GROUP EXTENSIONS AND PRINCIPAL FIBRATIONS

L. L. LARMORE and E. THOMAS*

1. Introduction.

We consider in this paper the following extension problem. Suppose we have a principal fibration

$$\Omega C \xrightarrow{i} E \xrightarrow{\pi} B$$

with classifying map $\theta: B \to C$. One then has an extended sequence of fibrations

$$\ldots \to \Omega^{m+1}C \xrightarrow{m_i} \Omega^m E \xrightarrow{m_n} \Omega^m B \to \ldots B \xrightarrow{\theta} C.$$

(For any map f we write ${}^m f = \Omega^m f$, $m \ge 1$.) Given a space X a standard problem in topology is to compute the group $[X, \Omega^m E]$. We have the exact sequence

$$(1.1) e: 0 \to (\operatorname{Coker}^{m+1}\theta_{\star}) \to [X, \Omega^m E] \to (\operatorname{Ker}^m\theta_{\star}) \to 0,$$

and our problem is:

PROBLEM 1. Compute the extension e.

Note, in particular, that if B and C are products of Eilenberg-MacLane spaces, then E (and hence $\Omega^m E$) is a 2-stage Postnikov system.

We assume now that all the groups in (1.1) are abelian — e.g., take m>1, or take m=1 with B,C loop spaces and θ a loop map. If $\operatorname{Ker}^m\theta_*$ is finitely generated, it is known (see section 5) that the extension e is completely determined by a set of homomorphisms $\Phi(p,k)$, defined for each prime p and positive integer k. Here

$$\Phi(p,k)\colon (\mathrm{Ker}^m\theta_*)\cap (\text{elements of order }p^k)\to \\ (\mathrm{Coker}^{m+1}\theta_*)/p^k(\mathrm{Coker}^{m+1}\theta_*)\,,$$

Received January 25, 1971.

^{*} Research supported by a grant from the U.S. National Science Foundation. A preliminary version of the paper appeared in the Proceedings of the Advanced Study Institute on Algebraic Topology, Matematisk Institut, Aarhus University, 1970, pp. 588-598.

and is defined as follows. Let u be an element in $[X, \Omega^m B]$ such that ${}^m\theta_* u = 0$, $p^k u = 0$. Choose v in $[X, \Omega^m E]$ such that ${}^m\pi_*(v) = u$. Then, ${}^m\pi_*(p^k v) = 0$, and so there is a class w in Cokernel ${}^{m+1}\theta_*$ such that ${}^mj_*(w) = p^k v$. Set

$$\Phi(p,k)(u) = w \mod p^k(\operatorname{Coker}^{m+1}\theta_*)$$
.

Thus we have

PROBLEM 2. Compute the operations $\Phi(p,k)$.

In sections 2 and 3 we give a solution to this problem for the case E is a 2-stage Postnikov system. In section 4 we illustrate our theory with three examples: stable cohomotopy, complex K-theory, and immersion groups for manifolds.

Remark. We emphasize that we consider here only abelian group extensions. In a subsequent paper we will develop an analogous theory for non-abelian, central extensions. This corresponds in (1.1) to taking m=1, B and C loop spaces, but θ not a loop map.

2. Functional operations.

The morphism Φ , defined in section 1, is an example of a functional operation. In general, consider the following commutative diagram of Abelian groups and homomorphisms; we assume that each row is exact:

$$(2.1) B_1 \xrightarrow{j_1} C_1 \xrightarrow{k_1} D_1 \xrightarrow{l_1} E_1$$

$$\downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta}$$

$$A_2 \xrightarrow{i_2} B_2 \xrightarrow{j_2} C_2 \xrightarrow{k_2} D_2.$$

Define

$$\Phi \colon \operatorname{Ker} \delta \cap \operatorname{Ker} l_1 \to B_2/i_2A_2 + \beta B_1$$

by

$$\Phi = j_2^{-1} \circ \gamma \circ k_1^{-1}.$$

Following Steenrod [13] we call Φ the functional operation at D_1 associated with (2.1). Note that the operation $\Phi(p,k)$ in section 1, fits into this context by taking β, γ, δ to be multiplication by p^k .

For use in subsequent papers it is desirable to consider a slightly more general version of a functional operation. That is, in diagram (2.1) we now no longer assume that C_1, C_2 are abelian, and we drop the requirement that γ be a homomorphism. We simply require that, for $b \in B_1$, $c \in C_1$,

$$(2.3) \gamma(j_1(b)c) = j_2(\beta(b))\gamma(c).$$

Definition (2.2) continues to make sense, and one easily checks that Φ continues to have the same indeterminacy.

We now consider a geometric setting in which one has two functional operations, which we will show are equal.

Suppose we are given a cofibration sequence

$$(2.4) S \xrightarrow{\gamma} Q \xrightarrow{\delta} P \xrightarrow{\varrho} \Sigma S \to \Sigma Q \to \dots,$$

where P is the cofiber of γ , and Σ denotes (reduced) suspension. We assume that S and Q are themselves suspensions, though γ is *not* assumed to be the suspension of a map.

We work in the category of pointed spaces and maps.

For spaces X, Y let Y^X denote the function space of (pointed) maps with the compact-open topology. Using (2.4) in conjunction with the fibration

$$\Omega C \xrightarrow{i} E \xrightarrow{\pi} B$$
.

given in section 1, we obtain the following commutative diagram; each long column is a fibration sequence, as is each long row (by Borsuk [11; section 2.8.2]).

(2.5)
$$(\Omega E)^{S} \downarrow^{(1_{\theta})^{S}} \downarrow^{(1_{\theta})^{S}} \downarrow^{(1_{\theta})^{S}} \downarrow^{(2_{\theta})^{S}} \downarrow^{iQ} \downarrow^{iS} \downarrow^{iQ} \downarrow^{iQ} \downarrow^{iS} \downarrow^{iQ} \downarrow^{i$$

(By an abuse of notation, if $f: K \to L$ we also write $f: Y^L \to Y^K$ for the induced map on function spaces.)

We now assume that B and C are loop spaces, but θ is not assumed to be a loop map. Applying the functor $[X, \cdot]$ to diagram (2.5) we obtain a commutative diagram of groups, Fig. 1, where each long row and

column is exact. Moreover, all groups are abelian except $[X, E^Q]$, $[X, E^S]$, $[X, B^P]$, $[X, C^P]$. Finally, all maps in the diagram are homomorphisms except

$$\gamma_*\colon \ [X,E^Q] \to [X,E^S], \qquad \theta_*{}^P\colon \ [X,B^P] \to [X,C^P] \;.$$

However, one can easily check that these two morphisms enjoy property (2.3). Thus the two rows and the two columns in Fig. 1 are examples

Figure 1.

