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ON HORMANDER’S
THEOREM ABOUT SURJECTIONS OF 2’

W. SLOWIKOWSKI

Summary.

Consider an operator P: &2 — 2. It is proved here that for P'9’' =2’
it is necessary and sufficient that P-! is sequentially continuous in a
certain sense and that it “holds singularities”. Roughly speaking, the
latter means that for a certain extension P of P, acting no more over
infinitely smooth functions, to every compact K, it is possible to assign
a compact K, such that singsuppPwc K, implies singsuppuc<K,.
Similar results are actually established not only for & but for a certain
wide class of (£ )-spaces. The paper is made selfcontained and includes
some results announced in [5] and [6]. It provides an answer to some
questions raised by Tréves in the introduction to [8].

For topological spaces (W,u) and (V,») we write (W,u)=<(V,») if
V< W and if the identical injection of ¥ into W is continuous.

Denote by K the compact subsets of the N-dimensional Euclidean
space equal to the closure of their interior. We write

D(K) = {fe D: suppf=K},

and by 7,5 we denote the usual topology of 2. In what follows, (&, 7,)
shall denote the space of distributions with compact supports with the
usual topology of &”.

We shall say that a Banach space (L, ||-||), briefly (L), carries singulari-
ties over K if
(*) (Q(K)’TQ) 2 (L) 2 (éar’ TJ')

and if 2(K) is dense in (L).

Consider an open set £ in the N-dimensional Euclidean space. A
family & of Banach spaces is said to be a projective component of 2(£2)
if every space from & carries singularities over some compact K<
and if the following conditions hold.

1) To every compact K < there corresponds an (L)€ & which car-

ries singularity over K.
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2) The family & contains a sequence which is decreasing and cofinal
with respect to the relation >.
With every projective component & we associate the space L, which
is the union of all L for (L) € é. A sequence is said to be convergent in
L, if it converges in an (L) € é.

Consider open subsets £, and £, of the N,- and N,-dimensional
Euclidean spaces respectively and a linear mapping P from Z(£2,)
to 2(L2,) continuous with respect to the usual topologies. Take com-
ponents & and &, of 2(2,) and D(Q,) respectively. Given (L,) € &,, call
{(frs gn)}eLelx(L2+9(Qz)) convergent if {f,} converges in L, {g,}
converges in L, and in addition {g,} converges uniformly with all
derivatives off a compact for which (L,) carries singularities. Let P,
denote the sequential closure of P in L, x(L,+2(R2,)). We say that
P-1 holds singularities from &, to &, if the following condition holds

(H*)g, ¢,: To every (L,) €&, there corresponds an (L) € & such that
the domain of PLZ is contained in L, + 2(£2,).

TaEOREM 1. The adjoint mapping P’ is a surjection, that is, P'9'(Q,) =
2'(82,) iff P! is sequentially continuous from each L,, to some L, and
there exist projective components &, and &, such that P~1 holds singularities
from &, to &,.

Theorem 1 can easily be expressed also for £, and @, being differ-
entiable manifolds. However, the most important fact is that in the
Theorem the condition for P is invariant with respect to automor-
phisms of 2. This makes it possible to formulate an analogue to Theorem
1 for P acting within a certain pretty large class of (£% )-spaces and then
provide a proof using purely functional analytic tools.

The case where P is the convolution operator was investigated by
Hoérmander in [2]. One of the results of Section 4 of [2] can be expressed
as follows.

TaEOREM. If P is a.convolution operator transforming 2(Q,) into 2(£,),
then for P' to map 2'(L2,) onto D'(2,) it is necessary and sufficient that
P-1 is sequentially continuous from D(£2,) to D(2,) and that to every com-
pact K, <, there corresponds a compact K, <8, such that for u e &'(£2,)
* singsuppPu < K, implies singsuppu < K, ,
where P is the natural extension of P.

