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GROUP EXTENSIONS AND PRINCIPAL FIBRATIONS

L. L. LARMORE and E. THOMAS*

1. Introduction.

We consider in this paper the following extension problem. Suppose
we have a principal fibration

o ‘. F_*,B,

with classifying map 0: B - C. One then has an extended sequence of
fibrations

o ome S, omp ™, omp, B, (.

(For any map f we write ™f=0mf, m>1.) Given a space X a standard

problem in topology is to compute the group [X,02™FE]. We have the
exact sequence

(1.1) e: 0 »> (Cokerm+16,) — [X,0Q0mE] - (Ker™f,) - 0,

and our problem is:
ProBLEM 1. Compute the extension e.

Note, in particular, that if B and C are products of Eilenberg-MacLane
spaces, then E (and hence 2™ E) is a 2-stage Postnikov system.

We assume now that all the groups in (1.1) are abelian — e.g., take
m>1, or take m=1 with B,C loop spaces and 6 a loop map. If Ker™f,
is finitely generated, it is known (see section 5) that the extension e is
completely determined by a set of homomorphisms @(p, k), defined for
each prime p and positive integer k. Here

D(p,k): (Ker™0,) n (elements of order p*) —
(Coker™+19,.)[p*(Coker™+6,) ,

Received January 25, 1971.

* Research supported by a grant from the U.S. National Science Foundation. A pre-
liminary version of the paper appeared in the Proceedings of the Advanced Study Insti-
tute on Algebraic Topology, Matematisk Institut, Aarhus University, 1970, pp. 588—598.



228 L.L. LARMORE AND E. THOMAS

and is defined as follows. Let u be an element in [X,{™ B] such that
mP,u=0, p*u=0. Choose v in [X,Q™ K] such that ™m,(v)=wu. Then,
M (pF0) =0, and so there is a class w in Cokernel ™+§, such that
i (W) =p*v. Set

D(p,k)(w) = w mod p¥(Coker™+16,.) .
Thus we have

ProBLEM 2. Compute the operations D(p, k).

In sections 2 and 3 we give a solution to this problem for the case B
is a 2-stage Postnikov system. In section 4 we illustrate our theory with
three examples: stable cohomotopy, complex K-theory, and immersion
groups for manifolds.

ReMARK. We emphasize that we consider here only abelian group
extensions. In a subsequent paper we will develop an analogous theory
for non-abelian, central extensions. This corresponds in (1.1) to taking
m=1, B and C loop spaces, but 0 not a loop map.

2. Functional operations.

The morphism @, defined in section 1, is an example of a functional
operation. In general, consider the following commutative diagram of
Abelian groups and homomorphisms; we assume that each row is exact:

k1 U

B, -1 ¢, D,

w T

ke

E,

4, 2> B, -2, (C, D,.
Define
@: Kerd n Kerl, > B,[i, A,+ B,
by
(2.2) \ D = j,loyok;, L.

Following Steenrod [13] we call @ the functional operation at D, as-
sociated with (2.1). Note that the operation @(p, k) in section 1, fits into
this context by taking 8,7,6 to be multiplication by p*.

For use in subsequent papers it is desirable to consider a slightly more
general version of a functional operation. That is, in diagram (2.1) we
now no longer assume that C,,C, are abelian, and we drop the require-
ment that y be a homomorphism. We simply require that, for b € B,
ce(,,
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(23) Y(J1(b)c) = jo(B(8))y(c) -

Definition (2.2) continues to make sense, and one easily checks that @
continues to have the same indeterminacy.

We now consider a geometric setting in which one has two functional
operations, which we will show are equal.

Suppose we are given a cofibration sequence

(2.4) S-2.Q-P 38530 ...,

where P is the cofiber of y, and 2 denotes (reduced) suspension. We
assume that § and @ are themselves suspensions, though y is not assumed
to be the suspension of a map.

We work in the category of pointed spaces and maps.

For spaces X,Y let YX denote the function space of (pointed) maps
with the compact-open topology. Using (2.4) in conjunction with the
fibration

Q- BB,

given in section 1, we obtain the following commutative diagram; each
long column is a fibration sequence, as is each long row (by Borsuk
[11; section 2.8.2]).

