfies the following condition.

 $(NO^*)_{\xi,\lambda}$ : To every  $B \in \xi$  there corresponds a  $C \in \lambda$  such that to every  $y' \in (Y \cap C)^{\circ}$  and every  $Z \in \mathscr{F}(Y,\sigma)$  there corresponds an  $x' \in (X \cap B)^{\circ}$  such that y'y = (P'x')y for  $y \in Z$ .

PROOF. Take  $B \in \xi$  and adjust  $D \in \eta$ ,  $D \supset B$ , to fulfil  $(A_0)_{\eta,\xi}$ . Subsequently, adjust to D a  $C \in \lambda$  to fulfil  $(M)_{\eta,\lambda}$ . The condition  $(M)_{\eta,\lambda}$  allows us to make it so that

(\*) 
$$Px \in D$$
 implies  $x \in \frac{1}{2}C$ .

Fix a  $Z \in \mathcal{F}(Y,\sigma)$ ,  $Z \supset Y \cap L_C$ . Since P is continuous, we can find a  $V \in \mathcal{F}(X,\tau)$  such that  $PZ \subset V$ . Additionally, we shall require that  $V \supset X \cap L_D$ . Take  $y' \in (Y \cap C)^{\circ}$ . Since  $y'P^{-1}$  is continuous in

$$(L_D,\downarrow_{\eta}) \wedge (V,\tau)$$
 ,

we can extend it over V to a  $\downarrow_{\eta} \land \tau$ -continuous functional and then we can still extend the obtained functional over to  $u' \in X'$ . Denoting by ||u'|| the sup norm of u' in  $((PY) \cap L_D, ||\cdot||_D)$ , we get from (\*)

$$||u'|| \leq \frac{1}{2} ||P'u'||_{(Y \cap C)^{\circ}}.$$

Thus, for the norm-preserving extension  $z' \in L_{D}'$  of the restriction of u' to  $(PY) \cap L_{D}$  we obtain

$$||z'||_{D'} \leq \frac{1}{2} ||P'u'||_{(Y \cap C)^{\circ}}$$
.

Denoting by  $\bar{z}'$  the restriction of z' to  $L_B$ , we obtain

$$\begin{aligned} \|z'\|_{B^{'}} &\leq \|z'\|_{D^{'}} &\leq \frac{1}{2} \|P'u'\|_{(Y \cap C)^{\circ}} \\ &\leq \frac{1}{2} (\|y' - P'u'\|_{(Y \cap C)^{\circ}}^{\prime} + \|y'\|_{(Y \cap C)^{\circ}}^{\prime}) \leq \frac{1}{2} . \end{aligned}$$

Writing  $u^* \in L_{D}'$  for the extension of the restriction of u' to  $X \cap L_{D}$ , we notice that  $z' - u^* \in L_{D}'$  vanishes on  $(PY) \cap L_{D}$ . Using  $(A_0)_{\eta,\xi}$  we find  $v' \in X'$  bounded on  $X \cap B$  and vanishing on  $(PY) \cap V$  such that

$$\|(\bar{z}' - \bar{u}') - \bar{v}'\|_{B'} < \frac{1}{2}$$

where  $\bar{z}', \bar{u}', \bar{v}' \in L_{B}'$  denote the extensions of the restrictions to  $X \cap L_{B}$  of z', u', v' respectively. Since  $PZ \subseteq V$ , we have (P'v')y = 0 for  $y \in Z$ . Since (y' - P'u')y = 0 for  $y \in Z$ , setting x' = u' + v', we obtain y'y = (P'x')y for  $y \in Z$ . Moreover,

$$\|x'\|_{(X\cap B)^{\rm o}}\, \leqq\, \|\bar v'-(\bar z'+\bar u')\|_B'+\|\bar z'\|_B'\, \leqq\, 1$$
 ,

and the Lemma follows.

LEMMA 4. We have  $(NO^*)_{\xi,\lambda} \subset (O)_{\xi,\lambda}$ , where  $P' \in (O)_{\xi,\lambda}$  if the following condition holds.

 $(O)_{\xi,\lambda}$ : To every  $B \in \xi$  there corresponds a  $C \in \lambda$  such that to every  $y' \in (Y \cap C)^{\circ}$  there corresponds an  $x' \in (X \cap B)^{\circ}$  such that y' = P'x'.

