ON HÖRMANDER'S THEOREM ABOUT SURJECTIONS OF \mathscr{D}' ## W. SŁOWIKOWSKI ## Summary. Consider an operator $P \colon \mathscr{D} \to \mathscr{D}$. It is proved here that for $P'\mathscr{D}' = \mathscr{D}'$ it is necessary and sufficient that P^{-1} is sequentially continuous in a certain sense and that it "holds singularities". Roughly speaking, the latter means that for a certain extension \overline{P} of P, acting no more over infinitely smooth functions, to every compact K_1 it is possible to assign a compact K_2 such that sing supp $\overline{P}u \subset K_1$ implies sing supp $u \subset K_2$. Similar results are actually established not only for \mathscr{D} but for a certain wide class of (\mathscr{LF}) -spaces. The paper is made selfcontained and includes some results announced in [5] and [6]. It provides an answer to some questions raised by Trèves in the introduction to [8]. For topological spaces (W,μ) and (V,ν) we write $(W,\mu) \leq (V,\nu)$ if $V \subset W$ and if the identical injection of V into W is continuous. Denote by K the compact subsets of the N-dimensional Euclidean space equal to the closure of their interior. We write $$\mathscr{D}(K) = \{ f \in \mathscr{D} : \operatorname{supp} f \subseteq K \} ,$$ and by $\tau_{\mathscr{D}}$ we denote the usual topology of \mathscr{D} . In what follows, $(\mathscr{E}', \tau_{\mathscr{E}'})$ shall denote the space of distributions with compact supports with the usual topology of \mathscr{E}' . We shall say that a Banach space $(L, \|\cdot\|)$, briefly (L), carries singularities over K if $$(\mathscr{D}(K),\tau_{\mathscr{D}}) \geq (L) \geq (\mathscr{E}',\tau_{\mathscr{E}'})$$ and if $\mathcal{D}(K)$ is dense in (L). Consider an open set Ω in the *N*-dimensional Euclidean space. A family ξ of Banach spaces is said to be a *projective component of* $\mathcal{D}(\Omega)$ if every space from ξ carries singularities over some compact $K \subseteq \Omega$ and if the following conditions hold. 1) To every compact $K \subseteq \Omega$ there corresponds an $(L) \in \xi$ which carries singularity over K. 2) The family ξ contains a sequence which is decreasing and cofinal with respect to the relation \geq . With every projective component ξ we associate the space L_{ξ} which is the union of all L for $(L) \in \xi$. A sequence is said to be convergent in L_{ξ} if it converges in an $(L) \in \xi$. Consider open subsets Ω_1 and Ω_2 of the N_1 - and N_2 -dimensional Euclidean spaces respectively and a linear mapping P from $\mathcal{Q}(\Omega_1)$ to $\mathcal{Q}(\Omega_2)$ continuous with respect to the usual topologies. Take components ξ_1 and ξ_2 of $\mathcal{Q}(\Omega_1)$ and $\mathcal{Q}(\Omega_2)$ respectively. Given $(L_2) \in \xi_2$, call $\{(f_n,g_n)\} \in L_{\xi_1} \times (L_2 + \mathcal{Q}(\Omega_2))$ convergent if $\{f_n\}$ converges in L_{ξ_1} , $\{g_n\}$ converges in L_{ξ_2} and in addition $\{g_n\}$ converges uniformly with all derivatives off a compact for which (L_2) carries singularities. Let \overline{P}_{L_2} denote the sequential closure of P in $L_{\xi_1} \times (L_2 + \mathcal{Q}(\Omega_2))$. We say that P^{-1} holds singularities from ξ_2 to ξ_1 if the following condition holds $(H^*)_{\xi_2,\xi_1}$: To every $(L_2) \in \xi_2$ there corresponds an $(L_1) \in \xi_1$ such that the domain of \overline{P}_{L_2} is contained in $L_1 + \mathcal{D}(\Omega_1)$. Theorem 1. The adjoint mapping P' is a surjection, that is, $P'\mathcal{D}'(\Omega_2) = \mathcal{D}'(\Omega_1)$ iff P^{-1} is sequentially continuous from each L_{ξ_2} to some L_{ξ_1} and there exist projective components ξ_1 and ξ_2 such that P^{-1} holds singularities from ξ_2 to ξ_1 . Theorem 1 can easily be expressed also for Ω_1 and Ω_2 being differentiable manifolds. However, the most important fact is that in the Theorem the condition for P is invariant with respect to automorphisms of \mathcal{D} . This makes it possible to formulate an analogue to Theorem 1 for P acting within a certain pretty large class of (\mathcal{LF}) -spaces and then provide a proof using purely functional analytic tools. The case where P is the convolution operator was investigated by Hörmander in [2]. One of the results of Section 4 of [2] can be expressed as follows. Theorem. If P is a convolution operator transforming $\mathscr{D}(\Omega_1)$ into $\mathscr{D}(\Omega_2)$, then for P' to map $\mathscr{D}'(\Omega_2)$ onto $\mathscr{D}'(\Omega_1)$ it is necessary and sufficient that P^{-1} is sequentially continuous from $\mathscr{D}(\Omega_2)$ to $\mathscr{D}(\Omega_1)$ and that to every compact $K_2 \subset \Omega_2$ there corresponds a compact $K_1 \subset \Omega_1$ such that for $u \in \mathscr{E}'(\Omega_1)$ (*) sing supp $\overline{P}u \subset K_2$ implies sing supp $u \subset K_1$, where \overline{P} is the natural extension of P. It is easy to see that (*) implies $(H^*)_{\xi_2,\,\xi_1}$ for $L_{\xi_2}=\mathscr{E}'(\Omega_2)$ and $L_{\xi_1}=\mathscr{E}'(\Omega_1)$. Because of the particular choice of the projective components, this version is not invariant under automorphisms of \mathscr{D} . It would be interesting to find out if for a P which admits an extension to a continuous mapping from $\mathscr{E}'(\Omega_1)$ to $\mathscr{E}'(\Omega_2)$ and has P^{-1} sequentially continuous from $\mathscr{D}(\Omega_2)$ to $\mathscr{D}(\Omega_1)$, fulfilment of the condition $(H^*)_{\xi_2,\xi_1}$ for any pair of components implies its fulfilment for the special components which decompose $\mathscr{E}'(\Omega_1)$ and $\mathscr{E}'(\Omega_2)$ respectively. Consider the following property concerning families of sets. Given any two families \mathscr{F}_1 and \mathscr{F}_2 of subsets of a fixed set, we say that \mathscr{F}_1 does not overrun \mathscr{F}_2 if to every $U_1 \in \mathscr{F}_1$ there corresponds an $U_2 \in \mathscr{F}_2$ such that $U_1 \cap \bigcup \mathscr{F}_2 \subset U_2$, where $\bigcup \mathscr{F}_2$ denotes the union of the sets from \mathscr{F}_2 . In this paper we shall consider the (\mathcal{LF}) -spaces (X,τ) as in [1] fulfilling the following additional requirement. There exists an (\mathscr{LF}) -space $(L, \downarrow) \leq (X, \tau)$ which is the strict inductive limit of Banach spaces such that the family of Banach subspaces of (L, \downarrow) does not overrun the family of Fréchet subspaces of (X, τ) , where by a Banach (Fréchet) subspace we understand any subspace which is Banach (Fréchet) in the induced topology. We shall denote by $\mathscr{F}(X, \tau)$ the family of all Fréchet subspaces of an (\mathscr{LF}) -space (X, τ) . A locally convex space $(L_{\xi}, \downarrow_{\xi})$ is said to be a strict p-component of (X, τ) if $(X, \tau) \ge (L_{\xi}, \downarrow_{\xi})$, $(L_{\xi}, \downarrow_{\xi})$ is the strict inductive limit of a sequence of Banach spaces, and if to every $Z \in \mathscr{F}(L_{\xi}, \downarrow_{\xi})$ there corresponds a $U \in \mathscr{F}(X, \tau)$ such that Z is contained in the closure of U in $(L_{\xi}, \downarrow_{\xi})$. Clearly, all elements of $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$ are Banach spaces. A strict p-component is fully described by the family $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$. We shall consider the family of all unit balls of spaces from $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$. This family consists of all closed, absolutely convex bounded subsets C of $(L_{\xi}, \downarrow_{\xi})$. Then $$L_C = \bigcup_{1}^{\infty} nC \in \mathscr{F}(L_{\varepsilon}, \downarrow_{\varepsilon})$$. We shall denote by ξ the family of all C for which additionally $X \cap L_C$ is dense in (L_C, \downarrow_{ξ}) . Notice that the Minkowski functional $\|\cdot\|_C$ of C induces on L_C the topology \downarrow_{ξ} . We shall often write briefly ξ for $(L_{\xi}, \downarrow_{\xi})$. The definition of ξ in [7] does not coincide with the one given here. It is, however, easily verified that every family, as defined here, can be uniquely extended to fulfil requirements of [7] with preservation of the space $(L_{\xi}, \downarrow_{\xi})$. Conversely, to every ξ , as defined in [7], there corresponds a strict p-component $(L, \downarrow) \geq (L_{\xi}, \downarrow_{\xi})$. Notice that in [7], p-components are not assumed Hausdorff while here we deal only with Hausdorff components. The family of all strict p-components ξ of (X,τ) such that $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$ does not overrun $\mathscr{F}(X,\tau)$ we denote by $\mathscr{P}(X,\tau)$. For $\xi_{1},\xi_{2}\in\mathscr{P}(X,\tau)$ we write $\xi_{1}\leq \xi_{2}$ if $(L_{\xi_{1}}, \downarrow_{\xi_{1}})\leq (L_{\xi_{2}}, \downarrow_{\xi_{2}})$. For locally convex spaces (V_i, v_i) , i = 1, 2, we write $$(\,V_{\,1}, \nu_{\,1}) \, \, {\rm A} \, \, (\,V_{\,2}, \nu_{\,2}) \, = \, (\,V_{\,1} + \, V_{\,2}, \nu_{\,1} \, {\rm A} \, \nu_{\,2})$$ for the inductive limit of those spaces, that is for $v_1 \wedge v_2$ is set the finest locally convex topology such that $(V_1 + V_2, v_1 \wedge v_2) \leq (V_i, v_i)$ for i = 1, 2. Consider a pair (Y,σ) and (X,τ) of (\mathscr{LF}) -spaces and a continuous linear mapping P from (Y,σ) to (X,τ) . Take $\xi\in P(Y,\sigma)$ and $\xi\in P(X,\tau)$. We say that P^{-1} is Λ -continuous from ξ to ζ or we write briefly $P^{-1}\in (M)_{\xi,\zeta}$ if the following condition holds. $(M)_{\xi,\zeta}$: To every $B \in \xi$ there corresponds a $C \in \zeta$ such that to every $U \in \mathscr{F}(X,\tau)$ there corresponds a $V \in \mathscr{F}(Y,\sigma)$ in such a way that P^{-1} maps $PY \cap (L_B + U)$ into $L_C + V$ and that it is continuous from $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$ to $(L_C, \downarrow_{\xi}) \wedge (V, \sigma)$. We say that