(@B)3
168

(Q0)° —"— (QO)S

iQ el
(2.5) Ee_ Y . gs
nQ s

Bs_°¢ ,pgr_° ,pBe_Y ,BS

lezs jaP “

g 2,02, 0r ', e,

(By an abuse of notation, if f: K -~ L we also write f: YZ - YX for the
induced map on function spaces.)

We now assume that B and C are loop spaces, but 0 is not assumed to
be a loop map. Applying the functor [X, -] to diagram (2.5) we obtain
a commutative diagram of groups, Fig.1, where each long row and
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column is exact. Moreover, all groups are abelian except [X, E€], [X, ES],
[X,BF], [X,CF]. Finally, all maps in the diagram are homomorphisms
except

ye: [X,E9] > [X,ES], 0,F: [X,BP]-[X,C?].

However, one can easily check that these two morphisms enjoy property
(2.3). Thus the two rows and the two columns in Fig. 1 are examples

[X, (2B)5]

(16),8

> [X,(20)%]
1.2 149

L
[X,E9 ——— [X,E5]

7. Q 7S
[X,B*] —— [X,BP] —— [X,B9] —— [X,BS]
0Z8), 0.F 0,2

[X, CZ0] 2, [X,0%5] % [X,0P] - [X,(C9].
Figure 1.

[XAS,0QB]

16,

[XAQ, Q0] X% [X A8, 00]

™ Ta
[XAQ,E] X7 [XAS, E]

Ty Tt

|
[XaZS,B] -2 [XaP,B] -, [X4Q,B] 7% [XAS,B]

[XaZQ,C0] 7% (X4 28,01 M, [XaP,01 -1, [X4Q,0].

Figure 2.
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of (2.1), in the more general setting described prior to (2.3), and so if
we set

K(69,7) = Kery,nKer(69), < [X,B?],
by (2.2) we obtain two functional operations, each based at [X,B@]:

D, K(69,y) - [X,(QC)]y«[X, (R0)°]+ (6)%[X, (2B)],
Dy: K(69,y) > [X,C%]/(Zy)s[X, C5] + (6%5)4[X, B¥] .

Now for any space Y, Y*5=(QY)S, and so we may identify [X, Y*5]=
[X,(2Y)S]. With this identification we have:

THEOREM 2.5. ©,=,.

We shall prove this shortly, but first we relate the theorem to the
material given in section 1.

Let 8=@Q =281, the 1-sphere, and define y: 8 — 8 to be a map of degree
p*. Then P(=P(k)), the cofibre of y, is the space S* U ;e2. If we assume
that 0 is a loop map, then @, =®(p,k) as defined in section 1; we will
golve problem 2 by computing the operation @,.

Proor or THEOREM 2.5. Let X, Y, Z be spaces with basepoint. One
has a natural transformation, the adjoint,

a: [X,Y?%] «[XAZ Y],

which gives a 1-1 correspondence between the two sets. Applying a to
every group in Fig. 1, we obtain Fig. 2, again a commutative diagram
with exact rows and columns. The operations @,,P, go over to operations
&@,,P, based at [Xa Q,B]. Moreover, using a,

[XAZS,C] = [Xa8,2C].
To prove Theorem 2.5 we show that, with the above identification,
¢1=¢2-
Let  be a class in [XAQ, B] such that (1Ay),%=0 and 6,u=0; that

is, u is in the domain of &, and @,. Consider the following sequence of
spaces and maps:

(2.6) Xa8-Y.XaQ"“>B->0.

Notice that, by hypothesis, the compositions uo(1Ay) and fou are null-
homotopic. But this is precisely the situation considered by Spanier in
[12], and so one can associate with (2.6), elements

91 € [XAS,201/(1ay),[XAQ,Q2C] + (10),[XAS,QB],
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and
@y € [XAZS,C1/(1aZy)*¥[XAZQ,C1+0,[XAZS,B].

Moreover, as remarked in [12], the adjoint carries ¢, to ¢,. But by the
definition given by Spanier [12],

1= él(u)’ P2 = é2(’“) ,

and so, @, =D,, as claimed.

ReMARK. Theorem 2.5 is related to work of Peterson [9], [10].

3. The functor P.
For the rest of the paper we restrict attention to the cofibration

S8 °.p_° .8, ..,

where §=_8* and y is a map of degree p*, p a fixed prime, k>0. Our
goal is to compute the operation

D, = g4 100F 00,71,

(see Fig. 1). Now in applications we presume that J, and p, are known,
and so to compute @, we need only know the operation

oP,: [X,BP]-[X,CP].