PROOF. Take an ascending sequence  $\{B_n\} \subset \xi$  cofinal with  $\xi$  such that  $B_1 = B$ . Subsequently, to every  $B_n$  assign  $C_n \in \lambda$  according to the requirements of  $(NO^*)_{\xi,\lambda}$ . Finally, let  $\{Z_n\}$ ,  $Y = \bigcup_1^\infty Z_n$ , be an ascending sequence of  $(\mathscr{F})$ -subspaces of  $(Y,\sigma)$  such that  $Z_n \supset Y \cap C_n$  for  $n=1,2,\ldots$ 

Take  $y' \in (Y \cap C)^{\circ}$ ,  $C = C_1$ , and assign to it  $x_1' \in 2^{-1}(X \cap B_1)^{\circ}$  such that  $y'y = (P'x_1')y$  for  $y \in Z_2$ . Hence  $y_2' = y' - P'x_1' = (Y \cap C_2)^{\circ}$  and we can find  $x_2' \in 2^{-2}(X \cap B_2)^{\circ}$  such that  $y_2'y = (P'x_2')y$  for  $y \in Z_3$ . Continuing this way, we produce a sequence  $x_n' \in 2^{-n}(X \cap B_n)^{\circ}$  such that  $y'y = (P'(\sum_1 x_i'))y$  for  $y \in Z_{n+1}$ . It is easy to see that  $x' = \sum_1 x_n'$  is a well defined functional belonging to  $(X \cap B)^{\circ}$  such that y' = P'x', and this concludes the proof of Lemma 4.

PROPOSITION 2. If P is such that to every  $\zeta \in \mathscr{P}(Y,\sigma)$  there corresponds  $\xi \in \mathscr{P}(X,\tau)$  such that  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\zeta$ , then to every  $\lambda \in \mathscr{P}(Y,\sigma)$  there corresponds a  $\xi \in \mathscr{P}(X,\tau)$  such that P' fulfils  $(O)_{\xi,\lambda}$ .

PROOF. To a given  $\lambda \in \mathscr{P}(Y,\sigma)$  we first assign  $\eta \in \mathscr{P}(X,\tau)$  such that  $P^{-1} \in (M)_{\eta,\lambda}$ . Then we find  $\zeta \in \mathscr{P}(Y,\sigma)$ ,  $\zeta \geqq \lambda$ , such that  $P\zeta \trianglerighteq \eta$  and finally to  $\zeta$  we assign a reflexive  $\xi \in \mathscr{P}(X,\tau)$ ,  $\xi \trianglerighteq \eta$ , such that  $P^{-1} \in (M)_{\xi,\zeta}$ . The following commutative diagram describes the situation,



From Lemma 1 we obtain  $PY \in (ACC)_{\eta,\xi} \subset (A_0)_{\eta,\xi}$  and applying subsequently Lemmas 3 and 4, we obtain  $P' \in (NO^*)_{\xi,\lambda} \subset (O)_{\xi,\lambda}$  which concludes the proof.

COROLLARY 1. If P fulfils the requirements of Proposition 2, then P'X' = Y'.

PROOF. It is sufficient to notice that to every  $y' \in Y'$  there corresponds a  $\lambda \in \mathcal{P}(Y, \sigma)$  such that y' is bounded on  $Y \cap B$  for every  $B \in \lambda$  and then apply Proposition 2.

Take an  $(\mathscr{LF})$ -space  $(Z,\delta)$  and  $\lambda \in \mathscr{P}(Z,\delta)$ . Let Z' be the adjoint of  $(Z,\delta)$ . We shall define a metric topological group  $(Z',\varrho_{\lambda}{}^{\circ})$  as follows. First we choose an ascending cofinal sequence  $\{C_n\} \subset \lambda$ . Then we put for  $x' \in Z'$ 

$$arrho_n(x') = t_n/(1+t_n) \quad \text{for} \quad t_n = ||x'||_{(Z\cap C)^\circ} < \infty$$
 $= 1 \quad \text{otherwise}$ 

and then

$$\varrho_{\lambda}^{\circ}(x') = \sum_{n=1}^{\infty} 2^{-n} \varrho_n(x') .$$

It is easy to see that the topology induced by the metric  $\varrho_{\lambda}^{\circ}(x'-y')$  does not depend on the choice of the sequence  $\{C_n\}$ . The convergence of  $\{x_{n'}\}\subset Z'$  to zero in  $(Z',\varrho_{\lambda}^{\circ})$  means that given  $C\in\lambda$ , there exists an  $n_C$  such that  $x_{n'}\in C^{\circ}$  for  $n>n_C$ . Therefore, the set of polars  $C^{\circ}$  of C from  $\lambda$  constitutes a basis of neighbourhoods of zero in  $(Z',\varrho_{\lambda}^{\circ})$ .