It is easy to see that (*) implies (H*),, , for L, =¢&"(2,) and
L£l=éa’(gl).
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Because of the particular choice of the projective components, this
version is not invariant under automorphisms of 2. It would be interest-
ing to find out if for a P which admits an extension to a continuous
mapping from &'(£2,) to &'(£2,) and has P-! sequentially continuous
from 2(2,) to 2(£,), fulfilment of the condition (H*),, ., for any pair
of components implies its fulfilment for the special components which
decompose &'(£2;) and &'(£2,) respectively.

Consider the following property concerning families of sets. Given
any two families &, and &, of subsets of a fixed set, we say that &,
does not overrun F, if to every U, € #, there corresponds an U, e %,
such that U,nUZF,cU,, where U, denotes the union of the sets
from &,.

In this paper we shall consider the (#Z%)-spaces (X, ) as in [1] ful-
filling the following additional requirement.

There exists an (L F)-space (L, |) < (X, ) which is the strict inductive
limit of Banach spaces such that the family of Banach subspaces of
(L, J) does not overrun the family of Fréchet subspaces of (X, t), where
by a Banach (Fréchet) subspace we understand any subspace which is
Banach (Fréchet) in the induced topology. We shall denote by % (X, 7)
the family of all Fréchet subspaces of an (Z%)-space (X, 7).

A locally convex space (L, |,) is said to be a strict p-component of
(X, 7) if (X,7)= (L, le), (Le, ¢) is the strict inductive limit of a sequence
of Banach spaces, and if to every Ze (L, |;) there corresponds a
U e #(X,7) such that Z is contained in the closure of U in (L, J;).
Clearly, all elements of #(L,, |;) are Banach spaces.

A strict p-component is fully described by the family F(L,, ).
We shall consider the family of all unit balls of spaces from F#(L,, |,).
This family consists of all closed, absolutely convex bounded subsets C
of (L ;). Then

Ly = UPnC € F (L ;) -

We shall denote by & the family of all C' for which additionally X nL,
is dense in (Lg, |;). Notice that the Minkowski functional |||, of C
induces on L the topology |.. We shall often write briefly & for (L, |,).

The definition of £ in [7] does not coincide with the one given here.
It is, however, easily verified that every family, as defined here, can be
uniquely extended to fulfil requirements of [7] with preservation of
the space (L, |;). Conversely, to every &, as defined in [7], there cor-
responds a strict p-component (L, |)=(L, |;). Notice that in [7],
p-components are not assumed Hausdorff while here we deal only with
Hausdorff components.



270 W. SLOWIKOWSKI

The family of all strict p-components & of (X,7) such that F#(L,, |,)
does not overrun % (X,7) we denote by P(X,r). For £, e P(X,1)
we write £, <&, if (Lg,» J£1)§(L£2, dgy)-

For locally convex spaces (V,,v;), 1=1,2, we write

(Viv) A(Va,rp) = (Vi+ Va,viAry)

for the inductive limit of those spaces, that is for »,Av, is set the finest
locally convex topology such that (V,+ V,, v;Av,) £ (Vy,w;) for i=1,2.
Consider a pair (Y,0) and (X,7) of (£ Z)-spaces and a continuous

linear mapping P from (Y,0) to (X,7). Take £ € P(Y,0) and &€ P(X, 7).

We say that P~ is a-continuous from & to { or we write briefly P-'e(M), ,

if the following condition holds.

(M),,;: To every Beé& there corresponds a C € such that to every
Ue Z(X,t) there corresponds a Ve %(Y,0) in such a way
that P-! maps PYN(Lz+U) into Ly+V and that it is con-
tinuous from (L, |;) A (U,7) to (Lg, l) A (V,0).

We say that P-1is a-continuous from (X,7) to (Y,0) or we write briefly

P-1e (M) if the following condition holds.

(M): To every (e P(Y,s) there corresponds a &eP(X,7) such
that P-1e (M), ..

We say that P-! holds singularities from & to { or we write briefly

P-1e (H),, if the following condition holds.