In this section we compute this operation, assuming that B and C are
products of Eilenberg-MacLane spaces and 0 a loop map.
We think of P as a contravariant functor
X > XP, f->fP.

Notice that (X, x X,)P=X,F x X,FP, and so if X is an H-space, so is XZ.
Moreover, if X is an H-space, and if «;: B> X are given for 1=1,2,
with o« =0, +%5: B - X, wethen have ¥ =0, P+ a,F. If B=K,; x ... x K,,
C is an H-space, and 0: B - C has the property that

*) 0 = 2i_10;0m;,

where 0,;: K, - C and =z, is the projection of B onto K, then

6F = 3,0 Fomt,

and so to compute 6F we need only compute each 6,F.
Suppose, finally, that B and C are finite products of Eilenberg-Mac-
Lane spaces (each with cyclic homotopy group) and 6 a stable map, in
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the sense that it can be delooped. Then 0 has property (*) above, and
so to compute 6F we need only consider the case

6: K(G,q) > K(A,r),

where G and A are cyclic groups.
Now any such operation is formed by adding together compositions
of the following operations:
(1) elements of the modp Steenrod algebra, G,,.
(2) the Bockstein homomorphism &, k= 1, associated with the exact
sequence
Z>Z—>Zy.

(8) coefficient homomorphisms.

Since (0,00,)F =0,F00,”, we need compute §F only for 6 an operation
of the above types. For simplicity we will do out only type (1) together
with the Bockstein 6;(=48) and the coefficient homomorphism p,(=p),
where in general g, is induced by the canonical epimorphism Z — Z,,
k1.

The space K(w,n)?, n=Z or Z,,, P=P(k):

We adopt the following notation: ¢, € H¥ K(r,n); =) and s; € H(S%; Z),
t=1,2, will denote fundamental classes. We choose generators e;e
HYP; Z), =1,2, by requiring that

d*e, = s, modp*, p*(s, modpk) = e,.
Note that f,(e;)=e,, where B, is the Bockstein coboundary associated
with the exact sequence Z i — Z, . — Z .

Let f, ;: K(w,n—1) > K(w,n)%", i=1,2, denote the homotopy equiv-

alence whose adjoint

fini: K(mn—i)A S — K(z,n)
is given by
(f’n,i)*"n = 1, ;&S; .

In a similar fashion we describe K(n,7)P by taking adjoints. Set
K, = K(Z,,n), K*, = K(Z,n), K*, = K(Z,1,n), k>1, nZz3.
Define f’,,: (K,,_ox K,_;)AP - K, by

(3°1) f’n* "n = (Ln—2®1)®e2+ (1®'~n—1)®el ’
and define
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g,n: Kkn-z AP~ K*n
by
(3'2) g’n*‘n = 6k("n—2®el) .

ProrosiTioN 3.3. Let f, denote the adjoint of f’', and g, the adjoint of
g n; that is,

fn: Kn—2XKn—l_>KnP’ gn: Kkn—2—>K*nP'

Then, f, and g, are homotopy equivalences.

Proor. Consider the following diagram, where ¢ denotes inclusion and
r projection. Note that each row is a fibre sequence.

x pk i r xpk
K, K, K, oxK, K, > K, 4

lfn,i lfn,z lfn fry1 lfﬂ,l
4

k P k
I{nsz—xﬁ"’I{n‘S2 . K,F K,5 i K,*

Craim. The above diagram homotopy-commutes.

Assuming this the proof of 3.3 follows at once (for f,), by applying
the 5-lemma to the corresponding diagram of homotopy groups.

The extreme squares in the diagram are obviously commutative, since
here the horizontal maps are simply multiplication by p*. The (homotopy)
commutativity of the middle squares follows at once from the (homo-
topy) commutativity of the following diagram, using the fact that
(fnot) =f'no(tal), etc. We leave the details to the reader.

K, ,AP " L K, _,AS?

Al l lf'n,z

(Kn—z X 'Kn—-l) AP e - K'n,

h&] [f’m
(K,_gx K, )AS "2+ K, ,AS.

The proof that g, is a homotopy equivalence is similar and is omitted.