It is left to the reader to verify that  $(Z', \varrho_{\lambda}^{\circ})$  is always complete. The object  $(Z', \varrho_{\lambda}^{\circ})$  was introduced already in [7] and was called the  $(\mathscr{F})$ -class polar to  $\lambda$ .

Now, let us return to our original setup with two  $(\mathcal{LF})$ -spaces  $(Y, \sigma)$ ,  $(X, \tau)$  and a continuous mapping P from Y to X. We have the following

LEMMA 5. Given  $\lambda \in \mathcal{P}(Y,\sigma)$  and  $\xi \in \mathcal{P}(X,\tau)$ ,  $P' \in (O)_{\xi,\lambda}$  from Lemma 4 means that P' is an open mapping of  $(X',\varrho_{\xi}{}^{\circ})$  onto  $(Y',\varrho_{\lambda}{}^{\circ})$  and if  $P' \in (O)_{\xi,\lambda}$ , then  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\lambda$ .

PROOF. Suppose that P' admits  $(O)_{\xi,\lambda}$  and  $P^{-1}$  is not  $\lambda$ -continuous from  $\xi$  to  $\lambda$ . Then there exists a  $B \in \xi$  such that for no  $C \in \lambda$  the condition  $(M)_{\xi,\lambda}$  is fulfilled. Choose  $C \in \lambda$  which corresponds to B according to  $(O)_{\xi,\lambda}$ . Since, in particular,  $(M)_{\xi,\lambda}$  does not hold for this choice of C, either there exists a  $U \in \mathcal{F}(X,\tau)$  such that for no  $V \in \mathcal{F}(Y,\sigma)$  the image by  $P^{-1}$  of  $PY \cap (L_B + U)$  is contained in  $V + L_C$ , or, if for some V this image is contained in  $V + L_C$ , the mapping  $P^{-1}$  is not continuous from  $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$  to  $(L_C, \downarrow_{\lambda}) \wedge (V, \sigma)$ . In the first case we take a sequence  $\{y_n\} \subseteq Y$  such that  $\{Py_n\} \subseteq (L_B + U)$  and that for a cofinal ascending  $\{V_n\} \subset \mathcal{F}(Y,\sigma)$  we have  $y_n \in (L_C + V_{n+1}) - (L_C + V_n)$ . Multiplying if necessary by  $t_n > 0$ , we can always make  $\{Py_n\}$  bounded in the space  $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$ , while  $\{y_n\}$  cannot be bounded in the space  $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$ . Hence there exists a y' in the adjoint of  $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$ on which  $\{y_n\}$  is not bounded, and from  $(O)_{\xi,\lambda}$  it follows that there must exist an x' in the adjoint of  $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$  such that y'y = x'Py for  $y \in Y$  and this contradicts boundedness of  $\{Py_n\}$ . In the alternative case, if  $P^{-1}$  maps  $PY \cap (L_B + U)$  into  $L_C + V$  for some  $V \in \mathcal{F}(Y, \sigma)$  but  $P^{-1}$  is not continuous from  $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$  to  $(L_C, \downarrow_{\lambda}) \wedge (V, \sigma)$ , we take a bounded  $\{Py_n\} \subset L_B + U$  such that  $\{y_n\}$  is not bounded in  $(L_C, \downarrow_{\lambda}) \land (V, \sigma)$ and choosing again y' in the adjoint of  $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$  on which  $\{y_n\}$ is not bounded, we arrive at a contradiction to the existence of x'in the adjoint of  $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$  such that y'y = x'Py for  $y \in Y$ . This concludes the proof of Lemma 5.

LEMMA 4'. For given  $\lambda \in \mathcal{P}(Y, \sigma)$  and  $\xi \in \mathcal{P}(X, \tau)$  we have the mapping P' open from  $(X', \varrho_{\xi}^{\circ})$  to  $(Y', \varrho_{\lambda}^{\circ})$  if  $P' \in (NO)_{\xi, \lambda}$ , that is, if P' fulfils the following condition.

