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ON DISCONTINUOUS HOMOMORPHISMS OF LYQ)

KJELD B. LAURSEN

It is still not known whether or not every algebra homomorphism of
Cy(X) where X is locally compact and Hausdorff is continuous. The
same ignorance prevails with respect to the analogous question concern-
ing the convolution algebra L(G) where G is a locally compact abelian
group. In this note we establish a connection between these questions:
If G is a locally compact abelian group with dual group G and if Co(@)
admits a discontinuous homomorphism then so does L*(G). This extends
recent work of T. Slobko.

In the sequel X will be a locally compact Hausdorff space, Cy(X) the
algebra of continuous functions on X vanishing at infinity, G will be a
locally compact abelian group with dual group @. X will be the Stone—
Cech compactification of X and if F <8X then - (F) will be the algebra
of functions from C(SX) which are constant on some neighborhood of
each of the points of F, the neighborhoods depending on the function.
Finally, #(F) is the ideal in & (F) of functions vanishing in a neighbor-
hood of F.

The starting point of our discussion is the following result [5, Theo-
rem 1]

ProrosiTiON. If v is a homomorphism of Cy(X) then there is a finite
set of points, F in X and a constant M such that
@)l = Mlgll  for all g€ Z(F).

Applying the method of proof from [1, Theorem 4.1] to this result we
easily obtain

LeMMmA 1. Let v be a homomorphism of Cy(X) (into a Banach algebra).
Let F be the singularity set in the sense of the above. Then v is continuous
on the dense subalgebra H (F)nCyX).

Another extension to the locally compact case is contained in
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Lemma 2. Let v be a homomorphism of Cy(X) into a commutative Banach
algebra B and let R be the radical of v(Co(X)). Let u and 2 be the continuous
and singular parts of v. Then

(a) The range of p is closed in B and

WCo(X)) = p(Co(X))@R

where @ denotes topological direct sum.

(b) B=ACo(X)).

Proor. The argument is similar to that employed in [1, Theorem 4.3]:

Let K={fe CyX); u(f)=0}. Since u is continuous K is a closed
ideal in Cy(X) and since Cy(X) is a closed ideal in C(fX), K is a closed
ideal in C(BX). (Let g€ K, let fe C(fX) and let e, be an approximate
identity for Cy(X). Then limfge,=fg since fge Cy(X); moreover fe, e
Cy(X), g € K implies fge, € K, that is, fg € K). This means there is a
closed set L< X such that K={fe C(fX); f(L)=0}. It is known that
C(BX)/K, provided with the quotient norm |- || is isometrically isomorphic
with C(L). Consequently, Cy(X)/K is isometrically isomorphic with
Co(XnL). Since u(f) is constant on the coset f+ K we may also norm
Co(X)/K by

F+E| = (-

IF+ Kl = |f+ K| feCyX),

By [3]

and since |f+ K|=|u(f)||=C|f] for every f in Cy(X) it follows that the
quotient norm and || are equivalent. The rest of the proof proceeds
exactly as in [1].

Let x, be a singularity point for » in the sense of Slobko (that is,
z, € fX) and let Z(x,) be the set of functions in Cy(X) that vanish on
some open neighborhood of x,. Then corresponding to [5, Lemma 3] we
have \

LeMMA 3. Let v be a discontinuous homomorphism of Cy(X), X locally
compact and let x, be a singularity point. Then v induces a non-zero algebra
semi-norm on Co(X)|Z(x,).

Proor. Choose a function % in C(BX) such that A=1 in some neigh-
borhood of z, and =0 in a neighborhood of every other singularity point
of ». Define
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V() = »(fR)

for all f e Cy(X). Then »’ has only one singularity point, x,. Let ¢ and A
be the continuous and singular parts of +', respectively. Let ~ denote the
canonical mapping Cy(X) - Cy(X)/Z(x,) and define

p(x) = inf{|p'(s)l| ; &=}

for every x € Cy(X)/Z(x,). It is elementary to show that p is an algebra
semi-norm. It remains to see that p is non-zero. If p=0 then »'(Z(z,))
is dense in v'(Cy(X)), and since u(Co(X)) 2u(Z(x,)) =7'(Z(x,)) by Lemma
1 we conclude that u(Cy(X)) is dense in »'(Cy(X)). By Lemma 2 this im-
plies that R={0} and hence that 1=0, contradicting the discontinuity
of »' and of ».

We are now ready to state and prove the main result

TaroreM. Let @ be a locally compact abelian grouwp with dual group Q.
If Cy(G) admits a discontinuous homorphism then so does L\(Q).

Proor. Let z, be a singularity point of the discontinuous homomor-
phism », let p be the algebra-semi-norm on 00(@)/Z(x0) (Lemma 3) and
y: LN(G) - C4(G) be the Gelfand transform. We shall show that if ~ is
the canonical mapping Oo(G) — (Cy(@)/Z(x,), p) then ~ oy is discontinuous.
Choose fe Cy(@) such that p(f)>0. By [2] we can find h e LY(G) and
g€ Cy(@) such that f=y(h)g. Consequently, since p(f) < p(y(R)7) p(@),
p(y(h)7)>0.

At this point we shall consider first the possibility that z, e BANG.
In this case [4, 2.6.6] applies, that is, given ¢>0 we can find k € LY(G)
such that p(k)e L({x,}) and such that |k—Ek«k|,<e. Since y(h) =
y(h)” —y(h) y(k)", this proves the discontinuity of “oy in case x, € A\ G.

If x,€ G we shall again invoke the factorization theorem of [2], but
this time we apply it to

W = {feLXG); y(f)(x)=0}.
To see that the theorem applies, let
X ={fe Co(@) 5 f () =0}
and let ¢: W — B(X) be defined in the canonical way

o(f)g) = y(flg feW,geX.

By [4, 2.6.4] W is the closed linear span of functions vanishing in
a neighborhood of z,. Consequently, by [2] we get that WX is closed
in X. It is no problem to check the density of W-X in X ; consequently,
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we have the needed result: given f e Cy(G) such that f(x,)=0, there is
h € LY(@) with y(h)(z,)=0and g € C’o(@) with g(x,) = 0 such that f=9y(h)g.

The argument is now quite similar to the first case: if fe Cy(@) and
p(f) >0 then there is no loss of generality in assuming that f(z,)=0.
If this is not the case, consider an » with compact support satisfying

h=1 in a neighborhood of x, Then

[ = F=F(@)h+f(xo)h

and if p((f—f(xe)k)”) =0 then +'(f—f(xo)k) € u(Co(@)). But since k=1 in
a neighborhood of z,, we have »(f(xo)h) € u(Co(G)), yielding the con-
tinuity of . So we can assume the existence of f e Cy(G) with f(x,)=0
and p(f)>0. By the above remarks this means there is an h e LY(Q)
with y(h)(z,)=0 and p(y(h)") > 0. Again by [4, 2.6.4], given ¢>0 we can
find k € L*(G) such that

-kl < &
and

y(k) € Z(zy) ,
that is,

p(y(R)" —y(&)") = p(y(R)") > 0

and this proves the discontinuity of “oy in the second case.
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