P^{-1} is Λ -continuous from (X, τ) to (Y, σ) or we write briefly $P^{-1} \in (M)$ if the following condition holds. (M): To every $\zeta \in \mathcal{P}(Y, \sigma)$ there corresponds a $\xi \in \mathcal{P}(X, \tau)$ such that $P^{-1} \in (M)_{\xi, \zeta}$. We say that P^{-1} holds singularities from ξ to ζ or we write briefly $P^{-1} \in (H)_{\xi,\zeta}$ if the following condition holds. $(H)_{\xi,\zeta}$: To every $B \in \xi$ there corresponds a $C \in \zeta$ such that for every $\{y_n\} \subset Y$ tending to y in $(L_{\zeta}, \downarrow_{\zeta})$ with $\{Py_n\}$ converging in (L_B, \downarrow_{ξ}) \land (X, τ) we have y belonging to $L_C + Y$. We say that P^{-1} totally holds singularities or we write briefly $P^{-1} \in (H)$ if the following condition holds. (H): To every $\zeta \in \mathscr{P}(Y, \sigma)$ there corresponds a $\xi \in \mathscr{P}(X, \tau)$ such that $P^{-1} \in (H)_{\xi, \xi}$. We say that P^{-1} is sequentially continuous on components if to every $\zeta \in \mathscr{P}(Y,\sigma)$ there corresponds $\xi \in \mathscr{P}(X,\tau)$ such that P^{-1} is sequentially continuous from $(L_{\xi}, \downarrow_{\xi})$ to $(L_{\xi}, \downarrow_{\xi})$. A *p*-component is said to be reflexive if $\mathscr{F}(L_{\xi}, \downarrow_{\xi})$ consists of reflexive Banach spaces. From now on we shall assume that to every $\xi_1 \in \mathscr{P}(X, \tau)$ there corresponds a reflexive $\xi_2 \in \mathscr{P}(X, \tau)$ with $\xi_1 \leq \xi_2$. THEOREM 2. The adjoint P' of P maps the dual X' of (X, τ) onto the dual Y' of (Y, σ) iff P^{-1} is Λ -continuous from (X, τ) to (Y, σ) . THEOREM 3. The mapping P^{-1} is Λ -continuous from (X,τ) to (Y,σ) iff it is sequentially continuous on components and totally holds singularities. THEOREM 4. Take $\zeta, \lambda \in \mathcal{P}(Y, \sigma)$. If $\zeta \geq \lambda$ and λ does not overrun ζ , then if P^{-1} holds singularities from some $\xi \in \mathcal{P}(X, \tau)$ to λ , it holds singularities from η to ζ for any $\xi \leq \eta \in \mathcal{P}(X, \sigma)$. Remark. Denoting by \overline{P}_B the sequential closure of P in $(L_{\xi}, \downarrow_{\xi}) \times [(L_B, \downarrow_{\xi}) \wedge (X, \tau)]$ the condition $(H)_{\xi, \xi}$ is equivalent to the following condition. $(H^*)_{\xi,\zeta}$: To every $B \in \xi$ there corresponds a $C \in \zeta$ such that the domain of \overline{P}_B is contained in $L_C + Y$. The rest of this paper shall be devoted to verifying Theorems 2, 3 and 4, and here we notice that Theorem 1 is an easy consequence of these theorems. Indeed, the not overrunning conditions are certainly fulfilled for projective components of $\mathcal{D}(\Omega)$ as they were defined here. This is because neither the family of Fréchet subspaces of $\mathcal{D}(\Omega)$ nor any component of $\mathcal{D}(\Omega)$ can be overrun by the "ultimate" component which is the decomposition of $\mathscr{E}'(\Omega)$ into Banach spaces (of course not a strict decomposition). Joining Theorems 2, 3 and 4 with the Remark, we obtain Theorem 1 as a trivial corollary. Proposition 1. Let $\xi \in \mathcal{P}(X,\tau)$ and $C \in \xi$. Then $(L_C, \downarrow_{\xi}) \wedge (X,\tau)$ is again an (\mathcal{LF}) -space and it is the inductive limit of $(L_C, \downarrow_{\xi}) \wedge (X_n, \tau)$ for every decomposition $\{X_n\} \subset \mathcal{F}(X,\tau)$ of X. PROOF. Since $\{(X_n,\tau)\}$ is strict, $\{(L_C, \downarrow_\xi) \land (X_n,\tau)\}$ is strict as well and thus $\liminf_C (L_C, \downarrow_\xi) \land (X_n,\tau)$ is an (\mathscr{LF}) -space. A seminorm on $L_C + X$ is continuous in $(L_C, \downarrow_\xi) \land (X,\tau)$ iff it is continuous in every $(L_C, \downarrow_\xi) \land (X_n, \tau)$ and the Proposition follows. We shall write $P\zeta \ge \eta$ if for every $B \in \zeta$ there is a $C \in \eta$ such that $P(Y \cap B) \subset C$. This simply means that P is continuous from $(L_{\zeta}, \downarrow_{\zeta})$ to $(L_{\eta}, \downarrow_{\eta})$. We also put $$I_{(U\cap C)^{\circ}} = {}_{df} \bigcup_{1}^{\infty} n(U\cap C)^{\circ}$$, where $^{\circ}$ denotes the polar in U'. LEMMA 1. If P^{-1} is Λ -continuous from ξ to ζ , and if $\eta \in \mathcal{P}(X,\tau)$ is such that $\eta \leq \xi$ and $P\zeta \geq \xi$, then setting U = PY we have $U \in (ACC)_{\eta,\xi}$, that is, U fulfils the following condition. $(ACC)_{\eta,\xi}$: To every $B \in \xi$ there corresponds a $D \in \eta$ such that for every $Z \in \mathcal{F}(X,\tau)$ we have $$L_B \cap (U \cap Z)^- \subset (U \cap L_D)^-,$$ where the closures – are taken subsequently in $(L_B, \downarrow_{\xi}) \land (X, \tau)$ and in (L_D, \downarrow_n) . PROOF. Take $B \in \xi$ and adjust $C \in \zeta$ according to $(M)_{\xi,\xi}$. Subsequently, take $D \in \eta$, $D \supset B$, in such a way that it is $P(Y \cap C) \subset D$. Fix Z and take a sequence $\{Py_n\} \subset U \cap Z$ convergent to