$$[X \land S, \Omega B]$$

$$[X \land Q, \Omega C] \xrightarrow{(1 \land \gamma) \cdot *} [X \land S, \Omega C]$$

$$\downarrow i_* \qquad \qquad \downarrow i_*$$

$$[X \land Q, E] \xrightarrow{(1 \land \gamma) \cdot *} [X \land S, E]$$

$$\downarrow \pi_* \qquad \qquad \downarrow \pi_*$$

$$[X \land \Sigma S, B] \xrightarrow{(1 \land Q) \cdot *} [X \land P, B] \xrightarrow{(1 \land \delta) \cdot *} [X \land Q, B] \xrightarrow{(1 \land \gamma) \cdot *} [X \land S, B]$$

$$\downarrow \theta_* \qquad \qquad \downarrow \theta_* \qquad \qquad \downarrow \theta_*$$

$$[X \land \Sigma Q, C] \xrightarrow{(1 \land \Sigma \gamma) \cdot *} [X \land \Sigma S, C] \xrightarrow{(1 \land Q) \cdot *} [X \land P, C] \xrightarrow{(1 \land \delta) \cdot *} [X \land Q, C] .$$

Figure 2.

of (2.1), in the more general setting described prior to (2.3), and so if we set

$$K(\theta^Q, \gamma) = \operatorname{Ker} \gamma_* \cap \operatorname{Ker} (\theta^Q)_* \subset [X, B^Q]$$
,

by (2.2) we obtain two functional operations, each based at $[X, B^Q]$:

$$\begin{split} & \varPhi_1 \colon \ K(\theta^Q, \gamma) \to [X, (\Omega C)^S]/\gamma_*[X, (\Omega C)^Q] + (^1\theta)^S_*[X, (\Omega B)^S] \text{ ,} \\ & \varPhi_2 \colon \ K(\theta^Q, \gamma) \to [X, C^{\Sigma S}]/(\Sigma \gamma)_*[X, C^{\Sigma Q}] + (\theta^{\Sigma S})_*[X, B^{\Sigma S}] \text{ .} \end{split}$$

Now for any space Y, $Y^{\Sigma S} \equiv (\Omega Y)^S$, and so we may identify $[X, Y^{\Sigma S}] = [X, (\Omega Y)^S]$. With this identification we have:

Theorem 2.5. $\Phi_1 = \Phi_2$.

We shall prove this shortly, but first we relate the theorem to the material given in section 1.

Let $S = Q = S^1$, the 1-sphere, and define $\gamma \colon S \to S$ to be a map of degree p^k . Then P(=P(k)), the cofibre of γ , is the space $S^1 \cup_{p^k} e^2$. If we assume that θ is a loop map, then $\Phi_1 = \Phi(p,k)$ as defined in section 1; we will solve problem 2 by computing the operation Φ_2 .

PROOF OF THEOREM 2.5. Let X, Y, Z be spaces with basepoint. One has a natural transformation, the adjoint,

$$a: [X, Y^Z] \leftrightarrow [X \land Z, Y],$$

which gives a 1-1 correspondence between the two sets. Applying a to every group in Fig. 1, we obtain Fig. 2, again a commutative diagram with exact rows and columns. The operations Φ_1, Φ_2 go over to operations Φ_1, Φ_2 based at $[X \land Q, B]$. Moreover, using a,

$$[X \wedge \Sigma S, C] = [X \wedge S, \Omega C].$$

To prove Theorem 2.5 we show that, with the above identification, $\tilde{\Phi}_1 = \tilde{\Phi}_2$.

Let u be a class in $[X \wedge Q, B]$ such that $(1 \wedge \gamma)_* u = 0$ and $\theta_* u = 0$; that is, u is in the domain of $\tilde{\Phi}_1$ and $\tilde{\Phi}_2$. Consider the following sequence of spaces and maps:

$$(2.6) X \wedge S \xrightarrow{1 \wedge \gamma} X \wedge Q \xrightarrow{u} B \xrightarrow{\theta} C.$$

Notice that, by hypothesis, the compositions $u \circ (1 \wedge \gamma)$ and $\theta \circ u$ are null-homotopic. But this is precisely the situation considered by Spanier in [12], and so one can associate with (2.6), elements

$$\varphi_1 \in [X \land S, \Omega C]/(1 \land \gamma)_*[X \land Q, \Omega C] + (1\theta)_*[X \land S, \Omega B]$$
,

and

$$\varphi_2 \in [X \land \Sigma S, C]/(1 \land \Sigma \gamma)^*[X \land \Sigma Q, C] + \theta_*[X \land \Sigma S, B] .$$

Moreover, as remarked in [12], the adjoint carries φ_1 to φ_2 . But by the definition given by Spanier [12],

$$\varphi_1 = \tilde{\Phi}_1(u), \quad \varphi_2 = \tilde{\Phi}_2(u),$$

and so, $\tilde{\Phi}_1 = \tilde{\Phi}_2$, as claimed.

Remark. Theorem 2.5 is related to work of Peterson [9], [10].

3. The functor P.

For the rest of the paper we restrict attention to the cofibration

$$S \xrightarrow{\gamma} S \xrightarrow{\delta} P \xrightarrow{\varrho} S^2 \to \dots$$

where $S = S^1$ and γ is a map of degree p^k , p a fixed prime, k > 0. Our goal is to compute the operation

$$\varPhi_2 = \varrho_*^{-1} \circ \theta^P_* \circ \delta_*^{-1} \; ,$$

(see Fig. 1). Now in applications we presume that δ_* and ϱ_* are known, and so to compute Φ_2 we need only know the operation

$$\theta^{P}_{*}: [X, B^{P}] \rightarrow [X, C^{P}].$$

In this section we compute this operation, assuming that B and C are products of Eilenberg-MacLane spaces and θ a loop map.

We think of P as a contravariant functor

$$X \to X^P$$
, $f \to f^P$.

Notice that $(X_1 \times X_2)^P = X_1^P \times X_2^P$, and so if X is an H-space, so is X^P . Moreover, if X is an H-space, and if $\alpha_i \colon B \to X$ are given for i = 1, 2, with $\alpha = \alpha_1 + \alpha_2 \colon B \to X$, we then have $\alpha^P = \alpha_1^P + \alpha_2^P$. If $B = K_1 \times \ldots \times K_r$, C is an H-space, and $\theta \colon B \to C$ has the property that

$$\theta = \sum_{i=1}^r \theta_i \circ \pi_i ,$$

where $\theta_i : K_i \to C$ and π_i is the projection of B onto K_i , then

$$\theta^P = \sum_i \theta_i{}^P {\circ} \pi_i{}^P \,,$$

and so to compute θ^P we need only compute each θ_i^P .

Suppose, finally, that B and C are finite products of Eilenberg-Mac-Lane spaces (each with cyclic homotopy group) and θ a stable map, in the sense that it can be delooped. Then θ has property (*) above, and so to compute θ^P we need only consider the case

$$\theta: K(G,q) \to K(\Lambda,r)$$
,

where G and Λ are cyclic groups.

Now any such operation is formed by adding together compositions of the following operations:

- (1) elements of the mod p Steenrod algebra, ℓ_p .
- (2) the Bockstein homomorphism $\delta_k,\ k \ge 1$, associated with the exact sequence

$$Z \rightarrow Z \rightarrow Z_{nk}$$
.

(3) coefficient homomorphisms.

