ON DISCONTINUOUS HOMOMORPHISMS OF $L^1(G)$

KJELD B. LAURSEN

It is still not known whether or not every algebra homomorphism of $C_0(X)$ where X is locally compact and Hausdorff is continuous. The same ignorance prevails with respect to the analogous question concerning the convolution algebra $L^1(G)$ where G is a locally compact abelian group. In this note we establish a connection between these questions: If G is a locally compact abelian group with dual group \widehat{G} and if $C_0(\widehat{G})$ admits a discontinuous homomorphism then so does $L^1(G)$. This extends recent work of T. Slobko.

In the sequel X will be a locally compact Hausdorff space, $C_0(X)$ the algebra of continuous functions on X vanishing at infinity, G will be a locally compact abelian group with dual group \hat{G} . βX will be the Stone-Čech compactification of X and if $F \subset \beta X$ then $\mathcal{K}(F)$ will be the algebra of functions from $C(\beta X)$ which are constant on some neighborhood of each of the points of F, the neighborhoods depending on the function. Finally, $\mathcal{L}(F)$ is the ideal in $\mathcal{K}(F)$ of functions vanishing in a neighborhood of F.

The starting point of our discussion is the following result [5, Theorem 1]

PROPOSITION. If v is a homomorphism of $C_0(X)$ then there is a finite set of points, F in βX and a constant M such that

$$||v(g)|| \le M||g||$$
 for all $g \in \mathcal{L}(F)$.

Applying the method of proof from [1, Theorem 4.1] to this result we easily obtain

LEMMA 1. Let v be a homomorphism of $C_0(X)$ (into a Banach algebra). Let F be the singularity set in the sense of the above. Then v is continuous on the dense subalgebra $\mathcal{K}(F) \cap C_0(X)$.

Another extension to the locally compact case is contained in

Received October 17, 1971.

LEMMA 2. Let v be a homomorphism of $C_0(X)$ into a commutative Banach algebra B and let R be the radical of $\overline{v(C_0(X))}$. Let μ and λ be the continuous and singular parts of v. Then

(a) The range of μ is closed in B and

$$\overline{\nu(C_0(X))} = \mu(C_0(X)) \oplus R$$

where \oplus denotes topological direct sum.

(b)
$$R = \overline{\lambda(C_0(X))}$$
.

PROOF. The argument is similar to that employed in [1, Theorem 4.3]: Let $K = \{f \in C_0(X) \; ; \; \mu(f) = 0\}$. Since μ is continuous K is a closed ideal in $C_0(X)$ and since $C_0(X)$ is a closed ideal in $C(\beta X)$, K is a closed ideal in $C(\beta X)$. (Let $g \in K$, let $f \in C(\beta X)$ and let e_α be an approximate identity for $C_0(X)$. Then $\lim fge_\alpha = fg$ since $fg \in C_0(X)$; moreover $fe_\alpha \in C_0(X)$, $g \in K$ implies $fge_\alpha \in K$, that is, $fg \in K$). This means there is a closed set $L \subseteq \beta X$ such that $K = \{f \in C(\beta X) \; ; \; f(L) = 0\}$. It is known that $C(\beta X)/K$, provided with the quotient norm $\|\cdot\|$ is isometrically isomorphic with $C_0(X \cap L)$. Since $\mu(f)$ is constant on the coset f + K we may also norm $C_0(X)/K$ by

$$|f+K| = ||\mu(f)||$$
.

By [3]

$$||f+K|| \leq |f+K| \quad f \in C_0(X) ,$$

and since $|f+K| = ||\mu(f)|| \le C||f||$ for every f in $C_0(X)$ it follows that the quotient norm and $|\cdot|$ are equivalent. The rest of the proof proceeds exactly as in [1].

Let x_0 be a singularity point for ν in the sense of Slobko (that is, $x_0 \in \beta X$) and let $Z(x_0)$ be the set of functions in $C_0(X)$ that vanish on some open neighborhood of x_0 . Then corresponding to [5, Lemma 3] we have

LEMMA 3. Let v be a discontinuous homomorphism of $C_0(X)$, X locally compact and let x_0 be a singularity point. Then v induces a non-zero algebra semi-norm on $C_0(X)/Z(x_0)$.

PROOF. Choose a function h in $C(\beta X)$ such that h=1 in some neighborhood of x_0 and =0 in a neighborhood of every other singularity point of ν . Define

$$\nu'(f) = \nu(fh)$$

for all $f \in C_0(X)$. Then ν' has only one singularity point, x_0 . Let μ and λ be the continuous and singular parts of ν' , respectively. Let $\tilde{}$ denote the canonical mapping $C_0(X) \to C_0(X)/Z(x_0)$ and define

$$p(x) = \inf\{||v'(s)||; \ \tilde{s} = x\}$$

for every $x \in C_0(X)/Z(x_0)$. It is elementary to show that p is an algebra semi-norm. It remains to see that p is non-zero. If $p \equiv 0$ then $v'(Z(x_0))$ is dense in $v'(C_0(X))$, and since $\mu(C_0(X)) \supseteq \mu(Z(x_0)) = v'(Z(x_0))$ by Lemma 1 we conclude that $\mu(C_0(X))$ is dense in $v'(C_0(X))$. By Lemma 2 this implies that $R = \{0\}$ and hence that $\lambda = 0$, contradicting the discontinuity of v' and of v.