(H)g.: To every Be¢ there corresponds a C €{ such that for every
{y.}=Y tending to y in (L, |,) with {Py,} converging in
(L, lg) A (X,7) we have y belonging to Lo+ Y.

We say that P! totally holds singularities or we write briefly P-1 e (H)

if the following condition holds.

(H):  To every (e 2(Y,o) there corresponds a & € Z(X,t) such that
P-te(H),,.

We say that P-!is sequentially continuous on components if to every

(e P(Y,o) there corresponds & e P(X,t) such that P-1is sequentially

continuous from (L,.|,) to (L, ).

A p-component is said to be reflexive if F (L, |,) consists of reflexive
Banach spaces. From now on we shall assume that to every &, € (X, 1)
there corresponds a reflexive &, € (X, ) with & =<&,.

THEOREM 2. The adjoint P’ of P maps the dual X' of (X, 7) onto the dual
Y’ of (Y,0) iff P~ is a-continuous from (X,7) to (Y,0).

THEOREM 3. The mapping P-! is a-continuous from (X,t) to (Y,0)
iff it is sequentially continuous on components and totally holds singularities.
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TarorEM 4. Take (, A€ P(Y,0). If (=21 and 1 does not overrun ¢,
then if P-! holds singularities from some &€ P(X,t) to 4, it holds sin-
gularities from n to ¢ for any & <ne P(X,0).

ReMARK. Denoting by Py the sequential closure of P in (L, |;) %
[(LB,JG)A (X, r)] the condition (H),, is equivalent to the following
condition.

(H*),,.: To every Beé& there corresponds a C € { such that the domain
of Py is contained in L,+ Y.

The rest of this paper shall be devoted to verifying Theorems 2, 3 and 4,
and here we notice that Theorem 1 is an easy consequence of these
theorems. Indeed, the not overrunning conditions are certainly ful-
filled for projective components of 2(£2) as they were defined here.
This is because neither the family of Fréchet subspaces of 2(£2) nor any
component of P(2) can be overrun by the ‘“ultimate’” component which
is the decomposition of &'({2) into Banach spaces (of course not a strict
decomposition). Joining Theorems 2, 3 and 4 with the Remark, we
obtain Theorem 1 as a trivial corollary.

Prorosirion 1. Let e P(X,7) and Ceé&. Then (Lg, |) A (X,7) s
again an (LF)-space and it is the inductive limit of (Lg, l¢) A (X, ) for
every decomposition {X,}< % (X,7) of X.

Proor. Since {(X,,7)} is strict, {(Lg, {¢) A (X,,7)} is strict as well
and thus limind(Lg, |;) A (X,,7) is an (#%)-space. A seminorm on
Ly+ X is continuous in (Lg, |¢) A (X,7) iff it is continuous in every
(L, dg) A (X, 7) and the Proposition follows.

We shall write Pl z# if for every B e ( there is a C € such that
P(YnB)=C. This simply means that P is continuous from (L, |;)
to (L, |,). We also put

Liyncy =ar Uﬁon(UﬂC)o ,

where ° denotes the polar in U’.

Lemma 1. If P-1 is a-continuous from & to ¢, and if ne P(X,7) is
such that n<& and P{2E&, then setting U=PY we have U € (ACC)
that is, U fulfils the following condition.

(ACQC), ,: To every Be& there corresponds a D €n such that for every
Z e F(X,t) we have

62
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Lyn(UnZ)- < (UnLp)-,

where the closures — are taken subsequently in (Lg,|;) A (X, 7)
and in (Lp, |,).