Since $(\theta_1 \circ \theta_2)^P = \theta_1^P \circ \theta_2^P$, we need compute θ^P only for θ an operation of the above types. For simplicity we will do out only type (1) together with the Bockstein $\delta_1(=\delta)$ and the coefficient homomorphism $\varrho_1(=\varrho)$, where in general ϱ_k is induced by the canonical epimorphism $Z \to Z_{p^k}$, $k \ge 1$.

The space $K(\pi,n)^P$, $\pi = \mathbb{Z}$ or \mathbb{Z}_n , P = P(k):

We adopt the following notation: $\iota_n \in H^n(K(\pi, n); \pi)$ and $s_i \in H^i(S^i; \mathbb{Z})$, i = 1, 2, will denote fundamental classes. We choose generators $e_i \in H^i(P; \mathbb{Z}_{p^k})$, i = 1, 2, by requiring that

$$\delta^* e_1 = s_1 \mod p^k, \quad \varrho^* (s_2 \mod p^k) = e_2.$$

Note that $\beta_k(e_1) = e_2$, where β_k is the Bockstein coboundary associated with the exact sequence $Z_{p^k} \to Z_{p^{2k}} \to Z_{p^k}$.

Let $f_{n,i}$: $K(\pi, n-i) \to K(\pi, n)^{S^i}$, i=1,2, denote the homotopy equivalence whose adjoint

$$f'_{n,i} \colon K(\pi, n-i) \wedge S^i \to K(\pi, n)$$

is given by

$$(f'_{n,i})^*\iota_n = \iota_{n-i} \otimes s_i$$
.

In a similar fashion we describe $K(\pi,r)^P$ by taking adjoints. Set

$$K_n \, = \, K(\mathsf{Z}_p, n), \ K^{\displaystyle *}_n \, = \, K(\mathsf{Z}, n), \ K^{\displaystyle k}_n \, = \, K(\mathsf{Z}_{p^k}, n), \quad k \, {>} \, 1, \ n \, {\ge} \, 3 \ .$$

Define $f'_n: (K_{n-2} \times K_{n-1}) \wedge P \to K_n$ by

$$(3.1) f'_n * \iota_n = (\iota_{n-2} \otimes 1) \otimes e_2 + (1 \otimes \iota_{n-1}) \otimes e_1,$$

and define

$$g'_n\colon \ K^k_{n-2} \wedge P \to K^*_n$$
 by
$$g'_n * \iota_n = \delta_k(\iota_{n-2} \otimes e_1) \ .$$

PROPOSITION 3.3. Let f_n denote the adjoint of f'_n and g_n the adjoint of g'_n ; that is,

$$f_n\colon \ K_{n-2}\times K_{n-1}\to K_n{}^P,\quad g_n\colon \ K^k{}_{n-2}\to K^*{}_n{}^P\;.$$

Then, f_n and g_n are homotopy equivalences.

PROOF. Consider the following diagram, where i denotes inclusion and r projection. Note that each row is a fibre sequence.

CLAIM. The above diagram homotopy-commutes.

Assuming this the proof of 3.3 follows at once (for f_n), by applying the 5-lemma to the corresponding diagram of homotopy groups.

The extreme squares in the diagram are obviously commutative, since here the horizontal maps are simply multiplication by p^k . The (homotopy) commutativity of the middle squares follows at once from the (homotopy) commutativity of the following diagram, using the fact that $(f_n \circ i)' = f'_n \circ (i \wedge 1)$, etc. We leave the details to the reader.

$$\begin{array}{c|c} K_{n-2} \wedge P & \xrightarrow{-1 \wedge \varrho} & K_{n-2} \wedge S^2 \\ \downarrow^{i \wedge 1} & & \downarrow^{f' n, 2} \\ (K_{n-2} \times K_{n-1}) \wedge P & \xrightarrow{f' n} & K_n \\ \uparrow^{f' n, 1} & & \uparrow^{f' n, 1} \\ (K_{n-2} \times K_{n-1}) \wedge S & \xrightarrow{r \wedge 1} & K_{n-1} \wedge S \end{array}$$

The proof that g_n is a homotopy equivalence is similar and is omitted.

The morphism ε .

Let p be a fixed prime (≥ 2) and let ℓ denote the mod p Steenrod alge-

bra. We define a morphism $\varepsilon: \hat{u} \to \hat{u}$ of degree -1 which will be used to compute θ^{P} .

Recall that ℓ is a Hopf algebra with diagonal map, say, $\psi \colon \ell \to \ell \otimes \ell$. Given $\alpha \in \ell$ define α_1 by the equation

$$\psi(\alpha) = \alpha \otimes 1 + \alpha_1 \otimes \beta_1 + \ldots,$$

and define $\varepsilon: \mathcal{A} \to \mathcal{A}$ by the rule

(3.4)
$$\alpha \mapsto (-1)^{n+1}\alpha_1, \quad n = \deg \alpha.$$

Proposition 3.5. ϵ is characterized by the following properties:

(i)
$$\varepsilon(\alpha_1\alpha_2) = \varepsilon(\alpha_1)\alpha_2 + (-1)^d\alpha_1\varepsilon(\alpha_2)$$
, $d = \text{degree } \alpha_1$.

(ii) If
$$p=2$$
, then $\varepsilon(\operatorname{Sq}^n)=\operatorname{Sq}^{n-1}$, $n\geq 1$.
If $p>2$, then $\varepsilon(\beta_1)=1$, $\varepsilon(P^i)=0$, $i\geq 0$.

The proof follows at once from the fact that ψ is an algebra morphism. Note that for p=2, ε is the map \varkappa considered by Kristensen [4]. For convenience we will write $\varepsilon \alpha = \tilde{\alpha}$ for an element $\alpha \in \mathcal{C}$.

Computation of θ^{P} .

Suppose that a (stable) operation $\theta: K(G,q) \to K(\Lambda,r)$ is given. We now compute the operation

$$\theta^P$$
: $K(G,q)^P \to K(\Lambda,r)^P$

in the following cases:

I.
$$G = \Lambda = Z_p$$
, $\theta \in \mathcal{U}$,

II.
$$G = Z$$
, $\Lambda = Z_p$, $\theta = \varrho$,

III.
$$G = Z_p$$
, $\Lambda = Z$, $\theta = \delta$.

If $\Lambda = \mathbb{Z}_p$, then $K(\Lambda, r)^P \equiv K_{r-2} \times K_{r-1}$, and so θ^P is a 2-valued operation. If u is in domain θ^P , we write

$$[\theta^P(u)_{r-2},\theta^P(u)_{r-1}]$$
 ,

for the two values of the operation. Also, if $G = \mathbb{Z}_p$, then $K(G,q)^P \equiv K_{q-2} \otimes K_{q-1}$, and we compute the values of θ^P on the two fundamental classes $\iota_{q-2} \otimes 1$ and $1 \otimes \iota_{q-1}$.

Theorem 3.6. Case I. $G = \Lambda = Z_p$, $\theta \in \mathcal{U}$. Then,

$$\begin{array}{l} \theta^{P}(\iota_{q-2} \otimes 1) \, = \, \left[(\theta \, \iota_{q-2} \otimes 1)_{r-2}, \, (0)_{r-1} \right] \, , \\ \theta^{P}(1 \otimes \iota_{q-1}) \, = \, \left[(-1)^{r} \lambda_{k} (1 \otimes \tilde{\theta} \iota_{q-1})_{r-2}, \, (1 \otimes \theta \iota_{q-1})_{r-1} \right] \, . \end{array}$$

Here $\lambda_k = 0$ if k > 1, $\lambda_1 = 1$.