 $(NO)_{\xi,\lambda}$ : To every  $B \in \xi$  there corresponds a  $C \in \lambda$  such that for every  $y' \in (Y \cap C)^{\circ}$ , every  $D \in \lambda$  and every  $\varepsilon > 0$  there corresponds an  $x' \in (X \cap B)^{\circ}$  with  $||y' - P'x'||_{(Y \cap D)^{\circ}} < \varepsilon$ .

PROOF. Though it is a consequence of Proposition 12 of [4], we shall prove it independently. (This is actually repetition of Banach's proof given for  $(\mathcal{F})$ -spaces.) Notice at first that  $(NO)_{\xi,\lambda}$  amounts to the following statement. To every  $\varepsilon > 0$  there corresponds a  $\delta > 0$  such that the closure in  $(Y', \varrho_{\lambda}^{\circ})$  of the image by P' of the ball  $\{x' \in X' : \varrho_{\xi}^{\circ}(x') < \varepsilon\}$  contains the ball  $\{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < \delta\}$ . Fix any  $\varepsilon > 0$  and adjust a sequence  $0 < t_n \to 0$  in such a way that the closure of  $P'\{x' \in X' : \varrho_{\xi}^{\circ}(x') < 2^{-n}\varepsilon\}$  contains  $\{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < t_n\}$ .

Then for  $y' \in Y'$  with  $\varrho^{\circ}(y') < t_1$  we can find  $x_1' \in X'$  with  $\varrho^{\circ}(x_1') < 2^{-1}\varepsilon$  such that  $\varrho_{\lambda}^{\circ}(y' - P'x_1') < t_2$ . Continuing this procedure, we define a sequence  $\{x_n'\} \subseteq X'$  such that

$$\varrho_{\xi}^{\circ}(x_n') < 2^{-n}\varepsilon$$
 and  $\varrho_{\lambda}^{\circ}(y'-P'(x_1'+\ldots+x_n')) < t_{n+1}$ 

for every n. Setting  $x' = \sum_{1}^{\infty} x_{n}'$ , we obtain  $\varrho_{\xi}^{\circ}(x') < \varepsilon$  and y' = P'x'. Hence to every  $\varepsilon > 0$  we assigned  $\delta = t_{1} > 0$  such that

$$P'\{x' \in X' : \varrho_{\varepsilon}^{\circ}(x') < \varepsilon\} \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < \delta\}$$

and this amounts to  $(O)_{\xi,\lambda}$ , that is, to the openness of P' from  $(X', \varrho_{\xi}^{\circ})$  to  $(Y', \varrho_{\lambda}^{\circ})$ .

LEMMA 6. (Cf. [7, Theorem 7.1].) Suppose that P'X' = Y'. Then to every  $\lambda \in \mathcal{P}(Y, \sigma)$  there corresponds a  $\xi \in \mathcal{P}(X, \tau)$  such that  $P' \in (NO)_{\xi, \lambda}$ .

PROOF. Let  $\{Z_n\} \subset \mathcal{F}(X,\tau)$  be an ascending sequence of (F)-subspaces cofinal with  $\mathcal{F}(X,\tau)$ . For every n we provide a point-wise non-decreasing sequence of norms  $\{\| \|_{n,m} \colon m=1,2,\ldots \}$  inducing the topology  $\tau$  on  $Z_n$ . Denote by  $Z_{n,m}^*$  the subspace of X' consisting of all functionals from X which on  $Z_n$  are continuous with respect to the norm  $\| \|_{n,m}$ . Clearly, for every n we have  $X' = \bigcup_{m=1}^{\infty} Z_{n,m}^*$ . Hence, there exists an  $m_1$  such that  $P'Z_{1,m_1}^*$  is a second category subset of  $(Y',\varrho_{\lambda}^{\circ})$ . Suppose that we have selected  $m_1,\ldots,m_n$  such that  $P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*)$  is a second category subset of  $(Y',\varrho_{\lambda}^{\circ})$ . Then, since

$$P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*)=\bigcup_{m=1}^{\infty}P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*\cap Z_{n+1,m}^*),$$