Proor. Take Be¢ and adjust Ce{ according to (M),,. Sub-
sequently, take Den, D> B, in such a way that it is P(YnC)<D.
Fix Z and take a sequence {Py,}<UnZ convergent to some x in
(Lg, lg) A (Z,7). From (M), it follows that {y,} converges to some y
in (Lg, I;) A (V,0) for some (&)-subspace V of (Y,0). Hence, y,=c,+v,,
where {c,} tends to some ¢ in (L, {;) and {v,} tends to some v in (V,0).
Since P(YnC)<=D, the sequence {Pc,} has a limit d in (Lp, |,) and we
have Py,=Pc,+ Pv, converging to x=d+Pve Lz<L;. Thus Pv=
z—d e UnLp and P(c,+v) tends to x in (Lp, |,) which concludes the
proof.

Put (L,,|-|l,")=the adjoint of (L,,||4). Write U e (4,), . if the
following condition holds.
(Ay),,e: To every B e there corresponds a D e, D> B, such that to
every ¢>0, every Z € % (X, ) and every 2’ € Ly’ vanishing on
UnD there corresponds an =’ € X’ bounded on XnB and van-
ishing on UnZ such that ||’ —Z'||z' <¢, where ' € Ly’ denotes
the extension of the restriction of 2’ to XnLy and 2z’, denotes
the restriction of 2’ to Lg.

We then prove the following lemma, cf. [5, Proposition 2]. (The property
(4,) seems to be related to the notion of orthogonality introduced in
[3] by Ptak.)

Lrmma 2. If & is reflexive, then (ACC), (< (4y),, ¢-

Proor. Notice that (4,), , amounts to the following statement. Given
Be &, we can find D ey, D> B, such that for every Fréchet subspace
Z of (X, ) the closure of the subspace

Vi={& eLy': o' € Lixapw *'(UnZ)={0}}
with respect to the norm ||-||z" contains the subspace
Vo={Z€eLy': 2 eLy,2(UnLp)={0}} .

Due to reflexivity of &, it is sufficient to show weak* density of V,,
that is, if for z € Ly all functionals from ¥V, vanish on z, then all func-
tionals from V, vanish on z as well.



ON HORMANDER’S THEOREM ABOUT SURJECTIONS OF 2’ 273

The space V, consists of the restrictions to Lz of functionals from
Vy={"eM': 2'(UnZ) = {0}},

where (M,u)=(Lg, ;) A (X,7). Hence, to prove the Lemma, we have
to show that from (4CC), , it follows that if for z € Ly all functionals
from V; vanish on #, then all the functionals from V, vanish on z as well.
The first part of this means that ze (UnZ)-, where the closure — is
taken in (M,u), and the second part amounts to ze (UnLy)-, where
the closure — is taken in (L, |,), so that the above-stated implications
amounts to the inclusion from (ACC), . and the Lemma follows.

Lemwma 3. (Cf. [7, Theorem 5.1].) Consider &,nme P(X,1), &=, and
reP(Y,0). If P1e(M),,and PY € (4,),;, then P' € (NO¥*), ,, that is,
P’ satisfies the following condition.

(NO*),;: To every B e ¢ there corresponds a C € A such that to every
y' e (YnC)° and every Ze %(Y,c) there corresponds an
2’ € (XnB)° such that y'y=(P'z")y for y € Z.

Proor. Take Be& and adjust Den, D> B, to fulfil (4,),,. Sub-
sequently, adjust to D a C el to fulfil (M), ,. The condition (M), ,
allows us to make it so that

(*) PxeD implies xzeiC.

Fix a Ze #(Y,0),Z>YnL, Since P is continuous, we can find a
Ve#(X,7) such that PZ<V. Additionally, we shall require that
VoXnL; Take y' €(YnC)°. Since y' P-1 is continuous in

(LD9 ‘]'I) A (V7 T) ’

we can extend it over V to a |,A7-continuous functional and then we
can still extend the obtained functional over to w’ € X’. Denoting by
[w'|| the sup norm of «’ in ((PY)nLy,||-|lp), we get from (*)

']l = 3P %'\ wncy -

Thus, for the norm-preserving extension 2’ € Ly, of the restriction of u’
to (PY)n Ly we obtain