Case II.
$$G = Z$$
, $A = Z_p$, $\theta = \varrho$, Then,
$$\theta^P(\iota_{q-2}) = [(-1)^q (\iota_{q-2} \bmod p)_{q-2}, \ (\varrho \, \delta_k \, \iota_{q-2})_{q-1}] .$$

Case III.
$$G = \mathsf{Z}_p$$
, $\Lambda = \mathsf{Z}$, $\theta = \delta$. Then,
$$\theta^P(\iota_{q-2} \otimes 1) = (-1)^{q-1} \varrho_k \delta(\iota_{q-2}),$$

$$\theta^P(1 \otimes \iota_{q-1}) = s_k(\iota_{q-1}).$$

Here s_k is the cohomology operation induced by the coefficient homomorphism $Z_p \to Z_{pk}$, given by

$$a \mod p \mapsto p^{k-1}a \mod p^k$$
.

PROOF. We do out the details only for Cases I and III.

Case I. For $n \ge 3$, set $L_n = K_{n-2} \times K_{n-1}$, and let $f_n: L_n \to K_n^P$ be defined as in (3.3). Consider the following diagrams:

Here, φ , in the left hand diagram, is chosen to be any map making the diagram homotopy-commute. (Recall that f_q, f_r are homotopy equivalences.) The right hand diagram is obtained by taking the adjoint of the left hand diagram, and hence also homotopy-commutes. By (3.1) and (3.4),

(*)
$$(\theta \circ f'_q)^* \iota_r = \theta (f'_q^* \iota_q) = \theta (\iota_{q-2} \otimes 1 \otimes e_2 + 1 \otimes \iota_{q-1} \otimes e_1)$$

$$= \theta (\iota_{q-2}) \otimes 1 \otimes e_2 + 1 \otimes \theta (\iota_{q-1}) \otimes e_1 + \lambda_k (-1)^r 1 \otimes \tilde{\theta} (\iota_{q-1}) \otimes e_2 .$$

And similarly,

$$(\varphi \wedge 1)^* f'_{r}^* \iota_{r} = (\varphi \wedge 1)^* (\iota_{r-2} \otimes 1 \otimes e_2 + 1 \otimes \iota_{r-1} \otimes e_1)$$
$$= \varphi^* (\iota_{r-2} \otimes 1) \otimes e_2 + \varphi^* (1 \otimes \iota_{r-1}) \otimes e_1.$$

Comparing the coefficients of e_1 and e_2 , we find

$$\varphi^*(1 \otimes \iota_{r-1}) = 1 \otimes \theta(\iota_{q-1}) ,$$

$$\varphi^*(\iota_{r-2} \otimes 1) = \theta(\iota_{q-2}) \otimes 1 + \lambda_k (-1)^r 1 \otimes \tilde{\theta}(\iota_{q-1}) ,$$

as claimed.

Case III. As above we may choose a map $\varphi: K_{q-2} \times K_{q-1} \to K^k_{q-1}$ so that the left hand diagram, given below, homotopy-commutes. The right hand diagram is obtained by taking adjoints, and so homotopy-commutes also.

Our aim is to compute $\varphi^* \iota_{q-1}$, a mod p^k class. Thus it suffices to do our calculations mod p^k , rather than with integer coefficients. By (3.3),

$$\begin{split} f'_{q}^* \delta^*(\iota_{q+1}) \bmod p^k &= \varrho_k \delta f'_{q}^*(\iota_{q+1}) \\ &= \varrho_k \delta(\iota_{q-2} \otimes 1 \otimes e_2 + 1 \otimes \iota_{q-1} \otimes e_1) \\ &= \varrho_k \delta(\iota_{q-2}) \otimes 1 \otimes e_2 + 1 \otimes \varrho_k \delta(\iota_{q-1}) \otimes e_1 \\ &+ (-1)^{q-1} 1 \otimes s_k (\iota_{q-1}) \otimes e_2 \;. \end{split}$$

On the other hand

$$\begin{split} (\varphi \wedge 1)^* g'_{q+1} * (\iota_{q+1}) \bmod p^k &= \varrho_k (\varphi \wedge 1)^* g'_{q+1} * (\iota_{q+1}) \\ &= (\varphi \wedge 1)^* \varrho_k \delta_k (\iota_{q-1} \otimes e_1) \\ &= (\varphi \wedge 1)^* \beta_k (\iota_{q-1} \otimes e_1) \\ &= (\varphi \wedge 1)^* (\beta_k \iota_{q-1} \otimes e_1 + (-1)^{q-1} \iota_{q-1} \otimes e_2) \;. \end{split}$$

Comparing coefficients of e_2 , we obtain

$$\varphi^*(\iota_{q-1}) = (-1)^{q-1} \varrho_k \delta(\iota_{q-2}) \otimes 1 + 1 \otimes s_k(\iota_{q-1})$$
.

This completes the proof. The proof for Case II is similar and is left to the reader.

Remark. For simplicity we have considered only stable operations θ . A similar treatment also handles the case θ non-stable; one simply now defines $\tilde{\theta}$ to be the operation required in equation (*) given above.

We now relate Theorem 3.6 to our original Problem 1, given in section 1. We take m=1 and suppose that our spaces B,C are Eilenberg-MacLane spaces of type $K(G,q),K(\Lambda,r)$, as above. For simplicity we do only the cases $G,\Lambda=\mathbb{Z}$ or \mathbb{Z}_p . The operation $\Phi(p,k)$, which determines extension (1.1), is then given as follows. (Note that if G or $\Lambda=\mathbb{Z}_p$, we need consider only the operation $\Phi(p,1)$, which we write simply as Φ .)

COROLLARY 3.7.

Case I. Let
$$B=K_q$$
, $C=K_r$, $\theta\in \hat{a}_p$. Then,
$$\varPhi=(-1)^r\tilde{\theta}\ .$$
 Case II. Let $B=K^*_q$, $C=K_r$, $\theta=\psi\varrho$, $\psi\in \hat{a}_p$. Then,
$$\varPhi=(-1)^q\psi\delta^{-1}+(-1)^r\tilde{\psi}\varrho\ .$$
 Case III. Let $B=K_q$, $C=K^*_r$, $\theta=\delta\psi$, $\psi\in \hat{a}_p$. Then,
$$\varPhi=\varrho^{-1}\psi-\delta\tilde{\psi}\ .$$
 Case IV. Let $B=K^*_q$, $C=K^*_r$, $\theta=\delta\psi\varrho$, $\psi\in \hat{a}_p$. Then,
$$\varPhi(p,k)=p^{k-1}(\varrho^{-1}\psi\varrho)-\lambda_k(\delta\tilde{\psi}\varrho)+(-1)^{q+r}\delta\psi\delta_k^{-1}\ .$$
 (Recall that $\lambda_1=1$, $\lambda_k=0$ if $k>0$.)