The morphism e.
Let p be a fixed prime (= 2) and let ¢ denote the modp Steenrod alge-
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bra. We define a morphism ¢: & — G of degree —1 which will be used to
compute F,

Recall that ¢ is a Hopf algebra with diagonal map, say, y: 4 - 4QRG.
Given « € ¢ define «; by the equation

p(x) = oQ1+ 0,81+ ...
and define ¢: 4 — 4 by the rule
(3.4) o b (=1)pHy, n=degx.

ProrosiTION 3.5. ¢ is characterized by the following properties:

(1) e(oyoxg) = €(o6g)oxg+(— 1) 6(cxy), d=degreen, .
(ii) If p=2, then (Sq*) = S¢»t, nz=1l.
If p>2, then () = 1, e(PY) =0, ©20.

The proof follows at once from the fact that ¢ is an algebra morphism.
Note that for p=2, ¢ is the map » considered by Kristensen [4]. For
convenience we will write ex=a for an element « € é.

Computation of 6F.

Suppose that a (stable) operation 6: K(@,q) -~ K(4,r) is given. We
now compute the operation

6F: K(G,q)f - K(A4,r)?
in the following cases:

I. G=4=2Z,, 0Oecd,
. G=2Z, A=Z,, 6=¢,
II. G=2Z,, A=2Z, 0=0.

It A=Z,, then K(A4,r)P=K, ,x K, ,;, and so 6F is a 2-valued operation.
If 4 is in domain 6P, we write
[07(u),—g, 6P (u),—1]

for the two values of the operation. Also, if G=2Z,, then K(G,q)P’=
K, ;,®K, ,, and we compute the values of 6% on the two fundamental
classes ¢, ,®1 and 1®¢,_;.

TuEOREM 3.6. Case I. G=A=7Z,, 0 € G. Then,

0P("q-—2®1) = [(el'q—2®l)r—2: (O)r—l] ’
OP(]'@‘q—l) = [(_ 1)'Ak(1®0tq__1),._2, (1®0"q-—1)r—1] .
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Here 4,=01if k>1, A;,=1.
Case I1. G=Z, A=Z,, =0, Then,
6P (tg-2) = [(—1)%(tg— mod p)y s, (00%ty—2)g-1] -
Case I11. G=2Z,, A=Z, 0=0. Then,

0P(14-2®1) = (—1)%9;6(t4—5) ,
eP(1®"q—1) = 'sk("q—l) .
Here s;, is the cohomology operation induced by the coefficient homomorphism
Z, > Z,, given by
a modp » p¥lg modyp” .

Proor. We do out the details only for Cases I and III.
Case I. For n=3, set L,=K, ,x K, _,, and let f,: L, -~ K,F be de-
fined as in (3.3). Consider the following diagrams:

L,—*~ L, L,AP -2 L AP
Jq | fr f’ql f'r
b Y
KP " KP, K,——>K,.

Here, ¢, in the left hand diagram, is chosen to be any map making the
diagram homotopy-commute. (Recall that f,,f, are homotopy equiva-
lences.) The right hand diagram is obtained by taking the adjoint of
the left hand diagram, and hence also homotopy-commutes. By (3.1)
and (3.4),

(*) (Bof’q)*tr = o(f,q*lq) = e(l‘q—2®1®e2+ 1®"q—1®61)
= 0(tg-2) @1 ®es+ 1Q0(ty_1)Rey + A1 — 1)1R0(1,_y ) ®e, .
And similarly,

(PA)*f' *1, = (pA1)*(1,_sQ1Qez + 1®1,_; ®e,)
P*(t,—2®1) Qe + 9*(1®1,_;) Qe -

Il

Comparing the coefficients of e, and e,, we find

P*(1®t,4) = 1®0(¢4-1) ,
P*(t,o®1) = 0(;,5)R1 + lk(_l)r:l@g(tq—l) ’
as claimed.
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Case III. As above we may choose a map ¢: K, ,x K, ; - K¥ _,
so that the left hand diagram, given below, homotopy-commutes. The
right hand diagram is obtained by taking adjoints, and so homotopy-
commutes also.