some x in $(L_B, \downarrow_{\xi}) \land (Z, \tau)$. From $(M)_{\xi,\xi}$ it follows that $\{y_n\}$ converges to some y in $(L_C, \downarrow_{\xi}) \land (V, \sigma)$ for some (\mathscr{F}) -subspace V of (Y, σ) . Hence, $y_n = c_n + v_n$, where $\{c_n\}$ tends to some c in (L_C, \downarrow_{ξ}) and $\{v_n\}$ tends to some v in (V, σ) . Since $P(Y \cap C) \subset D$, the sequence $\{Pc_n\}$ has a limit d in (L_D, \downarrow_{η}) and we have $Py_n = Pc_n + Pv_n$ converging to $x = d + Pv \in L_B \subset L_D$. Thus $Pv = x - d \in U \cap L_D$ and $P(c_n + v)$ tends to x in (L_D, \downarrow_{η}) which concludes the proof. Put $(L_A',\|\cdot\|_A')$ = the adjoint of $(L_A,\|\cdot\|_A)$. Write $U\in (A_0)_{\eta,\xi}$ if the following condition holds. $(A_0)_{\eta,\xi}$: To every $B\in \xi$ there corresponds a $D\in \eta,\, D\supset B$, such that to every $\varepsilon>0$, every $Z\in \mathscr{F}(X,\tau)$ and every $z'\in L_{D}{}'$ vanishing on $U\cap D$ there corresponds an $x'\in X'$ bounded on $X\cap B$ and vanishing on $U\cap Z$ such that $\|\bar x'-\bar z'\|_{B}{}'<\varepsilon$, where $\bar x'\in L_{B}{}'$ denotes the extension of the restriction of x' to $X\cap L_{B}$ and $\bar z'$, denotes the restriction of z' to L_{B} . We then prove the following lemma, cf. [5, Proposition 2]. (The property (A_0) seems to be related to the notion of orthogonality introduced in [3] by Pták.) LEMMA 2. If ξ is reflexive, then $(ACC)_{\eta,\xi} \subset (A_0)_{\eta,\xi}$. PROOF. Notice that $(A_0)_{\eta,\xi}$ amounts to the following statement. Given $B \in \xi$, we can find $D \in \eta$, $D \supset B$, such that for every Fréchet subspace Z of (X,τ) the closure of the subspace $$V_1 = \{ \overline{x}' \in L_B' : x' \in L_{(X \cap B)^\circ}, x'(U \cap Z) = \{0\} \}$$ with respect to the norm $\|\cdot\|_{B}$ contains the subspace $$V_2 = \{\bar{z}' \in L_B' \colon z' \in L_D', z'(U \cap L_D) = \{0\}\}$$. Due to reflexivity of ξ , it is sufficient to show weak* density of V_1 , that is, if for $z \in L_B$ all functionals from V_1 vanish on z, then all functionals from V_2 vanish on z as well. The space V_1 consists of the restrictions to L_B of functionals from $$V_1 = \{x' \in M' : x'(U \cap Z) = \{0\}\},$$ where $(M,\mu)=(L_B,\downarrow_\xi)$ \land (X,τ) . Hence, to prove the Lemma, we have to show that from $(ACC)_{\eta,\xi}$ it follows that if for $z\in L_B$ all functionals from V_1 vanish on z, then all the functionals from V_2 vanish on z as well. The first part of this means that $z\in (U\cap Z)^-$, where the closure $\bar{}$ is taken in (M,μ) , and the second part amounts to $z\in (U\cap L_D)^-$, where the closure $\bar{}$ is taken in (L_D,\downarrow_η) , so that the above-stated implications amounts to the inclusion from $(ACC)_{\eta,\xi}$ and the Lemma follows. LEMMA 3. (Cf. [7, Theorem 5.1].) Consider $\xi, \eta \in \mathcal{P}(X, \tau), \xi \geq \eta$, and $\lambda \in \mathcal{P}(Y, \sigma)$. If $P^{-1} \in (M)_{\eta, \lambda}$ and $PY \in (A_0)_{\eta, \xi}$, then $P' \in (NO^*)_{\xi, \lambda}$, that is, P' satisfies the following condition. $(NO^*)_{\xi,\lambda}$: To every $B \in \xi$ there corresponds a $C \in \lambda$ such that to every $y' \in (Y \cap C)^{\circ}$ and every $Z \in \mathscr{F}(Y,\sigma)$ there corresponds an $x' \in (X \cap B)^{\circ}$ such that y'y = (P'x')y for $y \in Z$. PROOF. Take $B \in \xi$ and adjust $D \in \eta$, $D \supset B$, to fulfil $(A_0)_{\eta,\xi}$. Subsequently, adjust to D a $C \in \lambda$ to fulfil $(M)_{\eta,\lambda}$. The condition $(M)_{\eta,\lambda}$ allows us to make it so that (*) $$Px \in D$$ implies $x \in \frac{1}{2}C$. Fix a $Z \in \mathcal{F}(Y,\sigma)$, $Z \supset Y \cap L_C$. Since P is continuous, we can find a $V \in \mathcal{F}(X,\tau)$ such that $PZ \subset V$. Additionally, we shall require that $V \supset X \cap L_D$. Take $y' \in (Y \cap C)^{\circ}$. Since $y'P^{-1}$ is continuous in $$(L_D,\downarrow_{\eta}) \wedge (V,\tau)$$, we can extend it over V to a $\downarrow_{\eta} \land \tau$ -continuous functional and then we can still extend the obtained functional over to $u' \in X'$. Denoting by ||u'|| the sup norm of u' in $((PY) \cap L_D, ||\cdot||_D)$, we get from (*) $$||u'|| \leq \frac{1}{2} ||P'u'||_{(Y \cap C)^{\circ}}.