[#llp" = 3I1P" % |gncy -
Denoting by z’ the restriction of 2’ to Ly, we obtain
I=l" = 12'lp" = 1P %' lwacy

< 3y’ =P wlcyncy + 19 lcznoy) S 3-
Math. Scand. 30 — 18
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Writing u* € Ly’ for the extension of the restriction of 4’ to XnLp,
we notice that 2’ —u* e Ly’ vanishes on (PY)nLy,. Using (4,),, we
find ¢' € X’ bounded on XnB and vanishing on (PY)nV such that

IZ"—a")-7lp" < %,

where z',%',0" € Lg" denote the extensions of the restrictions to XnLy
of 2',u', v’ respectively. Since PZ<V, we have (Pv')y=0 for y e Z.
Since (y' — P'u')y=0 for y € Z, setting ' =u"+v’, we obtain y'y=(P'z')y
for ye Z. Moreover,

2 llcxnpe = 10" =@ +@)p"+IFs" = 1,

and the Lemma follows.

Levmma 4. We have (NO*), ;< (0),,,, where P’ € (0), ; if the following
condition holds.

(0)e,;: To every Be¢ there corresponds a C € such that to every
y' € (Y nC)° there corresponds an z’ € (X n.B)° such that y'=P'z’.

Proor. Take an ascending sequence {B,}<§& cofinal with & such that
B,=DB. Subsequently, to every B, assign C, €1 according to the re-
quirements of (NO*) ,. Finally, let {Z,}, Y=U,*Z,, be an ascending
sequence of (& )-subspaces of (Y,0) such that Z,,> Y nC,, for n=1,2,. ...

Take y' € (¥YnC)°,C=C,, and assign to it z,"e€2-1(XnB,;)° such
that y'y=(P'x,")y for ye Z,. Hence y,’=y'—P'z,’ = (Y nC,)° and we
can find z," € 23X nB,)° such that y,’y=(P'z, )y for yeZ,. Con-
tinuing this way, we produce a sequence z,’ € 2-*(XnB,)° such that
y'y=(P'(Sx;))y for ye Z,,;. It is easy to see that 2'=3,"z," is a
well defined functional belonging to (XnB)° such that y'=P'z’, and
this concludes the proof of Lemma 4.

ProrositioN 2. If P is such that to every ¢ € P(Y,c) there corresponds
& e P(X, 1) such that P-1 is a-continuous from &to {, then to every Ac P(Y ,0)
there corresponds a & € P(X, 1) such that P’ fulfils (O), ;.

Proor. To a given 1€ P(Y,0) we first assign n € #(X,7) such that
P-1e(M),,. Then we find e P(Y,0),l24, such that P;2#% and
finally to { we assign a reflexive & € (X, 1), £ 27, such that P~ e (M), ..
The following commutative diagram describes the situation,
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LE incl L

From Lemma 1 we obtain PY e (4CC), .= (4,), and applying sub-
sequently Lemmas 3 and 4, we obtain P’e (NO*), ;< (0),, which
concludes the proof.

CororraRY 1. If P fulfils the requirements of Proposition 2, then
PX'=Y'

Proor. It is sufficient to notice that to every y’ € Y’ there corresponds
a Ae P(Y,o) such that y’ is bounded on Y nB for every B € 1 and then
apply Proposition 2.

Take an (L F)-space (Z,0) and 1 € P(Z,0). Let Z' be the adjoint of
(Z,0). We shall define a metric topological group (Z’,p,°) as follows.
First we choose an ascending cofinal sequence {C,}<A. Then we put
for ' e Z’

on(a’) = t,/(1+1,) for t, = ||&'llizacy < o
=1 otherwise
and then
02°(") = 201 27"0,(a") .

It is easy to see that the topology induced by the metric o,°(z' —y’)
does not depend on the choice of the sequence {C,}. The convergence
of {x,’}=Z' to zero in (Z',p,°) means that given C € 4, there exists an
ng such that z,’ € C° for n>n,. Therefore, the set of polars C° of C
from A constitutes a basis of neighbourhoods of zero in (Z’,,°).