Ky oxKpy—2> K¥ K, ox Ky AP 20 K% _ AP
Jq 1 l 9g+1 f'q l l g'g+1
®F ]
KqP - K*q+1P ’ K, K*py

Our aim is to compute ¢*t,_;, a modp* class. Thus it suffices to do our
calculations mod ¥, rather than with integer coefficients. By (3.3),

f,q*a*(l‘q+1) mOdpk = Qkéf'q*(‘q+l)
= Qka(‘q—2®l®62+ 1®t,-1®e,)
= Qka(Lq—2)®l®62+ 1®9k6(‘q—1)®el
+ (= 1)1 R84 (14-1) Res -

On the other hand

((PA l)*glq+1*("q+l) mOdpk = Qk(‘l"‘ 1)*g'q+1*(l’q+1)
= (pA1)%0r05(¢5-1R6,)
= ((PAl)*an(‘q—l@el)
= (pAl)*(Brtg—1®e; + (—1)771 1 Re,) .

Comparing coefficients of e,, we obtain

P*(tg-1) = (= 1)77210(t42)®L + 1Q84(tg-1) -

This completes the proof. The proof for Case II is similar and is left to
the reader.

Remark. For simplicity we have considered only stable operations 6.
A similar treatment also handles the case 6 non-stable; one simply now
defines 6 to be the operation required in equation (*) given above.

We now relate Theorem 3.6 to our original Problem 1, given in section
1. We take m = 1 and suppose that our spaces B,C are Eilenberg-MacLane
spaces of type K(G,q),K(4,r), as above. For simplicity we do only the
cases G,A=7Z or Z,. The operation @(p,k), which determines extension
(1.1), is then given as follows. (Note that if G or A= Z,, we need consider
only the operation @(p,1), which we write simply as @.)
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COROLLARY 3.7.
Case I. Let B=K,, C=K,, 0 €l,. Then,

D= (-1)0.
Case 11. Let B=K*,, C=K,, 0=yp, y € (. Then,

@ = (—1)d1+(~1)pe .

Case 111. Let B=K,, C=K*,, 0=0y, y € G,. Then,

D =polp—9dy.
Case IV. Let B=K*,, C=K*,, 0=0yp, y € G,. Then,

D(p, k) = p*o'yo) — Ai(dye) + (—1)+"dyd, 1 .
(Recall that 4,=1, 4,=0if £>0.)

4., Examples.

Let {A%}, 20, be a representable cohomology theory [16], [2]. In this
section we consider the problem of determining the order of elements in
hiX, X a finite-dimensional complex. This is essentially the same as
considering elements of [X, B], where B is an z-fold loop space, z large.
Two ways have been developed for studying [X,B], both based on the
following diagram.

(4.1) QK, - Q,

Pn

}
‘QKn-l L S K,

n-1

l Pn—1
i

{
Ji+1 0ita
‘QK i+1 Q’i +1 ‘K i+2

Pi+1

. ¢
-QKi L Qi "’ﬁl"" Ki+1
1P
|

Q Kl .7.1 N Ql

62

K,
|

Qo""ﬁ_“"Kl .
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Here p,: @; ~ Q;_, is the principal fibration with 0,: @;_; - K; as
classifying map. We assume that the entire diagram is the 2-fold loop
of an analogous diagram: that is, there are spaces R, 5,L;.3, 05¢=Zn,
and maps y;,5: R;,5 > L;,5 such that

Qi = PRy, Ky = QPLyyg, i = Qy,,  ete

We use the diagram in two ways. First, the diagram may represent a
Postnikov resolution [7], [15] of the space B. Then there will be a map
q: B — @, such that for complexes X with dimension less than some
integer N,

gt [X,B] ~ [X,Q.].

Moreover, @, and K;, 121, will be products of Eilenberg—-MacLane
spaces. In the second way, B=@,, and the §,’s represent the connective
coverings of B [17], [14]; the K,’s again are products of Eilenberg-
MacLane spaces. We consider now the problem of computing the order
of elements in [X,Q,], respectively [X,Q,].

Case I. [X,Q,]. Let n denote the composition @, — Q,. Suppose that
we[X,Q,], and set v=m,u € [X,Q,]. We consider the question: if we
know the order of v what can be said about the order of w?

For 1=r=<n, consider the following diagram:

QK, = QK,
ky Jr
Z,—".qQ,
8r Pr

) d
'QK r—-1 __Jt—l-) Qr—l

?r 6r

K, = K,

Here ¢,=0,0j,_;, and s, is the principal fibration induced by j,_, from
P,. (Let QK;=Q,, j,=identity.)
We now apply the theory of sections 1-3 to the sequence

K, L 0K,z "L 0K,, " K,

r

by hypothesis K, and K,_, are products of Eilenberg-MacLane spaces,
while Z, is a loop space. Let X be a complex and assume that there is
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a prime p such that p(cokernellp,,)=0, 1 <r=<n. By section 1 we then
have a homomorphism

D,:

.t (Kerg,,) n (elements of order p) - cokerlep,, .

