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SUBLINEARITY AND CONVEXITY ON THE
GRASSMANN CONE G}

B. B. PHADKE

1. Introduction.

Let K be a convex body in E” and denote by ﬁ(K, R) the r-dimen-
sional volume of the orthogonal projection of K on the r-flat % through
the origin parallel to the simple r-vector R. Minkowski [4] proved that
the function f(R)=|R)| P(K,R) is a convex function of R when r=1
or n—1. To study the analoguous problem for the general case, when
l<r<n—1, the very concept of convexity needs clarification since in
this case the space of simple r-vectors is not a linear space. This im-
portant topic is studied by H. Busemann, in conjunction with others,
in a series of papers; see [2] for a survey of the results. The most im-
portant problems of the theory involve the relationships among the
various concepts of convexity of functions defined on non-convex sets
such as the Grassmann cone of simple r-vectors.

To formulate precisely the result of this note we denote by G," the
Grassmann cone of simple r-vectors in the rth exterior power V,”» of
the n-dimensional real linear space A”. A real valued function f defined
on (,* is said to be positive homogeneous if f(AR)=Af(R) for A=0 and
fis said to be sublinear of order & if f(R) < 3*1,f(R;) whenever R=3*1 R,,
2;20,32;=1. (We denote the simple r-vectors by R,S,... and ar-
bitrary r-vectors by R,S,....) If f can be extended to a convex function
defined on the entire linear space V,* we simply say that f is convex.
Following H. Busemann (see [3] p. 100) define o,” to be the smallest
integer such that sublinearity of order o,” implies convexity of f. Buse-
mann proved, as an application of his more general theory of sublinear
functions defined on general nonconvex sets, that

n
o" £ gt = (r)—max(r,n—r)

and he conjectured that o,” <g,”, see corollary 4, theorem 4 and page 100
of [3]. In this note we show that
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0t =3<4=g".

Our proof that 0,2 =3 makes use of the Pliicker relation for the simplicity
of vectors in V% Since in the general case the number of Pliicker rela-
tions is greater than one, an analoguous analysis in the general case
would be quite complicated. The interest in the case when r=2 and
n=4 is due to the relation of this result to the important open problem
referred to above, namely, whether the weak convexity implies the
polyhedron inequality or the polyhedron inequality implies the con-
vexity; see [2] for the definition of these convexity conditions. Our
result reduces the second half of this problem, for two dimensional
polyhedra in the four dimensional space, to the following: Does the
polyhedron inequality imply sublinearity of order 3?

2. The proof.

The results in [3, theorem 4, corollary 4, p.100], and [1, p. 213],
imply that 2 <0, <4. Thus to show that 0,*=3 it suffices to prove the
following theorem.

THEOREM. If a positive homogeneous function f defined on G, is sub-
linear of order 3, then it is convex.

The proof of this theorem is based on the following two lemmas.

LeMMA 1. Let 049, 013, O3, Og4, 014, O34 be six nomzero real numbers such
that their sum o, say, is zero. Then there exist distinct 4, §, k such that

0 < —oyflogtoz) = 1.

Proor. Since ¢=0, not all the sums oy =0;+044 0,y can be
negative and hence we may assume without loss of generality that
K193 =015+ O+ 0,32 0. If at least one of the numbers oy, 045, 03, 52y
04, is <0, then we are done; because in that case we have

0< —oy/lopton) =1,
with {7,5,k}={1,2,3} and k #¢,j. Consequently assume that

019, Oy3, T3 > 0.

Since o =0, we conclude that o), + 0y, + 034 <0. If s € {1,2,3} and ;4> 0,
then we have 0< —o;/(0j3+03) <1, with ¢4j,k and j,ke{1,2,3}.
Thus it suffices to consider the case when o, 043,073 > 0 and oy4, a4, 034 < 0.
In this case write f;;=0y+0;4+0y,, 9,j=1,2,3. Since

B = Prat+PistBas = 0+ 0 +0y+03 <0,
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not all the §;; can be nonnegative. Hence for a pair ¢,j we have §,;<0.
Then 0< —oy/(054+0j4) <1, since o;;>0 and 044,054 <0. Thus lemma 1
is proved in all the cases.

We denote the co-ordinates of 2-vectors R by

R = (Pij) = (Psa> Pazs Pess P12 Prs Pra) -
For R=(p,;) and §=(g;;) we write

G(R’ 8) = P1alss+ P13as + Posia+ Pralos + Paadaz+ Partis -

The necessary and sufficient condition that U is simple is that o(T, T') =0,
see [5, pp. 245, 247]. With this notation we state lemma 2.

Lemma 2. If R,;, 1=1,2,3, are simple vectors, then Ri+ R,+xR; is
simple if 013+ 093 +0 and x= —0y,/(013+ 0p3) Where o;;=0(R;, R;).

Proor. Since R; are simple, o,;=0. Hence with R=R,+R,+0oR,
we have o(R, R)=2[«x(0y3+0y3)+0y5]. Hence when o3+ 053 +0 and
a= —015/(013+ 043) We have o(R, R)=0. This implies that R is simple
as observed above.

We return to the proof of the theorem stated above. In view of
Busemann’s result [3, Theorem 4, Corollary 4], it suffices to show that
R=R,+R,+R;+R,, R;+ E;+ R, nonsimple unless ¢=j=k, implies
F(R)SZ_.f(R;). (We use here the fact that f is positive homogeneous.)
Since R is simple, we have

o = o(R,R) = Zg,j=1 0; =0,

where o;;=0(R;, R;) +0. Hence we can use lemmas 1 and 2 and taking
,7,k=1,2,3 in lemma 1, we can write

R = (B+ Ry+0R3)+(1-0)R;+ R,
such that 0<6<1, and R, + R,+ 0R, is simple. Consequently
J(B) = 31F(Ry)
using the sublinearity of order 3 and the equation
F(By) = f(OR;)+f([1— 6]Rs)

obtained from the positive homogeneity of f and the fact that 1>0>0.
This proves the theorem and hence 0,t=3.
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