It is left to the reader to verify that (Z’,9,°) is always complete.
The object (Z’,0,°) was introduced already in [7] and was called the
(&)-class polar to A.

Now, let us return to our original setup with two (L% )-spaces (Y,0),
(X, 7) and a continuous mapping P from Y to X. We have the following

LemMA 5. Given e P(Y,0) and £ € P(X,7), P' € (0), ; from Lemma 4
means that P’ is an open mapping of (X',0,°) onto (Y',0,°) and iof P'e(0), ;,
then P-1 {s a-continuous from & to A.
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Proor. Suppose that P’ admits (0),; and P~ is not A-continuous
from & to A. Then there exists a B € & such that for no C € 1 the con-
dition (M), , is fulfilled. Choose C € 4 which corresponds to B according
to (0), ;. Since, in particular, (M), ; does not hold for this choice of C,
either there exists a U e %#(X,t) such that for no Ve % (Y,0) the
image by P-! of PYn(Lgz+ U) is contained in V + L, or, if for some
V this image is contained in V + L, the mapping P! is not continuous
from (Lg, l)A(U,7) to (Lg, {;)A(V,0). In the first case we take a se-
quence {y,}<Y such that {Py,}<(Lz+U) and that for a cofinal
ascending {V,}<%(Y,0) we have y, € (Lg+ V,4)—(Le+V,). Mul-
tiplying if necessary by ¢,>0, we can always make {Py,} bounded
in the space (Lg, |;)A(U,7), while {y,} cannot be bounded in the space
(Los 4)A(Y,0). Hence there exists a ¥’ in the adjoint of (Lg, {;)A(Y,0)
on which {y,} is not bounded, and from (0), , it follows that there must
exist an 2’ in the adjoint of (Ljp, |;)A(X,7) such that y'y=a'Py for
y€ Y and this contradicts boundedness of {Py,}. In the alternative
case, if P~ maps PYn(Lg+ U) into Ly+ V for some V e #(Y,0) but
P-1 is not continuous from (Lg, |;)A(U,7) to (Lg, |;)A(V,0), we take a
bounded {Py,}< L+ U such that {y,} is not bounded in (L, {;)A(V,0)
and choosing again y’ in the adjoint of (L, |;)A(Y,0) on which {y,}
is not bounded, we arrive at a contradiction to the existence of z’
in the adjoint of (Lg, |;)A(X,7) such that y'y=a'Py for ye Y. This
concludes the proof of Lemma 5.

LemMa 4'. For given A€ P(Y,0) and & € P(X, ) we have the mapping
P’ open from (X',0,°) to (Y',0,°) if P' € (NO), ,, that is, if P’ fulfils the
Jollowing condition.

(NO),,: To every B e ¢ there corresponds a C € A such that for every
y' € (YnC)° every D e and every ¢ >0 there corresponds an
x' € (XnB)° with ||y’ —P'2||papy <e.

Proor. Though it is a consequence of Proposition 12 of [4], we shall
prove it independently. (This is actually repetition of Banach’s proof
given for (#)-spaces.) Notice at first that (NO),; amounts to the fol-
lowing statement. To every &>0 there corresponds a é>0 such that
the closure in (Y”,0,°) of the image by P’ of the ball {z'eX’: o,°(2') <&}
contains the ball {y'eY"': 9,°(y’) <¢). Fix any ¢> 0 and adjust a sequence
0<t, - 0 in such a way that the closure of P'{x’' € X": ¢,°(2') <2 ™¢}
contains {y' € Y': 0,°(¥') <t,}.