4. Examples.

Let $\{h^i\}$, $i \ge 0$, be a representable cohomology theory [16], [2]. In this section we consider the problem of determining the order of elements in h^iX , X a finite-dimensional complex. This is essentially the same as considering elements of [X,B], where B is an x-fold loop space, x large. Two ways have been developed for studying [X,B], both based on the following diagram.

$$\begin{array}{c} QK_{n} \stackrel{j_{n}}{\longrightarrow} Q_{n} \\ \downarrow^{p_{n}} \\ QK_{n-1} \stackrel{j_{n-1}}{\longrightarrow} Q_{n-1} \stackrel{\theta_{n}}{\longrightarrow} K_{n} \\ \downarrow^{p_{n-1}} \\ \vdots \\ QK_{i+1} \stackrel{j_{i+1}}{\longrightarrow} Q_{i+1} \stackrel{\theta_{i+2}}{\longrightarrow} K_{i+2} \\ \downarrow^{p_{i+1}} \\ QK_{i} \stackrel{j_{i}}{\longrightarrow} Q_{i} \stackrel{\theta_{i+1}}{\longrightarrow} K_{i+1} \\ \downarrow^{p_{i}} \\ \vdots \\ QK_{1} \stackrel{j_{1}}{\longrightarrow} Q_{1} \stackrel{\theta_{2}}{\longrightarrow} K_{2} \\ \downarrow^{p_{1}} \\ Q_{0} \stackrel{\theta_{1}}{\longrightarrow} K_{1} \end{array}.$$

Here $p_i \colon Q_i \to Q_{i-1}$ is the principal fibration with $\theta_i \colon Q_{i-1} \to K_i$ as classifying map. We assume that the entire diagram is the 2-fold loop of an analogous diagram: that is, there are spaces R_{i+2}, L_{i+3} , $0 \le i \le n$, and maps $\psi_{i+3} \colon R_{i+2} \to L_{i+3}$ such that

$$Q_i \,=\, \varOmega^2 R_{i+2}, \quad K_{i+1} \,=\, \varOmega^2 L_{i+3}, \quad \theta_{i+1} \,=\, \varOmega^2 \psi_{i+3}, \quad \text{etc.}$$

We use the diagram in two ways. First, the diagram may represent a Postnikov resolution [7], [15] of the space B. Then there will be a map $q: B \to Q_n$ such that for complexes X with dimension less than some integer N,

$$q_*: [X,B] \approx [X,Q_n]$$
.

Moreover, Q_0 and K_i , $i \ge 1$, will be products of Eilenberg-MacLane spaces. In the second way, $B = Q_0$, and the Q_i 's represent the connective coverings of B [17], [14]; the K_i 's again are products of Eilenberg-MacLane spaces. We consider now the problem of computing the order of elements in $[X, Q_n]$, respectively $[X, Q_0]$.

Case I. $[X,Q_n]$. Let π denote the composition $Q_n \to Q_0$. Suppose that $u \in [X,Q_n]$, and set $v=\pi_*u \in [X,Q_0]$. We consider the question: if we know the order of v what can be said about the order of u?

For $1 \le r \le n$, consider the following diagram:

Here $\varphi_r = \theta_r \circ j_{r-1}$, and s_r is the principal fibration induced by j_{r-1} from p_r . (Let $\Omega K_0 = Q_0$, $j_0 =$ identity.)

We now apply the theory of sections 1-3 to the sequence

$$\ldots \to \Omega^2 K_{r-1} \xrightarrow{1_{\varphi_r}} \Omega K_r \xrightarrow{k_r} Z_r \xrightarrow{s_r} \Omega K_{r-1} \xrightarrow{\varphi_r} K_r;$$

by hypothesis K_r and K_{r-1} are products of Eilenberg-MacLane spaces, while Z_r is a loop space. Let X be a complex and assume that there is

a prime p such that $p(\operatorname{cokernel}^1 \varphi_{r^*}) = 0$, $1 \le r \le n$. By section 1 we then have a homomorphism

$$\Phi_r$$
: $(\operatorname{Ker} \varphi_{r^*}) \cap (\text{elements of order } p) \to \operatorname{coker}^1 \varphi_{r^*}$.

From the definition of Φ_r we have at once:

PROPOSITION 4.2. Let $u \in [X, Q_r]$ and set $v = p_{r^*}u \in [X, Q_{r-1}]$. Suppose there is a class $x \in [X, \Omega K_{r-1}]$ such that $v = j_{r-1^*}(x)$ and px = 0. Then,

$$pu = j_{r*}\Phi_r(x) .$$

Notice that by exactness, $\varphi_{r^*}x=0$. Of course x may vary by Image ${}^1\theta_{r-1^*}$. We prove

Proposition 4.3. $\Phi_r(\operatorname{Image}^1\theta_{r-1*}) \subset \operatorname{Image}^1\theta_{r*}$.

The proof is immediate by the following commutative diagram:

$$\begin{array}{c|c} \Omega Q_{r-1} \xrightarrow{1p_{r-1}} \Omega Q_{r-2} \xrightarrow{1\theta_{r-1}} \Omega K_{r-1} \xrightarrow{j_{r-1}} Q_{r-1} \\ \downarrow^{l_\theta_r} & \downarrow^{l_\tau} & \parallel & \downarrow^{\theta_r} \\ \Omega K_r \xrightarrow{k_r} \mathsf{Z}_r \xrightarrow{s_r} \Omega K_{r-1} \xrightarrow{\varphi_r} K_r \ . \end{array}$$

(We regard $^1\theta_{r-1}$ as the principal fibration with j_{r-1} as classifying map, and s_r as principal fibration with φ_r as classifying map; thus the map t_r exists making the diagram commute.)

Thus Φ_r induces a morphism

$$\tilde{\Phi}_r$$
: $(\operatorname{Ker} \varphi_{r^*})/(\operatorname{Image}^1 \theta_{r-1^*}) \to \operatorname{Coker}^1 \theta_{r^*}$.

By Proposition 4.2 we then have:

THEOREM 4.4. Let $u \in [X, Q_n]$ and set $v = \pi_* u \in [X, Q_0]$. Suppose that for some integer $r(\geq 0)$, $p^{r+1}v = 0$. Then,

(a) for
$$1 \le i < n$$
,

$$p^{r+i}u=0 \Rightarrow \tilde{\Phi}_i \circ \ldots \circ \tilde{\Phi}_1(p^rv)=0$$

(b)
$$p^{r+n}u = 0 \iff \tilde{\Phi}_n \circ \ldots \circ \tilde{\Phi}_1(p^rv) = 0$$
.

(c)
$$p^{r+n+1}u = 0$$
.

Later in the section we give two examples illustrating the Theorem.

Case II. $[X,Q_0]$. Let $v \in [X,Q_0]$ and set $w = \theta_{1*}v \in [X,K_1]$. If we know

the order of w, what can be said about the order of v? We sketch an approach dual to that given in Case I.