We are now ready to state and prove the main result

THEOREM. Let G be a locally compact abelian group with dual group \hat{G} . If $C_0(\hat{G})$ admits a discontinuous homorphism then so does $L^1(G)$.

PROOF. Let x_0 be a singularity point of the discontinuous homomorphism ν , let p be the algebra-semi-norm on $C_0(\widehat{G})/Z(x_0)$ (Lemma 3) and $\gamma\colon L^1(G)\to C_0(\widehat{G})$ be the Gelfand transform. We shall show that if $\widetilde{}$ is the canonical mapping $C_0(\widehat{G})\to (C_0(\widehat{G})/Z(x_0),p)$ then $\widetilde{}\circ\gamma$ is discontinuous. Choose $f\in C_0(\widehat{G})$ such that $p(\widetilde{f})>0$. By [2] we can find $h\in L^1(G)$ and $g\in C_0(\widehat{G})$ such that $f=\gamma(h)g$. Consequently, since $p(\widetilde{f})\leqq p(\gamma(h)^{\widetilde{}})p(\widetilde{g}),$ $p(\gamma(h)^{\widetilde{}})>0$.

At this point we shall consider first the possibility that $x_0 \in \beta \widehat{G} \setminus \widehat{G}$. In this case [4, 2.6.6] applies, that is, given $\varepsilon > 0$ we can find $k \in L^1(G)$ such that $\gamma(k) \in \mathcal{L}(\{x_0\})$ and such that $||h - k * k||_1 < \varepsilon$. Since $\gamma(h) = \gamma(h) - \gamma(h) \gamma(k)$, this proves the discontinuity of $\gamma(k) = \gamma(k) - \gamma(k) \gamma(k)$, this proves the discontinuity of $\gamma(k) = \gamma(k) - \gamma(k) \gamma(k) \gamma(k)$.

If $x_0 \in \widehat{G}$ we shall again invoke the factorization theorem of [2], but this time we apply it to

$$W = \{ f \in L^1(G) ; \gamma(f)(x_0) = 0 \}.$$

To see that the theorem applies, let

$$X = \{ f \in C_0(\widehat{G}) ; f(x_0) = 0 \}$$

and let $\sigma: W \to B(X)$ be defined in the canonical way

$$\sigma(f)(g) = \gamma(f)g \quad f \in W, g \in X$$
.

By [4, 2.6.4] W is the closed linear span of functions vanishing in a neighborhood of x_0 . Consequently, by [2] we get that $W \cdot X$ is closed in X. It is no problem to check the density of $W \cdot X$ in X; consequently,

we have the needed result: given $f \in C_0(\widehat{G})$ such that $f(x_0) = 0$, there is $h \in L^1(G)$ with $\gamma(h)(x_0) = 0$ and $g \in C_0(\widehat{G})$ with $g(x_0) = 0$ such that $f = \gamma(h)g$.

The argument is now quite similar to the first case: if $f \in C_0(\widehat{G})$ and $p(\tilde{f}) > 0$ then there is no loss of generality in assuming that $f(x_0) = 0$. If this is not the case, consider an h with compact support satisfying $h \equiv 1$ in a neighborhood of x_0 . Then

$$f = f - f(x_0)h + f(x_0)h$$

and if $p((f-f(x_0)h)^{\sim}) = 0$ then $v'(f-f(x_0)h) \in \mu(C_0(\widehat{G}))$. But since $h \equiv 1$ in a neighborhood of x_0 , we have $v'(f(x_0)h) \in \mu(C_0(\widehat{G}))$, yielding the continuity of v'. So we can assume the existence of $f \in C_0(\widehat{G})$ with $f(x_0) = 0$ and $p(\widetilde{f}) > 0$. By the above remarks this means there is an $h \in L^1(G)$ with $\gamma(h)(x_0) = 0$ and $p(\gamma(h)^{\sim}) > 0$. Again by [4, 2.6.4], given $\varepsilon > 0$ we can find $k \in L^1(G)$ such that

$$||h-k||_1 < \varepsilon$$

and

$$\gamma(k) \in Z(x_0)$$
 ,

that is,

$$p(\gamma(h)^{\sim} - \gamma(k)^{\sim}) = p(\gamma(h)^{\sim}) > 0$$

and this proves the discontinuity of ~oy in the second case.

REFERENCES

- W. G. Bade and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608.
- P. C. Curtis, Jr. and A. Figa-Talamanca, Factorization theorems for Banach algebras, in Function Algebras, ed. by F. T. Birtel, Scott-Foresman & Co., Chicago, 1966.
- 3. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
- W. Rudin, Fourier analysis on groups, (Interscience Tracts in Pure and Applied Mathematics 12), New York · London, 1967.
- 5. T. A. Slobko, Homomorphisms of $C_0(X)$. Preprint, Occidental College, Los Angeles.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIF., U.S.A.