Then for y' € Y’ with ¢°(y’) <t, we can find ;" € X’ with ¢°(,") <271
such that ¢,°(y’'—P'x,")<t,. Continuing this procedure, we define a
sequence {z,'} < X' such that
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0°(®,)) < 27 and @ °(y' —P'(x/+ ... +%,)) <ty

for every n. Setting 2'=3,"x,’, we obtain g,°(2')<e and y'=P'z’.
Hence to every >0 we assigned d=¢; >0 such that

P'{m’ eX’ Qeo(xl)<€} > {y: ey’ Q;,°(y')<5}

and this amounts to (0), ;, that is, to the openness of P’ from (X’,0,°)
to (¥',0,°).

Lemwma 6. (Cf. [7, Theorem 7.1].) Suppose that P’X'=Y'. Then to
every A € P(Y,0) there corresponds a & € P(X, 1) such that P’ € (NO), ;.

Proor. Let {Z,} =% (X,7) be an ascending sequence of (F)-subspaces
cofinal with # (X, 7). For every n we provide a point-wise non-decreas-
ing sequence of norms {|| ||, ,: m=1,2,...} inducing the topology =
on Z,. Denote by Zy , the subspace of X' consisting of all functionals
from X which on Z, are continuous with respect to the norm || ||, ,,.
Clearly, for every n we have X'=Uy_,Z¥ . Hence, there exists an

1 such that P'Z¥, is a second eategory subset of (Y',0,°). Suppose
that. we have selected m,,...,m, such that P'(Zf, n...nZ;, ) is a
second category subset of (¥ ’,Ql ). Then, since

P(Zf,n...nZy ) = Uxs_, P'(Zf ..NZr,. nZ

1m1 n,mn +1m)’

we can still find m,,,, such that P'(Zf, n...nZy, , ) is a second
category subset of (Y’,0,°). Continuing thls procedure we produce a
sequence {Z; , } of sets with the above property. Notice that we can
then produce a norm ||-|| such that |||, ,,, S @zl forz € Z,,, n=1,2,.. .,
and that ||-|| is continuous in every (Z,,7). Let £e #(X,t) be such
that (Z,, |;)=(Z,,||*|). Then to every B e ¢ there corresponds n such

that
L(XnB)" > Zl m1 - N Zy

n,mp ?

that is, for every B, P'Lix,p). is a second category subset of (¥’,0,°).
Here we could directly apply Proposition 10 of [4], but to make the
paper self-contained, we repeat the argument essentially due to Banach.
Fix >0 and define H,,=P'{x' € X": o,°(2'/m) < }¢}. For this ¢ we can
find a B € & such that

P,L(XnB)° < U;o Hm

and since the set on the left is a second category subset, there exists
my such that H, is not nowhere dense in (Y’,0,°). Hence, there are
Yy € Y’ and r> 0 such that

H, >{y e o’y —y)<r},
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where - denotes the closure in (Y',,°). Since 0,°(y" —y,'/my) <7/my
implies

02°(mey’ —Yo') = 0:,°(mo(y’ —¥'[mo)) S Mo (Y’ —yo'[me) < 7,
we have myy’ € H,, and thus y' € H,~. Taking y," € H, with
0’1 —yo'[mo) < m = r[2m,,

we obtain H,">{y'e Y': 0,°(y,’ —y')<n}. For p,°(y')<n, we have
0:°((yi’ —y')—y,). Hence y,'—y' € H,~, and thus also y'—y," € H,~ so
that finally
(*) WeY: o W) <n} = (' —Hy)~
Moreover, if y'=y,"—u €y,’—H,, then there are xz,,v'e X' with
0:°(2,"), 0.°(v') < & such that y,"=P'x," and %' = P'v’. Setting 2’ =x,"—’,
we have y'=P’2’ and o,°(2’) < ¢ so that
(**) y—H, < P'{a’ ex’: o°(x')<e}.
Joining (*) and (**), we obtain

el o°(W)<n} = (P'{a' e X": o,°(x') <e}),
and due to the arbitrariness of the choice of &> 0 this amounts exactly
to (NO),, ;. Hence, the Lemma 6 is proved.

Prorosrrion 3. If P'X'=Y', then to every A € P(Y,0) there corresponds
a £e P(X,t) such that P-1 is a-continuous from & to A.