we can still find  $m_{n+1}$  such that  $P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n+1,m_{n+1}}^*)$  is a second category subset of  $(Y',\varrho_\lambda^\circ)$ . Continuing this procedure, we produce a sequence  $\{Z_{n,m_n}^*\}$  of sets with the above property. Notice that we can then produce a norm  $\|\cdot\|$  such that  $\|x\|_{n,m_n} \leq a_n \|x\|$  for  $x \in Z_n$ ,  $n=1,2,\ldots$ , and that  $\|\cdot\|$  is continuous in every  $(Z_n,\tau)$ . Let  $\xi \in \mathscr{P}(X,\tau)$  be such that  $(Z_n, \downarrow_\xi) = (Z_n, \|\cdot\|)$ . Then to every  $B \in \xi$  there corresponds n such that  $L_{(X \cap B)^\circ} \supset Z_{1,m_1}^* \cap \ldots \cap Z_{n,m_n}^*$ ,

that is, for every B,  $P'L_{(X\cap B)^{\circ}}$  is a second category subset of  $(Y', \varrho_{\lambda}^{\circ})$ . Here we could directly apply Proposition 10 of [4], but to make the paper self-contained, we repeat the argument essentially due to Banach. Fix  $\varepsilon > 0$  and define  $H_m = P'\{x' \in X' : \varrho_{\xi}^{\circ}(x'/m) < \frac{1}{2}\varepsilon\}$ . For this  $\varepsilon$  we can find a  $B \in \xi$  such that

$$P'L_{(X\cap B)^{\circ}} \subset \bigcup_{1}^{\infty} H_{m}$$
,

and since the set on the left is a second category subset, there exists  $m_0$  such that  $H_{m_0}$  is not nowhere dense in  $(Y', \varrho_{\lambda}^{\circ})$ . Hence, there are  $y_0' \in Y'$  and r > 0 such that

$$H_{m_0} \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y'-y_0') < r\},$$

where – denotes the closure in  $(Y', \varrho_{\lambda}^{\circ})$ . Since  $\varrho_{\lambda}^{\circ}(y' - y_0'/m_0) < r/m_0$  implies

$$\varrho_{\lambda}^{\circ}(m_{0}y'-y_{0}') = \varrho_{\lambda}^{\circ}(m_{0}(y'-y'/m_{0})) \leq m_{0}\varrho_{\lambda}^{\circ}(y'-y_{0}'/m_{0}) < r$$

we have  $m_0y' \in H_{m_0}^-$  and thus  $y' \in H_1^-$ . Taking  $y_1' \in H_1$  with

$$\varrho_{\lambda}^{\circ}(y_{1}'-y_{0}'/m_{0}) < \eta = r/2m_{0}$$

we obtain  $H_1^- \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y_1' - y') < \eta\}$ . For  $\varrho_{\lambda}^{\circ}(y') < \eta$ , we have  $\varrho_{\lambda}^{\circ}((y_1' - y') - y_1')$ . Hence  $y_1' - y' \in H_1^-$ , and thus also  $y' - y_1' \in H_1^-$  so that finally

$$\{y' \in Y': \, \varrho_{\lambda}^{\circ}(y') < \eta\} \subset (y_1' - H_1)^{-}.$$

Moreover, if  $y'=y_1'-u'\in y_1'-H_1$ , then there are  $x_1',v'\in X'$  with  $\varrho_{\xi}^{\circ}(x_1'),\,\varrho_{\xi}^{\circ}(v')<\frac{1}{2}\varepsilon$  such that  $y_1'=P'x_1'$  and u'=P'v'. Setting  $x'=x_1'-v'$ , we have y'=P'x' and  $\varrho_{\xi}^{\circ}(x')<\varepsilon$  so that

$$(**) y_1' - H_1 \subseteq P'\{x' \in x' : \varrho_{\varepsilon}^{\circ}(x') < \varepsilon\}.$$

Joining (\*) and (\*\*), we obtain

$$\{y'\in Y'\colon \ \varrho_{\pmb{\lambda}}{}^{\circ}(y')<\eta\} \ \subseteq \ (P'\{x'\in X'\colon \ \varrho_{\pmb{\xi}}{}^{\circ}(x')<\varepsilon\})^{-},$$

and due to the arbitrariness of the choice of  $\varepsilon > 0$  this amounts exactly to  $(NO)_{\varepsilon,\lambda}$ . Hence, the Lemma 6 is proved.