From the definition of @, we have at once:

ProrosiTioN 4.2. Let ue[X,Q,] and set v=p,.ue[X,Q,_,]. Suppose
there is a class x € [X,Q2K, ] such that v=4,_,.(x) and px=0. Then,

U = JuD,(x) .

Notice that by exactness, ¢,.z=0. Of course x may vary by Image
10,_,». We prove

ProposiTiON 4.3. @ (Imagelf,_,.)<Imageld,..

The proof is immediate by the following commutative diagram:

QQ,, % 0Q, , L, QIHf 9,

16, l ty l or
+

QK,—* .z, " 0K, ,-">K,.

r

(We regard 10,_, as the principal fibration with j,_; as classifying map,
and s, as principal fibration with ¢, as classifying map; thus the map ¢,
exists making the diagram commute.)

Thus @, induces a morphism

é,: (Kerg,.)/(Imagelf,_,.) - Coker1f,. .
By Proposition 4.2 we then have:
THEOREM 4.4. Let ue[X,Q,] and set v=n,ue[X,Q,]. Suppose that
for some integer r(20), pr+tlv=0. Then,

(a) for 15i<m,
prHiu=0 = Do...0P,(pw)=0,

(b) P u=0 <> Ppo...00,(p™)=0.
(c) p™m+lu=0.

Later in the section we give two examples illustrating the Theorem.

Case I1. [X,Q,]. Let v e [X,Q,] and set w=0,,v € [X, K,]. If we know
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the order of w, what can be said about the order of v? We sketch an
approach dual to that given in Case I.

By hypothesis there are spaces L,,,, 1 <r<n, and maps y,,,:2L, -
L,,, such that QL,, =K, and ¢,=Qy,,,. (Also, L, is a loop space and
v, a loop map, r=1.) Define

9ria: Yr+2 - Kr

to be the principal fibration with v,,, as classifying map. It is easily
geen that there is a map

tr+2: Qr—l g Yr+2

so that the following diagram commutes:

‘QKr _ZL" Q, P, Qra 9r_» K,
N l 6r+1 l lry2 N
Q Kr Pr+1 -Kr+1 Yr+2 Ir+2 -Kr Yri2 Lr+2 .

Assume now:
p(Cokerg,,;.) =0, 1=Zrsn-1.

As in section 1 define the functional operation
(4.5) D,: (Kery,, ,.) n (elements of order p) - Cokerg, ., *.
We then have

(4.6) Let ve[X,Q,_,] be a class such that p(0,.v)=0, and let u € [X,Q,]
be chosen so that p..(u)=pv. Then,

Ors10(u) € Dr(6,(v)) .

The analogue of Theorem 4.4 is:

THEOREM 4.7. Let X be a complex and p a prime. Suppose that
p[X,K,1=0, ¢.[X,22K,,]1=[X,QK,], 1=2rsn.

Let ve[X,Q,] and set w=0,.ve[X,K,]. Suppose there is an integer
8(=0) such that p**'w=0. Then, for L<i<n,

(8) pHiv=0 = Bio...of,(pw)=0.
If [X,Q,1=0, then

Math. Scand. 30 — 16
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(b) Pptrly=0 < D, _j0...0D(pw)=0.
(c) p$tty = 0.

We leave the proof to the reader.
We turn now to examples illustrating Theorems (4.4) and (4.7).

ExawmprLE I. Cohomotopy.
As usual, we write "X =[X, 8"]. Consider the following (2-primary)
Postnikov resolution of S§»:

p
K n+3 — Qs

Je gt
K, axKy,s Q2 K4

J1 (o3, at)
K,y xKyis @, K, 3x K,y

V  (Sq2,Sqt
K<Z,n) _i_ql) Kn+2 x Kn+4 .
Here
Ji*¥e® = 8q%,,,®1, ji*at = Sq®8q'e, Q1+ 1889 .5,
Ja*B* = Sq?1, .1 +1®8q t,5 .