Proor. Given 1eZ(Y,0), we apply first Lemma 6 and find £ 2 (X, 7)
such that (NO), , holds. Then from Lemma 4’ we conclude that also
(0),,; holds for this choice of 2. Then it remains only to apply Lemma 5
to find that for the pair A and & the condition (M), , holds as well, and
this concludes the proof of Proposition 3.

Proor or THEOREM 2. This proof amounts to combining Corollary 1
and Proposition 3.

ProrosrTioN 4. Fix arbitrary ¢ € P(Y,0) and &€ P(X,t). Then P!
8 A-continuous from & to { if and only if P~ is sequentially continuous
from & to ¢ and holds singularities from & to (.

Proor. Take B e & and assign to it C € { according to (H),,. Sub-
sequently, fix U € #(X, ) and take D € & such that D> B and L,>U.
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There exists an 4 €, 4>C, such that P-! is sequentially continuous
from (Lp, ;) to (L, ;) so that we can produce an extension S of P-!
to an operator closed in (Lp, |;) x (L4, ;). We shall show that § which
is defined on the closure of PY n(Lyz+ U) transforms this closure into
Lo+Y and is closed in [(Lg, {g)A(U,7)] x [(Lg, {;)A(Y,0)]. Indeed, if
{Py,} tends to some x in (Lg, |;)A(U,7), then it tends to z in (Ly, )
as well. Hence {y,} tends to some y in (L, |;) and by (H),, we have
ye Lo+ Y. Clearly, Sx=y. Applying the closed graph theorem, we
obtain continuity of 8§ from (Lg, ,)A(U,7) to (Lg, {;)A(Y,0). Hence
P-te (M), which concludes the proof of sufficiency. To verify neces-
sity, notice first that A-continuity of P-! from & to ¢ trivially implies
its sequential continuity from (L, ;) to (L; ;). Indeed, by (M), ,
one can assign to B € £ a C € { in such a way that P-! is continuous from
(L, le) to (Lg, 4)A(V,0) for some V e #(Y,0), and thus from (L, |,)
to some (Ly, |;) for a suitable D e {. Since (H), . is also an immediate
consequence of (M), ., Proposition 4 holds.

Proor or THEOREM 3. Suppose P-! is sequentially continuous on
components and totally holds singularities from (X,7) to (Y,0). Take
{eP(Y,s). Since P! is continuous on components there exists a
§e P(X,7) such that P! is sequentially continuous from (L, |,) to
(Lg, 1;). Since P~'e (H), & can be chosen such that P~'e (H),,, and
then applying Proposition 4, we get P~'e (M), ,, and by arbitrariness
of (e P(Y,0) we conclude that P-!e (M). Conversely, from Proposi-
tion 4 it follows that P-1e (M) implies P~' e (H), and implies its se-
quential continuity as well, and this concludes the proof of Theorem 3.

Lemma 7. Given A,; € P(Y,0) such that A = ¢ and that does not overrun £,
to every C € A there corresponds a D, D e, such that

Lin(Lg+Y) € Ly+ Y.

Proor. Take D e such that LnLo<Ly. If we L,n(Lg+Y), then
u=c+y, where ce Ly and ye Y. Hence c=u—yeL,nLy<Ly, and
consequently, w € L+ Y which finishes the proof.

Proor or THEOREM 4. Let P-'€ (H), ;. Take Be & and assign to it
a C €} according to (H),,. By Lemma 7 we can find D € { such that
Lin(Lg+ Y)<=Lp+ Y. To verify (H),, take {y,}<Y tending to y in
(L, |;) with {Py,} convergent in (L, |,)A(X,7). Since (L, |;) = (L;, ;)
{y..} converges in (L,, |,) as well, and thus by (H )e,a We have y € Lo+ Y.
However, y € L, and thus y € L,n(Ly+Y)<Ly+Y, and the Theorem
follows.
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