$$ Thus, for the norm-preserving extension $z' \in L_{D}'$ of the restriction of u' to $(PY) \cap L_{D}$ we obtain $$||z'||_{D'} \leq \frac{1}{2} ||P'u'||_{(Y \cap C)^{\circ}}$$. Denoting by \bar{z}' the restriction of z' to L_B , we obtain $$\begin{aligned} \|z'\|_{B^{'}} &\leq \|z'\|_{D^{'}} &\leq \frac{1}{2} \|P'u'\|_{(Y \cap C)^{\circ}} \\ &\leq \frac{1}{2} (\|y' - P'u'\|_{(Y \cap C)^{\circ}}^{\prime} + \|y'\|_{(Y \cap C)^{\circ}}^{\prime}) \leq \frac{1}{2} . \end{aligned}$$ Writing $u^* \in L_{D}'$ for the extension of the restriction of u' to $X \cap L_{D}$, we notice that $z' - u^* \in L_{D}'$ vanishes on $(PY) \cap L_{D}$. Using $(A_0)_{\eta,\xi}$ we find $v' \in X'$ bounded on $X \cap B$ and vanishing on $(PY) \cap V$ such that $$\|(\bar{z}' - \bar{u}') - \bar{v}'\|_{B'} < \frac{1}{2}$$ where $\bar{z}', \bar{u}', \bar{v}' \in L_{B}'$ denote the extensions of the restrictions to $X \cap L_{B}$ of z', u', v' respectively. Since $PZ \subseteq V$, we have (P'v')y = 0 for $y \in Z$. Since (y' - P'u')y = 0 for $y \in Z$, setting x' = u' + v', we obtain y'y = (P'x')y for $y \in Z$. Moreover, $$\|x'\|_{(X\cap B)^{\rm o}}\, \leqq\, \|\bar v'-(\bar z'+\bar u')\|_B'+\|\bar z'\|_B'\, \leqq\, 1$$, and the Lemma follows. LEMMA 4. We have $(NO^*)_{\xi,\lambda} \subset (O)_{\xi,\lambda}$, where $P' \in (O)_{\xi,\lambda}$ if the following condition holds. $(O)_{\xi,\lambda}$: To every $B \in \xi$ there corresponds a $C \in \lambda$ such that to every $y' \in (Y \cap C)^{\circ}$ there corresponds an $x' \in (X \cap B)^{\circ}$ such that y' = P'x'. PROOF. Take an ascending sequence $\{B_n\} \subset \xi$ cofinal with ξ such that $B_1 = B$. Subsequently, to every B_n assign $C_n \in \lambda$ according to the requirements of $(NO^*)_{\xi,\lambda}$. Finally, let $\{Z_n\}$, $Y = \bigcup_1^\infty Z_n$, be an ascending sequence of (\mathscr{F}) -subspaces of (Y,σ) such that $Z_n \supset Y \cap C_n$ for $n=1,2,\ldots$ Take $y' \in (Y \cap C)^{\circ}$, $C = C_1$, and assign to it $x_1' \in 2^{-1}(X \cap B_1)^{\circ}$ such that $y'y = (P'x_1')y$ for $y \in Z_2$. Hence $y_2' = y' - P'x_1' = (Y \cap C_2)^{\circ}$ and we can find $x_2' \in 2^{-2}(X \cap B_2)^{\circ}$ such that $y_2'y = (P'x_2')y$ for $y \in Z_3$. Continuing this way, we produce a sequence $x_n' \in 2^{-n}(X \cap B_n)^{\circ}$ such that $y'y = (P'(\sum_1 x_i'))y$ for $y \in Z_{n+1}$. It is easy to see that $x' = \sum_1 x_n'$ is a well defined functional belonging to $(X \cap B)^{\circ}$ such that y' = P'x', and this concludes the proof of Lemma 4. PROPOSITION 2. If P is such that to every $\zeta \in \mathscr{P}(Y,\sigma)$ there corresponds $\xi \in \mathscr{P}(X,\tau)$ such that P^{-1} is Λ -continuous from ξ to ζ , then to every $\lambda \in \mathscr{P}(Y,\sigma)$ there corresponds a $\xi \in \mathscr{P}(X,\tau)$ such that P' fulfils $(O)_{\xi,\lambda}$. PROOF. To a given $\lambda \in \mathscr{P}(Y,\sigma)$ we first assign $\eta \in \mathscr{P}(X,\tau)$ such that $P^{-1} \in (M)_{\eta,\lambda}$. Then we find $\zeta \in \mathscr{P}(Y,\sigma)$, $\zeta \geqq \lambda$, such that $P\zeta \trianglerighteq \eta$ and finally to ζ we assign a reflexive $\xi \in \mathscr{P}(X,\tau)$, $\xi \trianglerighteq \eta$, such that $P^{-1} \in (M)_{\xi,\zeta}$. The following commutative diagram describes the situation, From Lemma 1 we obtain $PY \in (ACC)_{\eta,\xi} \subset (A_0)_{\eta,\xi}$ and applying subsequently Lemmas 3 and 4, we obtain $P' \in (NO^*)_{\xi,\lambda} \subset (O)_{\xi,\lambda}$ which concludes the proof. COROLLARY 1. If P fulfils the requirements of Proposition 2, then P'X' = Y'. PROOF. It is sufficient to notice that to every $y' \in Y'$ there corresponds a $\lambda \in \mathcal{P}(Y, \sigma)$ such that y' is bounded on $Y \cap B$ for every $B \in \lambda$ and then apply Proposition 2. Take an (\mathscr{LF}) -space (Z,δ) and $\lambda \in \mathscr{P}(Z,\delta)$. Let Z' be the adjoint of (Z,δ) . We shall define a metric topological group $(Z',\varrho_{\lambda}{}^{\circ})$ as follows. First we choose an ascending cofinal sequence $\{C_n\} \subset \lambda$. Then we put for $x' \in Z'$ $$arrho_n(x') = t_n/(1+t_n) \quad \text{for} \quad t_n = ||x'||_{(Z\cap C)^\circ} < \infty$$ $= 1 \quad \text{otherwise}$ and then $$\varrho_{\lambda}^{\circ}(x') = \sum_{n=1}^{\infty} 2^{-n} \varrho_n(x') .$$ It is easy to see that the topology induced by the metric $\varrho_{\lambda}^{\circ}(x'-y')$ does not depend on the choice of the sequence $\{C_n\}$. The convergence of $\{x_{n'}\}\subset Z'$ to zero in $(Z',\varrho_{\lambda}^{\circ})$ means that given $C\in\lambda$, there exists an n_C such that $x_{n'}\in C^{\circ}$ for $n>n_C$. Therefore, the set of polars C° of C from λ constitutes a basis of neighbourhoods of zero in $(Z',\varrho_{\lambda}^{\circ})$. It is left to the reader to verify that $(Z', \varrho_{\lambda}^{\circ})$ is always complete. The object $(Z', \varrho_{\lambda}^{\circ})$ was introduced already in [7] and was called the (\mathscr{F}) -class polar to λ . Now, let us return to our original setup with two (\mathcal{LF}) -spaces (Y, σ) , (X, τ) and a continuous mapping P from Y to X. We have the following LEMMA 5. Given $\lambda \in \mathcal{P}(Y,\sigma)$ and $\xi \in \mathcal{P}(X,\tau)$, $P' \in (O)_{\xi,\lambda}$ from Lemma 4 means that P' is an open mapping of $(X',\varrho_{\xi}{}^{\circ})$ onto $(Y',\varrho_{\lambda}{}^{\circ})$ and if $P' \in (O)_{\xi,\lambda}$, then P^{-1} is Λ -continuous from ξ to λ . PROOF. Suppose