The classes &3, &% represent secondary cohomology operations, the class
B* a tertiary operation. Since the four and five stems are zero, we have

7" X [(odd torsion) ~ [X,Q;] for dimX <n+5;

we assume that n=5.
Applying Theorem 4.4 and using Corollary (3.7) to compute the opera-
tions @, we have:

THEOREM 4.8. Let X be a complex of dimension <n+5, with n=5.
Let x e nnX, and set v=u*s, € H*X ; Z), where s, generates H(S™; Z).
Suppose that 2v=0, and let we H*1(X; Z,) be a class such that dw=v.
Then,

(a) 20=0 tmplies (Sq?w, Sqtw) € (Sq?, Sq*)H* (X ; Z).

(b) 40=0 implies (Sq*w, Sq*w) € (&3,0)H* X ; Z).

(c) 8x=0 tf and only if, Sq*w € f*H" (X ; Z).

(d) 16x=0.
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We omit the details, noting only that in (b), we use the fact that
Sq28q2w = Sq'Sq%Sqlw = Sq'Sq%v = 0,

since v=u%*g,.

Exampre II. Immersions of Manifolds.

Let M be a smooth orientable manifold of dimension n. We consider
the problem of enumerating the set of immersions of M in R»+%, k> 0.
Call this set Imm[M, R**+¥], Let v;; denote the stable normal bundle of
M. Then Hirsch has shown that Imm[M, R*+¥] is in 1-1 correspondence
with the set of homotopy classes of sections of the bundle with fibre
SO/SO (k), associated to vy,. But Becker [1] has shown that, in the stable
range, the set of sections of a bundle can be given a natural affine group
structure; in particular, if one chooses some immersion as basepoint
then Imm[M,R"»+¥] has an abelian group structure, provided k> }n;
and the isomorphism class of this group is independent of the choice of
basepoint.

Suppose now that M is a spin manifold (W, M =W, M =0) and that
k=n—2. Then, »,, is a principal bundle, and hence,

Imm[M,R**] ~ [M,V,],

where ¥V, =S0/SO (k) (= Spin/Spin(k)).

For our second example, we calculate some groups [M,V,], inter-
preted as groups of immersions.

(i) k=1 mod4, k=5. A Postnikov resolution of ¥, through dimen-
sion k+ 2, is given below:

Ji
Kk+2 —ts Qz

P2

J1 8
Ky xKypg —— @ —— K45

P1

K x Kyyg —— Kpypx K.
Here
o* ey = 8974Q1,
«* g = Sg*Sq' Q1+ 1®8q 45 5
B* sz = SGP41 @1 +1@8q b5 .
Now let M be a (k+ 2)-dimensional spin manifold. Using the Wu formu-
lae and the fact that B Spin (k) is 3-connected, one shows that
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ImageSq! = ImageSq? = Imagef = 0,

in H¥+2*(M; Z,). Thus the group [M,Q,] (=[M,V,]) can be calculated
by using two exact sequences. (We set n==£k+2):

e 0 H'M 25 [M,Q,] -2 [M,Q,] >0,
e;: 0 Hr1MQHMM s [M,Q,] 7> Hr2MQHM - 0.
Let w € H*2M, ve H*M. Then e, is determined by the homomorphism

®@,, defined by
(u,v) > (Sqlu®v) € H* 1M QH"M .

Suppose now that Sql: H*-2M - H*-'M is injective. Then a class
o € [M,Q,] has order 2 if and only if x e Image j,*. Thus e, (in this case)
is determined by the morphism @,, defined by

h*@.y) > Sq'z + v,
where x € H* 1M, y € H*M. But M is orientable and so Sq'z=0. Com-
puting the extensions e,,e, explicitly, one then has:
THEOREM 4.9. Let M be an n-dimensional spin-manifold, with n=1,
n=3 mod4. Suppose that Sq': H*-2M — H"-1M s injective. Then,
Imm[M,R*"%] ~ Z; D ((’Bg:-l 24) @ (H*M[Sq*H"-2M) ,

where a=dim H*-2M. In particular, if P™ denotes real projective n-space,
then
Imm[P* R™2] ~ Z,PZ,, n=3 mod4.

(ii) k=2 mod4, k= 6. A Postnikov resolution of ¥,, through dimen-
sion k+ 2 is given below:

J1
Kyn—— @
|

K*,x Ky y — K2
with
“* Lk+2 = Sq2‘k®1 + 1®Sqllk+1 .

Thus we have an exact sequence (setting n==F~k+2)

e;: 0-> Hr-1M[Sql (H-2M) 25 [M,Q,] 25 Hn—2(M; Z)Q@H 1M - 0.