By hypothesis there are spaces L_{r+1} , $1 \le r \le n$, and maps $\psi_{r+1}: \Omega L_r \to L_{r+2}$ such that $\Omega L_{r+1} = K_r$ and $\varphi_r = \Omega \psi_{r+1}$. (Also, L_r is a loop space and ψ_r a loop map, $r \ge 1$.) Define

$$q_{r+2}: Y_{r+2} \rightarrow K_r$$

to be the principal fibration with ψ_{r+2} as classifying map. It is easily seen that there is a map

$$t_{r+2} \colon \ Q_{r-1} \to Y_{r+2}$$

so that the following diagram commutes:

Assume now:

$$p(\operatorname{Coker} \varphi_{r+1^*}) = 0, \quad 1 \leq r \leq n-1.$$

As in section 1 define the functional operation

$$(4.5) \Phi_r: (Ker \psi_{r+2^*}) \cap (elements of order p) \to Coker \varphi_{r+1}^*.$$

We then have

(4.6) Let $v \in [X, Q_{r-1}]$ be a class such that $p(\theta_{r^*}v) = 0$, and let $u \in [X, Q_r]$ be chosen so that $p_{r^*}(u) = pv$. Then,

$$\theta_{r+1}*(u) \in \Phi_r(\theta_r(v))$$
.

The analogue of Theorem 4.4 is:

THEOREM 4.7. Let X be a complex and p a prime. Suppose that

$$p[X,K_r]=0, \quad {}^1\!\varphi_{r^\bullet}[X,\varOmega^2K_{r-1}]=[X,\varOmega K_r], \quad 1 \leq r \leq n \ .$$

Let $v \in [X, Q_0]$ and set $w = \theta_{1*}v \in [X, K_1]$. Suppose there is an integer $s(\geq 0)$ such that $p^{s+1}w = 0$. Then, for $1 \leq i < n$,

(a)
$$p^{s+i}v = 0 \Rightarrow \Phi_i \circ \ldots \circ \Phi_1(p^s w) = 0.$$

If
$$[X,Q_n]=0$$
, then

(b)
$$p^{s+n-1}v=0 \iff \varPhi_{n-1}\circ\ldots\circ\varPhi_1(p^sw)=0 \ .$$

$$p^{s+n}v = 0.$$

We leave the proof to the reader.

We turn now to examples illustrating Theorems (4.4) and (4.7).

EXAMPLE I. Cohomotopy.

As usual, we write $\pi^n X = [X, S^n]$. Consider the following (2-primary) Postnikov resolution of S^n :

$$\begin{array}{c} K_{n+3} \stackrel{j_3}{\longrightarrow} Q_3 \\ \downarrow \\ K_{n+2} \times K_{n+3} \stackrel{j_2}{\longrightarrow} Q_2 \stackrel{\beta^4}{\longrightarrow} K_{n+4} \\ \downarrow \\ \downarrow \\ K_{n+1} \times K_{n+3} \stackrel{j_1}{\longrightarrow} Q_1 \stackrel{(\alpha^3, \alpha^4)}{\longrightarrow} K_{n+3} \times K_{n+4} \\ \downarrow \\ \downarrow \\ K(\mathbb{Z}, n) \stackrel{(Sq^2, Sq^4)}{\longrightarrow} K_{n+2} \times K_{n+4} \,. \end{array}$$

Here

$$\begin{split} j_1 * \alpha^3 &= \mathrm{Sq^2} \, \iota_{n+1} \! \otimes \! 1, \; j_1 * \alpha^4 = \mathrm{Sq^2} \, \mathrm{Sq^1} \, \iota_{n+1} \! \otimes \! 1 + 1 \! \otimes \! \mathrm{Sq^1} \, \iota_{n+3} \; , \\ j_2 * \beta^4 &= \mathrm{Sq^2} \, \iota_{n+2} \! \otimes \! 1 + 1 \! \otimes \! \mathrm{Sq^1} \, \iota_{n+3} \; . \end{split}$$

The classes α^3, α^4 represent secondary cohomology operations, the class β^4 a tertiary operation. Since the four and five stems are zero, we have

$$\pi^n X/(\text{odd torsion}) \approx [X, Q_3]$$
 for dim $X \leq n+5$;

we assume that $n \ge 5$.

Applying Theorem 4.4 and using Corollary (3.7) to compute the operations Φ_r we have:

Theorem 4.8. Let X be a complex of dimension $\leq n+5$, with $n \geq 5$. Let $\alpha \in \pi^n X$, and set $v = \alpha^* s_n \in H^n(X; \mathbb{Z})$, where s_n generates $H^n(S^n; \mathbb{Z})$. Suppose that 2v = 0, and let $w \in H^{n-1}(X; \mathbb{Z}_2)$ be a class such that $\delta w = v$. Then,

- (a) $2\alpha = 0$ implies $(\operatorname{Sq}^2 w, \operatorname{Sq}^4 w) \in (\operatorname{Sq}^2, \operatorname{Sq}^4)H^{n-1}(X; \mathbb{Z}).$
- (b) $4\alpha = 0$ implies $(\operatorname{Sq}^3 w, \operatorname{Sq}^4 w) \in (\alpha^3, \alpha^4)H^{n-1}(X; \mathbb{Z}).$
- (c) $8\alpha = 0$ if and only if, $Sq^4w \in \beta^4H^{n-1}(X; \mathbb{Z})$.
- (d) $16\alpha = 0$.

We omit the details, noting only that in (b), we use the fact that

$$Sq^{2}Sq^{2}w = Sq^{1}Sq^{2}Sq^{1}w = Sq^{1}Sq^{2}v = 0$$
,

since $v = \alpha * s_n$.

Example II. Immersions of Manifolds.

Let M be a smooth orientable manifold of dimension n. We consider the problem of enumerating the set of immersions of M in \mathbb{R}^{n+k} , k>0. Call this set $\mathrm{Imm}[M,\mathbb{R}^{n+k}]$. Let v_M denote the stable normal bundle of M. Then Hirsch has shown that $\mathrm{Imm}[M,\mathbb{R}^{n+k}]$ is in 1-1 correspondence with the set of homotopy classes of sections of the bundle with fibre $\mathrm{SO/SO}(k)$, associated to v_M . But Becker [1] has shown that, in the stable range, the set of sections of a bundle can be given a natural affine group structure; in particular, if one chooses some immersion as basepoint then $\mathrm{Imm}[M,\mathbb{R}^{n+k}]$ has an abelian group structure, provided $k>\frac{1}{2}n$; and the isomorphism class of this group is independent of the choice of basepoint.

Suppose now that M is a spin manifold $(W_1M = W_2M = 0)$ and that $k \ge n - 2$. Then, v_M is a principal bundle, and hence,

$$\operatorname{Imm}[M, \mathsf{R}^{n+k}] \approx [M, V_k],$$

where $V_k = SO/SO(k)$ (= Spin/Spin(k)).

For our second example, we calculate some groups $[M, V_k]$, interpreted as groups of immersions.