that P' admits $(O)_{\xi,\lambda}$ and P^{-1} is not λ -continuous from ξ to λ . Then there exists a $B \in \xi$ such that for no $C \in \lambda$ the condition $(M)_{\xi,\lambda}$ is fulfilled. Choose $C \in \lambda$ which corresponds to B according to $(O)_{\xi,\lambda}$. Since, in particular, $(M)_{\xi,\lambda}$ does not hold for this choice of C, either there exists a $U \in \mathcal{F}(X,\tau)$ such that for no $V \in \mathcal{F}(Y,\sigma)$ the image by P^{-1} of $PY \cap (L_B + U)$ is contained in $V + L_C$, or, if for some V this image is contained in $V + L_C$, the mapping P^{-1} is not continuous from $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$ to $(L_C, \downarrow_{\lambda}) \wedge (V, \sigma)$. In the first case we take a sequence $\{y_n\} \subseteq Y$ such that $\{Py_n\} \subseteq (L_B + U)$ and that for a cofinal ascending $\{V_n\} \subset \mathcal{F}(Y,\sigma)$ we have $y_n \in (L_C + V_{n+1}) - (L_C + V_n)$. Multiplying if necessary by $t_n > 0$, we can always make $\{Py_n\}$ bounded in the space $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$, while $\{y_n\}$ cannot be bounded in the space $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$. Hence there exists a y' in the adjoint of $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$ on which $\{y_n\}$ is not bounded, and from $(O)_{\xi,\lambda}$ it follows that there must exist an x' in the adjoint of $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$ such that y'y = x'Py for $y \in Y$ and this contradicts boundedness of $\{Py_n\}$. In the alternative case, if P^{-1} maps $PY \cap (L_B + U)$ into $L_C + V$ for some $V \in \mathcal{F}(Y, \sigma)$ but P^{-1} is not continuous from $(L_B, \downarrow_{\xi}) \wedge (U, \tau)$ to $(L_C, \downarrow_{\lambda}) \wedge (V, \sigma)$, we take a bounded $\{Py_n\} \subset L_B + U$ such that $\{y_n\}$ is not bounded in $(L_C, \downarrow_{\lambda}) \land (V, \sigma)$ and choosing again y' in the adjoint of $(L_C, \downarrow_{\lambda}) \wedge (Y, \sigma)$ on which $\{y_n\}$ is not bounded, we arrive at a contradiction to the existence of x'in the adjoint of $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$ such that y'y = x'Py for $y \in Y$. This concludes the proof of Lemma 5. LEMMA 4'. For given $\lambda \in \mathcal{P}(Y, \sigma)$ and $\xi \in \mathcal{P}(X, \tau)$ we have the mapping P' open from $(X', \varrho_{\xi}^{\circ})$ to $(Y', \varrho_{\lambda}^{\circ})$ if $P' \in (NO)_{\xi, \lambda}$, that is, if P' fulfils the following condition. $(NO)_{\xi,\lambda}$: To every $B \in \xi$ there corresponds a $C \in \lambda$ such that for every $y' \in (Y \cap C)^{\circ}$, every $D \in \lambda$ and every $\varepsilon > 0$ there corresponds an $x' \in (X \cap B)^{\circ}$ with $||y' - P'x'||_{(Y \cap D)^{\circ}} < \varepsilon$. PROOF. Though it is a consequence of Proposition 12 of [4], we shall prove it independently. (This is actually repetition of Banach's proof given for (\mathcal{F}) -spaces.) Notice at first that $(NO)_{\xi,\lambda}$ amounts to the following statement. To every $\varepsilon > 0$ there corresponds a $\delta > 0$ such that the closure in $(Y', \varrho_{\lambda}^{\circ})$ of the image by P' of the ball $\{x' \in X' : \varrho_{\xi}^{\circ}(x') < \varepsilon\}$ contains the ball $\{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < \delta\}$. Fix any $\varepsilon > 0$ and adjust a sequence $0 < t_n \to 0$ in such a way that the closure of $P'\{x' \in X' : \varrho_{\xi}^{\circ}(x') < 2^{-n}\varepsilon\}$ contains $\{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < t_n\}$. Then for $y' \in Y'$ with $\varrho^{\circ}(y') < t_1$ we can find $x_1' \in X'$ with $\varrho^{\circ}(x_1') < 2^{-1}\varepsilon$ such that $\varrho_{\lambda}^{\circ}(y' - P'x_1') < t_2$. Continuing this procedure, we define a sequence $\{x_n'\} \subseteq X'$ such that $$\varrho_{\xi}^{\circ}(x_n') < 2^{-n}\varepsilon$$ and $\varrho_{\lambda}^{\circ}(y'-P'(x_1'+\ldots+x_n')) < t_{n+1}$ for every n. Setting $x' = \sum_{1}^{\infty} x_{n}'$, we obtain $\varrho_{\xi}^{\circ}(x') < \varepsilon$ and y' = P'x'. Hence to every $\varepsilon > 0$ we assigned $\delta = t_{1} > 0$ such that $$P'\{x' \in X' : \varrho_{\varepsilon}^{\circ}(x') < \varepsilon\} \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y') < \delta\}$$ and this amounts to $(O)_{\xi,\lambda}$, that is, to the openness of P' from $(X', \varrho_{\xi}^{\circ})$ to $(Y', \varrho_{\lambda}^{\circ})$. LEMMA 6. (Cf. [7, Theorem 7.1].) Suppose that P'X' = Y'. Then to every $\lambda \in \mathcal{P}(Y, \sigma)$ there corresponds a $\xi \in \mathcal{P}(X, \tau)$ such that $P' \in (NO)_{\xi, \lambda}$. PROOF. Let $\{Z_n\} \subset \mathcal{F}(X,\tau)$ be an ascending sequence of (F)-subspaces cofinal with $\mathcal{F}(X,\tau)$. For every n we provide a point-wise non-decreasing sequence of