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INVARIANT STATES OF VON NEUMANN ALGEBRAS

ERLING STORMER

In a recent paper Yeadon [10] has shown that the existence of a trace
in a finite von Neumann algebra is a consequence of the Ryll-Nardzewski
fixed point theorem. In the present note we shall formulate his ideas
in the more general setting of groups of *-automorphisms of a von Neu-
mann algebra, and then study the problem of existence of normal in-
variant states. The main result states that there are “‘enough” normal
invariant states (viz. the von Neumann algebra is G-finite) if and only
if the automorphism group is relatively compact in a topology described
below.

If # is a von Neumann algebra we denote by £ (%) the space of
bounded linear maps of & into itself. Z,(#) denotes the ultraweakly
continuous maps in Z(#). We give F(#) the weak-operator topology
defined by Kadison [7]. This topology is defined as the point-open
topology, where Z is given the weak topology. We then let £, (%) have
the relative topology from #(#). As a consequence of the Tychonoff
theorem it was shown in [7] that the unit ball in £ (%) is weak-operator
compact. If G is a group of *-automorphisms of # then G<.Z, (%)
[2, p. 57]. A von Neumann algebra & is said to be G-finite if the normal
G-invariant states separate £+, that is, if 4 is a non zero positive opera-
tor in & then there is a normal G-invariant state ¢ such that g(4)=%0.
We denote by Z¢ the fixed points of G in #. It should be remarked that
the results in this note can easily be extended to groups of identity
preserving isometries of #.

Lrvmma. Let # be a von Neumann algebra and G a group of *-auto-
morphisms of #. Let w be a normal state of #. Then there exists a normal
G-invariant state ¢ of X such that o | % = w | A% if and only if for each in-
finite orthogonal sequence {P,} of projections in # we have lim, w(g(P,))=0
uniformly for g € Q.

Proor. Suppose there is a normal G-invariant state ¢ of # such that
0| ZC=w|A%. Let {P,} be an orthogonal sequence of projections in Z.
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If lim,w(g(P,)) is not uniformly zero for g in @, we can find £>0, a
sequence {g,,} in @ and a subsequence {P,} of {P,} such that
o(gp(Pr))2€ for m=1,2,.... Now

Ze(Pp) = o(XPy) = o) =1,
80

hmm@(gm(Pm)) = lim,,o(P,) = 0.

Since p is G-invariant, its support E lies in Z¢. Therefore w(E)=o(E)=1,
so E = support w. Hence lim,, w(g,,(P,,)) =0 by [2, p. 62], a contradiction.

Conversely, suppose lim, w(g(P,))=0 uniformly in @ for each infinite
orthogonal sequence {P,} of projections in #. Let K={wog:ge G}.
By a theorem of Akemann [1, Thm. IT,2] K is a weakly relatively com-
pact subset of the predual %, of #. Let  be the norm closed convex
hull in %, of K. Since @ is convex, it is weakly closed, hence weakly
compact [4, V.6.4]. By the Ryll-Nardzewski theorem [9], or [5], applied
to the Banach space %,, the weakly compact convex set ¢, and the
group 7 — 7og of affine isometries of ), there is a fixed point ¢ of @ in Q.
Note that if 4 € Z¢ and o’'=3}_;A,wog, € @, then w’'(4)=w(4), hence
by continuity, o'(4)=w(4) for all o’ € Q. In particular g|%%=w|%EC.
The proof is complete.

At this point we pause to prove a result, which when both #Z and G
are abelian, is a well-known result in ergodic theory due to Markov, see
[6, 4.8.7].

CoROLLARY. Let Z be a von Neumann algebra and G a group of *-auto-
morphisms. Suppose w ts a faithful normal state of #. Then there exists
a faithful normal G-invariant state of % if and only if given >0 we can
find 6> 0 such that if E is a projection in X with w(E) <6, then w(g(E)) <¢
for all geG.

Proor. Suppose p is a faithful normal G-invariant state of %Z. If the
conditions in the corollary are not satisfied we can find ¢> 0, a sequence
{E,} of projections in % such that w(Z,) - 0, and a sequence {g,} in G
such that w(g,(E,)) =& But since w is faithful, o(E,) - 0 by [2, p. 62],
hence

Since g is faithful, another application of [2, p. 62] shows w(g,(P,)) = 0,
a contradiction.

Conversely, suppose given ¢>0 we can find 6 >0 such that if F is a
projection in # with w(E)<d, then w(g(E))<e for all g€ G. Let {P,}
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be an infinite orthogonal sequence of projections in #. Then w(P,) — 0.
Let ¢>0 be given and choose d>0 as above. Choose n, such that if
n 2 n, then w(P,) < 4. But then w(g(P,)) < & for n = ny, so that w(g(P,))—>0
uniformly in @. By the lemma there is a normal G-invariant state g of
Z such that o | #9=w|Z%. As pointed out in the proof of the lemma the
support of ¢ majorizes that of w. Since w is faithful, the support of p
is the identity, hence g is faithful.

THEOREM. Let # be a von Neumann algebra and G a group of *-auto-
morphisms of Z. Then Z is G-finite if and only if G s relatively compaci
in the relative weak-operator topology on L ().

Proor. Suppose Z is G-finite. Let {g,} be a net of automorphisms
in ¢. We have to show that this net has a subnet which converges in
the weak-operator topology to a map in Z,(%). Since G is contained
in the unit ball in #(#), which is weak-operator compact [7], there is
a subnet {gs} which converges to a positive linear map ¢ in £ (%) such
that ¢(I)=1, see [7]. In order to show ¢ € L, (%) it suffices to show that
if w is a normal state of # then so is wop. Let

K = {wog : geG}.

Then wogp is in the w*-closure of K. Since & is G-finite, there is a faith-
ful normal G-invariant projection map @ of # onto %%, and every normal
G-invariant state of # is of the form g=g|Z% ® (see [8] or [3]). In
particular, p=w| %% @ satisfies the condition in the lemma, so by the
lemma and the theorem of Akemann [1] referred to there the set K is
weakly relatively compact in %,. Therefore the w*-closure of K is con-
tained in %,, hence wog is normal. Therefore ¢ € £ (%), and G is rela-
tively compact.

Conversely, assume @ is relatively compact in the relative weak-
operator topology on #,(#). Let w be a normal state of %#. Then
K ={wog : g € G} is weakly relatively compact in %, . Indeed, if {wog,}
is a net in K converging to a state p in the w*-topology, we can choose
a subnet {gs} of {g,} converging in the weak-operator topology to
P € L4(Z). Then wogs - wop, hence p=wogp is a normal state, and
K is weakly relatively compact. From the lemma and its proof # is
G-finite.

CoroLLARY. Let # be a von Neumann algebra. Let G be a group of
*-automorhisms of X leaving the center of & element-wise fized and con-
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taining the group of inner automorphisms. Then Z is finite if and only if
G is relatively compact in the relative weak-operator topology on £ ().

Proor. Z is finite if and only if there exists a unique faithful normal
center valued trace on Z [2, pp. 267, 319], hence by uniqueness, if and
only if there is a unique normal G-invariant projection of % onto its
center, if and only if % is G-finite [8], hence by the theorem, if and
only if @ is weakly relatively compact.
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