(i) $k \equiv 1 \mod 4$, $k \geq 5$. A Postnikov resolution of V_k , through dimension k+2, is given below:

$$\begin{split} K_{k+2} & \xrightarrow{j_2} Q_2 \\ & \downarrow^{p_2} \\ K_{k+1} \times K_{k+2} & \xrightarrow{j_1} Q_1 \xrightarrow{\beta} K_{k+3} \\ & \downarrow^{p_1} \\ K_k \times K_{k+2} \xrightarrow{\alpha} K_{k+2} \times K_{k+3} \,. \end{split}$$

Here

$$\begin{split} \alpha^* \iota_{k+2} &= \mathrm{Sq}^2 \iota_k \otimes 1 \;, \\ \alpha^* \iota_{k+3} &= \mathrm{Sq}^2 \mathrm{Sq}^1 \iota_k \otimes 1 + 1 \otimes \mathrm{Sq}^1 \iota_{k+2} \;, \\ \beta^* \iota_{k+3} &= \mathrm{Sq}^2 \iota_{k+1} \otimes 1 + 1 \otimes \mathrm{Sq}^1 \iota_{k+2} \;. \end{split}$$

Now let M be a (k+2)-dimensional spin manifold. Using the Wu formulae and the fact that $B \operatorname{Spin}(k)$ is 3-connected, one shows that

$$ImageSq^{1} = ImageSq^{2} = Image\beta = 0$$
,

in $H^{k+2}(M; \mathbb{Z}_2)$. Thus the group $[M, Q_2]$ (= $[M, V_k]$) can be calculated by using two exact sequences. (We set n = k + 2):

$$\begin{split} e_2\colon & \ 0 \to H^nM \xrightarrow{\quad j_2 *} \left[M, Q_2 \right] \xrightarrow{\quad p_2 *} \left[M, Q_1 \right] \to 0 \ , \\ e_1\colon & \ 0 \to H^{n-1}M \otimes H^nM \xrightarrow{\quad j_1 *} \left[M, Q_1 \right] \xrightarrow{\quad p_1 *} H^{n-2}M \otimes H^nM \to 0 \ . \end{split}$$

Let $u \in H^{n-2}M$, $v \in H^nM$. Then e_1 is determined by the homomorphism Φ_1 , defined by

$$(u,v)\mapsto (\operatorname{Sq}^1 u \otimes v) \in H^{n-1}M \otimes H^nM$$
 .

Suppose now that $\operatorname{Sq}^1: H^{n-2}M \to H^{n-1}M$ is injective. Then a class $\alpha \in [M,Q_1]$ has order 2 if and only if $\alpha \in \operatorname{Image} j_1^*$. Thus e_2 (in this case) is determined by the morphism Φ_2 , defined by

$$j_1^*(x,y) \to \operatorname{Sq}^1 x + y$$
,

where $x \in H^{n-1}M$, $y \in H^nM$. But M is orientable and so $\operatorname{Sq}^1x = 0$. Computing the extensions e_1, e_2 explicitly, one then has:

THEOREM 4.9. Let M be an n-dimensional spin-manifold, with $n \ge 7$, $n \equiv 3 \mod 4$. Suppose that $\operatorname{Sq}^1 \colon H^{n-2}M \to H^{n-1}M$ is injective. Then,

$$\operatorname{Imm}[M, \mathsf{R}^{2n-2}] \approx \mathsf{Z}_8 \oplus (\oplus_{i=1}^a \mathsf{Z}_4) \oplus (H^{n-1}M/\operatorname{Sq}^1 H^{n-2}M)$$
,

where $a = \dim H^{n-2}M$. In particular, if P^n denotes real projective n-space, then

$$Imm[P^n, \mathbb{R}^{2n-2}] \approx \mathbb{Z}_8 \oplus \mathbb{Z}_4, \quad n \equiv 3 \mod 4.$$

(ii) $k \equiv 2 \mod 4$, $k \ge 6$. A Postnikov resolution of V_k , through dimension k+2 is given below:

$$\begin{array}{c} K_{k+1} \stackrel{j_1}{\longrightarrow} Q_1 \\ \downarrow^{p_1} \\ K^*_k \times K_{k+1} \stackrel{\alpha}{\longrightarrow} K_{k+2} \end{array},$$

with

$$\alpha * \iota_{k+2} = \operatorname{Sq}^2 \iota_k \otimes 1 + 1 \otimes \operatorname{Sq}^1 \iota_{k+1}$$
.

Thus we have an exact sequence (setting n = k + 2)

$$e_1\colon \ 0\to H^{n-1}M/\operatorname{Sq}^1(H^{n-2}M)\xrightarrow{j_1^*} [M,Q_1]\xrightarrow{p_1^*} H^{n-2}(M\,;\, \mathsf{Z})\otimes H^{n-1}M\to 0\ .$$

Let $u \in H^{n-2}(M; \mathbb{Z})$ be a class such that 2u = 0; choose $x \in H^{n-3}(M; \mathbb{Z}_2)$ such that $\delta x = u$. Then e_1 is given by:

$$(u,v) \rightarrow \operatorname{Sq}^2 x + v \in H^{n-1}M$$
,

where $v \in H^{n-1}M$. But M is a spin manifold and hence $\operatorname{Sq}^2 H^{n-3}M = 0$ (cf. [8]). Thus we have:

THEOREM 4.10. Let M be a spin manifold of dimension n, where $n \equiv 0 \mod 4$ and $n \ge 8$. Then,

$$\operatorname{Imm}[M, \mathsf{R}^{2n-2}] \approx H^{n-2}(M; \mathsf{Z}) \oplus H^{n-1}(M; \mathsf{Z}_4)$$
.

REMARK. In a subsequent paper, by using a "twisted" version of the theory presented here, we will compute $\text{Imm}[M^n, \mathbb{R}^{2n-1}]$, for all manifolds M^n , $n \ge 5$.

Example III. Complex K-Theory.

Our final example falls under Case II above; that is, diagram (4.1) is taken to be a sequence of connective coverings. Specifically, set $Q_0 = BU$, and let Q_i denote the (2i+1)-connective covering of BU. Thus, $K_i = K(\mathsf{Z},2i)$ and θ_i is a generator of $H^{2i}(Q_{i-1};\mathsf{Z}) \approx \mathsf{Z}$. Also,

(4.11)
$$\varphi_{i+1} = \theta_{i+1} \circ j_i = \delta \operatorname{Sq}^2 \varrho_2(\iota_{2i-1}),$$

where ι_{2i-1} generates $H^{2i-1}(\Omega K_i; \mathbb{Z})$. Notice that $\theta_1 = C_1$, the first Chern class in $H^2(BU; \mathbb{Z})$.