norms $\{\| \|_{n,m} \colon m=1,2,\ldots \}$ inducing the topology τ on Z_n . Denote by $Z_{n,m}^*$ the subspace of X' consisting of all functionals from X which on Z_n are continuous with respect to the norm $\| \|_{n,m}$. Clearly, for every n we have $X' = \bigcup_{m=1}^{\infty} Z_{n,m}^*$. Hence, there exists an m_1 such that $P'Z_{1,m_1}^*$ is a second category subset of $(Y',\varrho_{\lambda}^{\circ})$. Suppose that we have selected m_1,\ldots,m_n such that $P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*)$ is a second category subset of $(Y',\varrho_{\lambda}^{\circ})$. Then, since $$P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*)=\bigcup_{m=1}^{\infty}P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n,m_n}^*\cap Z_{n+1,m}^*),$$ we can still find m_{n+1} such that $P'(Z_{1,m_1}^*\cap\ldots\cap Z_{n+1,m_{n+1}}^*)$ is a second category subset of $(Y',\varrho_\lambda^\circ)$. Continuing this procedure, we produce a sequence $\{Z_{n,m_n}^*\}$ of sets with the above property. Notice that we can then produce a norm $\|\cdot\|$ such that $\|x\|_{n,m_n} \leq a_n \|x\|$ for $x \in Z_n$, $n=1,2,\ldots$, and that $\|\cdot\|$ is continuous in every (Z_n,τ) . Let $\xi \in \mathscr{P}(X,\tau)$ be such that $(Z_n, \downarrow_\xi) = (Z_n, \|\cdot\|)$. Then to every $B \in \xi$ there corresponds n such that $L_{(X \cap B)^\circ} \supset Z_{1,m_1}^* \cap \ldots \cap Z_{n,m_n}^*$, that is, for every B, $P'L_{(X\cap B)^{\circ}}$ is a second category subset of $(Y', \varrho_{\lambda}^{\circ})$. Here we could directly apply Proposition 10 of [4], but to make the paper self-contained, we repeat the argument essentially due to Banach. Fix $\varepsilon > 0$ and define $H_m = P'\{x' \in X' : \varrho_{\xi}^{\circ}(x'/m) < \frac{1}{2}\varepsilon\}$. For this ε we can find a $B \in \xi$ such that $$P'L_{(X\cap B)^{\circ}} \subset \bigcup_{1}^{\infty} H_{m}$$, and since the set on the left is a second category subset, there exists m_0 such that H_{m_0} is not nowhere dense in $(Y', \varrho_{\lambda}^{\circ})$. Hence, there are $y_0' \in Y'$ and r > 0 such that $$H_{m_0} \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y'-y_0') < r\},$$ where – denotes the closure in $(Y', \varrho_{\lambda}^{\circ})$. Since $\varrho_{\lambda}^{\circ}(y' - y_0'/m_0) < r/m_0$ implies $$\varrho_{\lambda}^{\circ}(m_{0}y'-y_{0}') = \varrho_{\lambda}^{\circ}(m_{0}(y'-y'/m_{0})) \leq m_{0}\varrho_{\lambda}^{\circ}(y'-y_{0}'/m_{0}) < r$$ we have $m_0y' \in H_{m_0}^-$ and thus $y' \in H_1^-$. Taking $y_1' \in H_1$ with $$\varrho_{\lambda}^{\circ}(y_{1}'-y_{0}'/m_{0}) < \eta = r/2m_{0}$$ we obtain $H_1^- \supset \{y' \in Y' : \varrho_{\lambda}^{\circ}(y_1' - y') < \eta\}$. For $\varrho_{\lambda}^{\circ}(y') < \eta$, we have $\varrho_{\lambda}^{\circ}((y_1' - y') - y_1')$. Hence $y_1' - y' \in H_1^-$, and thus also $y' - y_1' \in H_1^-$ so that finally $$\{y' \in Y': \, \varrho_{\lambda}^{\circ}(y') < \eta\} \subset (y_1' - H_1)^{-}.$$ Moreover, if $y'=y_1'-u'\in y_1'-H_1$, then there are $x_1',v'\in X'$ with $\varrho_{\xi}^{\circ}(x_1'),\,\varrho_{\xi}^{\circ}(v')<\frac{1}{2}\varepsilon$ such that $y_1'=P'x_1'$ and u'=P'v'. Setting $x'=x_1'-v'$, we have y'=P'x' and $\varrho_{\xi}^{\circ}(x')<\varepsilon$ so that $$(**) y_1' - H_1 \subseteq P'\{x' \in x' : \varrho_{\varepsilon}^{\circ}(x') < \varepsilon\}.$$ Joining (*) and (**), we obtain $$\{y'\in Y'\colon \ \varrho_{\pmb{\lambda}}{}^{\circ}(y')<\eta\} \ \subseteq \ (P'\{x'\in X'\colon \ \varrho_{\pmb{\xi}}{}^{\circ}(x')<\varepsilon\})^{-},$$ and due to the arbitrariness of the choice of $\varepsilon > 0$ this amounts exactly to $(NO)_{\varepsilon,\lambda}$. Hence, the Lemma 6 is proved. PROPOSITION 3. If P'X' = Y', then to every $\lambda \in \mathcal{P}(Y, \sigma)$ there corresponds a $\xi \in \mathcal{P}(X, \tau)$ such that P^{-1} is Λ -continuous from ξ to λ . PROOF. Given $\lambda \in \mathcal{P}(Y, \sigma)$, we apply first Lemma 6 and find $\xi \in \mathcal{P}(X, \tau)$ such that $(NO)_{\xi,\lambda}$ holds. Then from Lemma 4' we conclude that also $(O)_{\xi,\lambda}$ holds for this choice of λ . Then it remains only to apply Lemma 5 to find that for the pair λ and ξ the condition $(M)_{\xi,\lambda}$ holds as well, and this concludes the proof of Proposition 3. PROOF OF THEOREM 2. This proof amounts to combining Corollary 1 and Proposition 3. PROPOSITION 4. Fix arbitrary $\zeta \in \mathcal{P}(Y, \sigma)$ and $\xi \in \mathcal{P}(X, \tau)$. Then P^{-1} is Λ -continuous from ξ to ζ if and only if P^{-1} is sequentially continuous from ξ to ζ and holds singularities from ξ to ζ . PROOF. Take $B \in \xi$ and assign to it $C \in \zeta$ according to $(H)_{\xi,\zeta}$. Subsequently, fix $U \in \mathcal{F}(X,\tau)$ and take $D \in \xi$ such that $D \supset B$ and $L_D \supset U$. There exists an $A \in \zeta$, $A \supset C$, such that P^{-1} is