PROPOSITION 3. If P'X' = Y', then to every  $\lambda \in \mathcal{P}(Y, \sigma)$  there corresponds a  $\xi \in \mathcal{P}(X, \tau)$  such that  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\lambda$ .

PROOF. Given  $\lambda \in \mathcal{P}(Y, \sigma)$ , we apply first Lemma 6 and find  $\xi \in \mathcal{P}(X, \tau)$  such that  $(NO)_{\xi,\lambda}$  holds. Then from Lemma 4' we conclude that also  $(O)_{\xi,\lambda}$  holds for this choice of  $\lambda$ . Then it remains only to apply Lemma 5 to find that for the pair  $\lambda$  and  $\xi$  the condition  $(M)_{\xi,\lambda}$  holds as well, and this concludes the proof of Proposition 3.

PROOF OF THEOREM 2. This proof amounts to combining Corollary 1 and Proposition 3.

PROPOSITION 4. Fix arbitrary  $\zeta \in \mathcal{P}(Y, \sigma)$  and  $\xi \in \mathcal{P}(X, \tau)$ . Then  $P^{-1}$  is  $\Lambda$ -continuous from  $\xi$  to  $\zeta$  if and only if  $P^{-1}$  is sequentially continuous from  $\xi$  to  $\zeta$  and holds singularities from  $\xi$  to  $\zeta$ .

PROOF. Take  $B \in \xi$  and assign to it  $C \in \zeta$  according to  $(H)_{\xi,\zeta}$ . Subsequently, fix  $U \in \mathcal{F}(X,\tau)$  and take  $D \in \xi$  such that  $D \supset B$  and  $L_D \supset U$ .

There exists an  $A \in \zeta$ ,  $A \supset C$ , such that  $P^{-1}$  is sequentially continuous from  $(L_D, \downarrow_{\ell})$  to  $(L_A, \downarrow_{\ell})$  so that we can produce an extension S of  $P^{-1}$ to an operator closed in  $(L_D, \downarrow_{\xi}) \times (L_A, \downarrow_{\xi})$ . We shall show that S which is defined on the closure of  $PY \cap (L_R + U)$  transforms this closure into  $L_C + Y$  and is closed in  $[(L_B, \downarrow_{\epsilon}) \wedge (U, \tau)] \times [(L_C, \downarrow_{\ell}) \wedge (Y, \sigma)]$ . Indeed, if  $\{Py_n\}$  tends to some x in  $(L_B, \downarrow_{\xi}) \land (U, \tau)$ , then it tends to x in  $(L_D, \downarrow_{\xi})$ as well. Hence  $\{y_n\}$  tends to some y in  $(L_A, \downarrow_{\ell})$  and by  $(H)_{\xi, \ell}$  we have  $y \in L_C + Y$ . Clearly, Sx = y. Applying the closed graph theorem, we obtain continuity of S from  $(L_R, \downarrow_{\varepsilon}) \wedge (U, \tau)$  to  $(L_C, \downarrow_{\varepsilon}) \wedge (Y, \sigma)$ . Hence  $P^{-1} \in (M)_{\xi,\xi}$  which concludes the proof of sufficiency. To verify necessity, notice first that  $\Lambda$ -continuity of  $P^{-1}$  from  $\xi$  to  $\zeta$  trivially implies its sequential continuity from  $(L_{\varepsilon}, \downarrow_{\varepsilon})$  to  $(L_{\varepsilon}, \downarrow_{\varepsilon})$ . Indeed, by  $(M)_{\varepsilon, \varepsilon}$ one can assign to  $B \in \xi$  a  $C \in \zeta$  in such a way that  $P^{-1}$  is continuous from  $(L_B, \downarrow_{\ell})$  to  $(L_C, \downarrow_{\ell}) \land (V, \sigma)$  for some  $V \in \mathcal{F}(Y, \sigma)$ , and thus from  $(L_B, \downarrow_{\ell})$ to some  $(L_D, \downarrow_{\xi})$  for a suitable  $D \in \zeta$ . Since  $(H)_{\xi, \xi}$  is also an immediate consequence of  $(M)_{\xi,\zeta}$ , Proposition 4 holds.