We compute the operation Φ_i , given in (4.5). By Theorem (3.6), taking $P = S^1 \cup_2 e^2$,

$$(\delta \, {\rm Sq}^2 \varrho)^P \, = \, \varepsilon ({\rm Sq}^1 {\rm Sq}^2) {\rm Sq}^1 + {\rm Sq}^1 {\rm Sq}^2 \, = \, {\rm Sq}^2 {\rm Sq}^1 + {\rm Sq}^1 {\rm Sq}^2 \; .$$

Let $x \in H^{2i}(X; \mathbb{Z})$ be a class such that 2x = 0 and $\delta \operatorname{Sq}^2 \varrho(x) = 0$. Choose classes

$$y \in H^{2i-1}(X; Z_2), z \in H^{2i+2}(X; Z)$$

such that

$$\delta y = x, \quad \varrho z = \mathrm{Sq}^2 x.$$

Then,

(4.12)
$$\Phi_{i}(x) = \varrho^{-1} ((\operatorname{Sq^{2}Sq^{1}} + \operatorname{Sq^{1}Sq^{2}})y)$$
$$= \varrho^{-1} (\operatorname{Sq^{2}} x + \operatorname{Sq^{1}Sq^{2}} y) \equiv z + \delta \operatorname{Sq^{2}} y \bmod \Phi^{*}_{i+1}.$$

By (4.7) we have:

THEOREM 4.13. Let X be a complex and n an integer such that

(i)
$$2H^{2i}(X; \mathbb{Z}) = 0$$
, for $2 \le i \le n$,

and suppose further that

(ii)
$$\delta \operatorname{Sq}^2 \rho H^{2i-2}(X; \mathbb{Z}) = H^{2i+1}(X; \mathbb{Z}), \quad 0 \le i \le n-1$$
.

Let $\eta \in \overline{\mathrm{KU}}(X)$, and set $w = C_1(\eta) \in H^2(X; \mathbb{Z})$. Suppose that $2^{r+1}w = 0$, for some integer $r \geq 0$. Then, for $1 \leq i < n$,

(a)
$$2^{r+i}\eta = 0 \Rightarrow \Phi_i \circ \ldots \circ \Phi_1(2^r w) = 0$$
.

If dim $X \leq 2n+1$, then

(b)
$$2^{r+n-1}\eta = 0 \iff \Phi_{n-1} \circ \ldots \circ \Phi_1(2^r w) = 0$$
,

(c)
$$2^{r+n}\eta = 0$$
.

As an example we have:

(4.14) Let X be a complex of dimension $2n+\varepsilon$ ($\varepsilon=0$ or 1), satisfying (4.13) (i) and (ii). Suppose there is a class x in $H^1(X; \mathbb{Z}_2)$ such that $x^{2n} \neq 0$. Let η be the complex line bundle over X with $C_1(\eta) = \delta x \in H^2(X; \mathbb{Z})$. Then η generates a cyclic subgroup of order 2^n in KU(X).

COROLLARY 4.15.
$$\widetilde{\mathrm{KU}}(P^{2n+\varepsilon}) = \mathsf{Z}_{2^n}, \ \varepsilon = 0 \ \text{or} \ 1.$$

PROOF OF 4.14. We show that

$$\Phi_i(\delta x^{2i-1}) = \delta x^{2i+1} ,$$

and hence $\Phi_{n-1} \circ \ldots \circ \Phi_1(\delta x) = \delta x^{2n-1} \neq 0$. (By 4.14 (ii), $\varphi_{i+1*} = 0$, $i \geq 0$.) Now

$$Sq^{2}(\delta x^{2i-1}) = ix^{2i+2} = i(\varrho \delta x^{2i+1})$$

and

$$\delta \operatorname{Sq}^{2} x^{2i-1} = (i-1)\delta x^{2i+1}$$
.

Thus, by (4.12),

$$\varPhi_i(\delta x^{2i-1}) \, = \, i(\delta x^{2i+1}) + (i-1)\delta x^{2i+1} \, = \, \delta x^{2i+1}$$

as claimed.

REMARK. By precisely the same technique one can compute the order of elements in *real K*-Theory. Of course, here one must determine four operations. See [5].

5. Appendix.

Let A, B, and C be Abelian groups, and let $e: 0 \to A \xrightarrow{\iota} B \xrightarrow{\lambda} C \to 0$ be an extension of C by A. For each integer n, let $K(n) \subset C$ be the

kernel of multiplication by n. If $x \in K(n)$, define $\mu_e(x,n)$ to be $\iota^{-1}n\lambda^{-1}x$, a coset of nA. Thus $\mu_e(\cdot,n)$ is a homomorphism from K(n) to A/nA. If m is another integer, and if $x \in K(nm)$, then $mx \in K(n)$ and $\mu_e(x,nm) \subseteq \mu_e(mx,n)$; the following diagram is thus commutative, where q is the quotient map:

$$K(n) \xrightarrow{\mu_{e}(\cdot,n)} A/nA$$
 $m \uparrow \qquad \qquad \downarrow q$
 $K(nm) \xrightarrow{\mu_{e}(\cdot,nm)} A/nmA$

As the following theorem shows, knowledge of the homomorphisms $\mu_e(\cdot, p^k)$ for all primes p and all integers k > 0 is sufficient to determine e as an element of $\operatorname{Ext}(C, A)$ if C is finitely generated.

THEOREM 5.1. Let A and C be Abelian groups, where C is finitely generated. Let $K(n) \in C$ be the kernel of multiplication by n, for each integer n. If a homomorphism $\mu(\cdot, p^k) : K(p^k) \to A/p^kA$ is given for each prime p and each positive integer k, and if the following diagram is always commutative:

$$K(p^{k}) \xrightarrow{\mu(\cdot, p^{k})} A/p^{k}A$$

$$\downarrow^{p} \qquad \qquad \downarrow^{q}$$

$$K(p^{k+1}) \xrightarrow{\mu(\cdot, p^{k+1})} A/p^{k+1}A,$$

then there exists a unique $e \in \text{Ext}(C, A)$ such that $\mu_e(\cdot, p^k) = \mu(\cdot, p^k)$ for all p and all k.

We leave the proof to the reader (cf. [6, p. 76], [3, p. 63]).

REFERENCES

- J. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447–475.
- 2. E. Brown, Cohomology theories, Ann. of Math. 75 (1962), 467-484.
- P. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York · London · Paris, 1965.
- L. Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97-115.
- L. Larmore, Computation of [X;Y] and application to K-theory, 1969, mimeographed preprint, California State College at Dominguez Hills.
- 6. S. MacLane, Homology, Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.
- M. Mahowald, On obstruction theory in orientable fibre bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.

- W. Massey, Normal vector fields on manifolds, Proc. Amer. Math. Soc. 12 (1961), 33-40.
- F. P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957), 197–211.
- F. P. Peterson, Functional higher order cohomology operations, Symposium International de Topologia Algebraica, La Universidad National Autónoma de México y la UNESCO, 1958, 159-164.
- 11. E. Spanier, Algebraic Topology, McGraw-Hill, New York · Toronto · London, 1966.
- 12. E. Spanier, Secondary operations on mappings and cohomology, Ann. of Math. 75 (1962), 260-282.
- 13. N. Steenrod, Cohomology invariants of mappings, Ann. of Math. 50 (1949), 954-988.
- E. Thomas, A spectral sequence for K-theory, Appendix in lecture notes of R. Bott, Harvard Univ., 1962.
- E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.
- G. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.
- G. Whitehead, Fiber spaces and the Eilenberg homology groups, Proc. Nat. Acad. Sci U.S.A., 38 (1952), 426-430.

CALIFORNIA STATE COLLEGE AT DOMINGUEZ HILLS, DOMINGUEZ HILLS, CALIF., U.S.A.

AND

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF., U.S.A.