sequentially continuous from (L_D, \downarrow_{ℓ}) to (L_A, \downarrow_{ℓ}) so that we can produce an extension S of P^{-1} to an operator closed in $(L_D, \downarrow_{\xi}) \times (L_A, \downarrow_{\xi})$. We shall show that S which is defined on the closure of $PY \cap (L_R + U)$ transforms this closure into $L_C + Y$ and is closed in $[(L_B, \downarrow_{\epsilon}) \wedge (U, \tau)] \times [(L_C, \downarrow_{\ell}) \wedge (Y, \sigma)]$. Indeed, if $\{Py_n\}$ tends to some x in $(L_B, \downarrow_{\xi}) \land (U, \tau)$, then it tends to x in (L_D, \downarrow_{ξ}) as well. Hence $\{y_n\}$ tends to some y in (L_A, \downarrow_{ℓ}) and by $(H)_{\xi, \ell}$ we have $y \in L_C + Y$. Clearly, Sx = y. Applying the closed graph theorem, we obtain continuity of S from $(L_R, \downarrow_{\varepsilon}) \wedge (U, \tau)$ to $(L_C, \downarrow_{\varepsilon}) \wedge (Y, \sigma)$. Hence $P^{-1} \in (M)_{\xi,\xi}$ which concludes the proof of sufficiency. To verify necessity, notice first that Λ -continuity of P^{-1} from ξ to ζ trivially implies its sequential continuity from $(L_{\varepsilon}, \downarrow_{\varepsilon})$ to $(L_{\varepsilon}, \downarrow_{\varepsilon})$. Indeed, by $(M)_{\varepsilon, \varepsilon}$ one can assign to $B \in \xi$ a $C \in \zeta$ in such a way that P^{-1} is continuous from (L_B, \downarrow_{ℓ}) to $(L_C, \downarrow_{\ell}) \land (V, \sigma)$ for some $V \in \mathcal{F}(Y, \sigma)$, and thus from (L_B, \downarrow_{ℓ}) to some (L_D, \downarrow_{ξ}) for a suitable $D \in \zeta$. Since $(H)_{\xi, \xi}$ is also an immediate consequence of $(M)_{\xi,\zeta}$, Proposition 4 holds. PROOF OF THEOREM 3. Suppose P^{-1} is sequentially continuous on components and totally holds singularities from (X,τ) to (Y,σ) . Take $\zeta \in \mathscr{P}(Y,\sigma)$. Since P^{-1} is continuous on components there exists a $\xi \in \mathscr{P}(X,\tau)$ such that P^{-1} is sequentially continuous from $(L_{\xi}, \downarrow_{\xi})$ to $(L_{\zeta}, \downarrow_{\zeta})$. Since $P^{-1} \in (H), \xi$ can be chosen such that $P^{-1} \in (H)_{\xi,\zeta}$, and then applying Proposition 4, we get $P^{-1} \in (M)_{\xi,\zeta}$, and by arbitrariness of $\zeta \in \mathscr{P}(Y,\sigma)$ we conclude that $P^{-1} \in (M)$. Conversely, from Proposition 4 it follows that $P^{-1} \in (M)$ implies $P^{-1} \in (H)$, and implies its sequential continuity as well, and this concludes the proof of Theorem 3. Lemma 7. Given $\lambda, \zeta \in \mathcal{P}(Y, \sigma)$ such that $\lambda \leq \zeta$ and that does not overrun ζ , to every $C \in \lambda$ there corresponds a $D, D \in \zeta$, such that $$L_{\zeta}\cap (L_C+Y) \, \subseteq \, L_D+Y \; .$$ PROOF. Take $D \in \zeta$ such that $L_{\zeta} \cap L_C \subset L_D$. If $u \in L_{\zeta} \cap (L_C + Y)$, then u = c + y, where $c \in L_C$ and $y \in Y$. Hence $c = u - y \in L_{\zeta} \cap L_C \subset L_D$, and consequently, $u \in L_D + Y$ which finishes the proof. PROOF OF THEOREM 4. Let $P^{-1} \in (H)_{\xi,\lambda}$. Take $B \in \xi$ and assign to it a $C \in \lambda$ according to $(H)_{\xi,\lambda}$. By Lemma 7 we can find $D \in \zeta$ such that $L_{\xi} \cap (L_C + Y) \subset L_D + Y$. To verify $(H)_{\xi,\xi}$, take $\{y_n\} \subset Y$ tending to y in $(L_{\xi}, \downarrow_{\xi})$ with $\{Py_n\}$ convergent in $(L_B, \downarrow_{\xi}) \wedge (X, \tau)$. Since $(L_{\xi}, \downarrow_{\xi}) \geq (L_{\lambda}, \downarrow_{\lambda})$, $\{y_n\}$ converges in $(L_{\lambda}, \downarrow_{\lambda})$ as well, and thus by $(H)_{\xi,\lambda}$ we have $y \in L_C + Y$. However, $y \in L_{\xi}$ and thus $y \in L_{\xi} \cap (L_C + Y) \subset L_D + Y$, and the Theorem follows. ## REFERENCES - 1. J. Dieudonné et L. Schwarts, La dualité dans les espaces (F) et (DF), Ann. Inst. Fourier (Grenoble) 1 (1949), 61-101. - 2. L. Hörmander, On the range of convolution operators, Ann. of Math. 26 (1962), 148-170. - V. Pták, Openness of linear mappings in (LF)-spaces, Czechoslovak Math. J. 19 (94) 1969, 547-552. Simultaneous extensions of two functionals, Czechoslovak Math. J. 19 (94), 1969, - Simultaneous extensions of two functionals, Czechoslovak Math. J. 19 (94), 1969 553-566. - 4. W. Słowikowski, On the theory of (F)-sequences, Studia Math. 25 (1965), 281-296. - W. Słowikowski, Epimorphisms of the adjoints to generalized (LF)-spaces, Introduction, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 16 (1968), 107-112. - W. Słowikowski, Epimorphisms of the adjoints to generalized (LF)-spaces. Sufficient conditions, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 16 (1968), 113-116. - W. Słowikowski, Range of operators and regularity of solutions, Studia Mathematica 40 (1971), 183–198. - F. Trèves, Locally convex spaces and linear partial differential equations (Grundlehren Math. Wiss. 146), Springer-Verlag, Berlin · Heidelberg · New York, 1967. UNIVERSITY OF AARHUS, DENMARK