PROOF OF THEOREM 3. Suppose  $P^{-1}$  is sequentially continuous on components and totally holds singularities from  $(X,\tau)$  to  $(Y,\sigma)$ . Take  $\zeta \in \mathscr{P}(Y,\sigma)$ . Since  $P^{-1}$  is continuous on components there exists a  $\xi \in \mathscr{P}(X,\tau)$  such that  $P^{-1}$  is sequentially continuous from  $(L_{\xi}, \downarrow_{\xi})$  to  $(L_{\zeta}, \downarrow_{\zeta})$ . Since  $P^{-1} \in (H), \xi$  can be chosen such that  $P^{-1} \in (H)_{\xi,\zeta}$ , and then applying Proposition 4, we get  $P^{-1} \in (M)_{\xi,\zeta}$ , and by arbitrariness of  $\zeta \in \mathscr{P}(Y,\sigma)$  we conclude that  $P^{-1} \in (M)$ . Conversely, from Proposition 4 it follows that  $P^{-1} \in (M)$  implies  $P^{-1} \in (H)$ , and implies its sequential continuity as well, and this concludes the proof of Theorem 3.

Lemma 7. Given  $\lambda, \zeta \in \mathcal{P}(Y, \sigma)$  such that  $\lambda \leq \zeta$  and that does not overrun  $\zeta$ , to every  $C \in \lambda$  there corresponds a  $D, D \in \zeta$ , such that

$$L_{\zeta}\cap (L_C+Y) \, \subseteq \, L_D+Y \; .$$

PROOF. Take  $D \in \zeta$  such that  $L_{\zeta} \cap L_C \subset L_D$ . If  $u \in L_{\zeta} \cap (L_C + Y)$ , then u = c + y, where  $c \in L_C$  and  $y \in Y$ . Hence  $c = u - y \in L_{\zeta} \cap L_C \subset L_D$ , and consequently,  $u \in L_D + Y$  which finishes the proof.

PROOF OF THEOREM 4. Let  $P^{-1} \in (H)_{\xi,\lambda}$ . Take  $B \in \xi$  and assign to it a  $C \in \lambda$  according to  $(H)_{\xi,\lambda}$ . By Lemma 7 we can find  $D \in \zeta$  such that  $L_{\xi} \cap (L_C + Y) \subset L_D + Y$ . To verify  $(H)_{\xi,\xi}$ , take  $\{y_n\} \subset Y$  tending to y in  $(L_{\xi}, \downarrow_{\xi})$  with  $\{Py_n\}$  convergent in  $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$ . Since  $(L_{\xi}, \downarrow_{\xi}) \geq (L_{\lambda}, \downarrow_{\lambda})$ ,  $\{y_n\}$  converges in  $(L_{\lambda}, \downarrow_{\lambda})$  as well, and thus by  $(H)_{\xi,\lambda}$  we have  $y \in L_C + Y$ . However,  $y \in L_{\xi}$  and thus  $y \in L_{\xi} \cap (L_C + Y) \subset L_D + Y$ , and the Theorem follows.

## REFERENCES

- 1. J. Dieudonné et L. Schwarts, La dualité dans les espaces (F) et (DF), Ann. Inst. Fourier (Grenoble) 1 (1949), 61-101.
- 2. L. Hörmander, On the range of convolution operators, Ann. of Math. 26 (1962), 148-170.
- V. Pták, Openness of linear mappings in (LF)-spaces, Czechoslovak Math. J. 19 (94) 1969, 547-552.
   Simultaneous extensions of two functionals, Czechoslovak Math. J. 19 (94), 1969,
  - Simultaneous extensions of two functionals, Czechoslovak Math. J. 19 (94), 1969 553-566.
- 4. W. Słowikowski, On the theory of (F)-sequences, Studia Math. 25 (1965), 281-296.
- W. Słowikowski, Epimorphisms of the adjoints to generalized (LF)-spaces, Introduction, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 16 (1968), 107-112.
- W. Słowikowski, Epimorphisms of the adjoints to generalized (LF)-spaces. Sufficient conditions, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 16 (1968), 113-116.
- W. Słowikowski, Range of operators and regularity of solutions, Studia Mathematica 40 (1971), 183–198.
- F. Trèves, Locally convex spaces and linear partial differential equations (Grundlehren Math. Wiss. 146), Springer-Verlag, Berlin · Heidelberg · New York, 1967.

UNIVERSITY OF AARHUS, DENMARK