GROUP EXTENSIONS AND PRINCIPAL FIBRATIONS 245

Let u e H**(M ; Z) be a class such that 2u=0; choose x € H*-3(M ; Z,)
such that dz=u. Then e, is given by:

(w,v) > Sq?z+ve H* 1M ,

where v € H»1M. But M is a spin manifold and hence Sq?H"-3M =0
(cf. [8]). Thus we have:

THEOREM 4.10. Let M be a spin manifold of dimension n, where n=0
mod4 and n=8. Then,

Imm[M, R2-2] & Hr-%M; Z)QHY(M; Z,) .

REMARK. In a subsequent paper, by using a “twisted”” version of the
theory presented here, we will compute Imm[M™, R#-1], for all mani-
folds M*, n>5.

Examrrg III. Complex K-Theory.

Our final example falls under Case II above; that is, diagram (4.1) is
taken to be a sequence of connective coverings. Specifically, set Q,=BU,
and let @, denote the (2¢+ 1)-connective covering of BU. Thus, K;=
K(Z,2¢) and 6; is a generator of H?*(Q;_,; Z)~Z. Also,

(4.11) Piv1 = 0p4100; = 6 8qa(t9i4)
where «,;_; generates H*-1(QK,; Z). Notice that 0, =C,, the first Chern
class in H3(BU ; Z).
We compute the operation @;, given in (4.5). By Theorem (3.6), taking
P=81y,e?,
(98a%e)" = e(Sq’Sa?)Sq’ + Sq*Sq? = Sq*Sq’+Sq’Sq?

Let z € H*(X ; Z) be a class such that 22=0 and §Sq2p(z)=0. Choose
classes
y € H*-Y(X;Z,), =z € H®+¥X;Z)
such that
0y = x, pz=8qx.
Then,

(412)  Dy(x) = 07Y((Sq*Sq' +8q'Sq?)y)
= 07}(Sq%x+8q'Sq%y) = 2+6Sq?*y mod D*,,, .
By (4.7) we have:

TurorEM 4.13. Let X be a complex and n an integer such that
(i) 2H%(X;Z) = 0, for 2<i=n,



246 L. L. LARMORE AND E. THOMAS

and suppose further that
(ii) 6Sq?eH*-3(X;Z) = H¥+Y(X;Z), 0=<i¢<n-—1.
Let ne ﬁ}(X), and set w=C,(n) € H¥X ; Z). Suppose that 2r+w =0, for
some integer r =2 0. Then, for 1<i<mn,
(@) 2r+ip=0 => PD,0...0P,(2"w)=0.
If dimX £2n+1, then

(b) 2mn-lp=0 < P, _j0...0D(2"w)=0,
(c) 2r+np=0.

As an example we have:

(4.14) Let X be a complex of dimension 2n+¢ (e=0 or 1), satisfying
(4.13) (i) and (ii). Suppose there is a class x in HY(X; Z,) such that
22" +0. Let 5 be the complex line bundle over X with Cy(n)=dx e

H?*(X; Z). Then 7 generates a cyclic subgroup of order 2" in IZTJ(X )

pre—
CororLARY 4.15. KU (P?+6)=Z,,, ¢=0 or 1.

Proor or 4.14. We show that
D,(Sx%-1) = Ja¥i+1

and hence @, _jo...0®P(0x)=0x*"140. (By 4.14 (i), ¢;,;.=0, 120.)
Now
Sq?(da%-1) = iz?i+? = i(pda?i+l)
and
O08q2a%i-1 = (3 —1)da?i41,
Thus, by (4.12),

@i(ax%—l) - i(ax2i+1) _|_ (i —_ ]_)6x2'i+l — 6x2'i+l
as claimed.

REMAREK. By precisely the same technique one can compute the order
of elements in real K-Theory. Of course, here one must determine four
operations. See [5].

5. Appendix.

Let A4, B, and C be Abelian groups, and let e¢: 0 —~ 4 B Lo-o0
be an extension of C by A. For each integer n, let K(n)<C be the
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kernel of multiplication by n. If x € K(n), define u,(x,n) to be ¢ni-1z,
a coset of nd. Thus y,(-,n) is a homomorphism from K(n) to 4/nA.
If m is another integer, and if « € K(nm), then mx € K(n) and y,(x,nm)<
u(mz,n); the following diagram is thus commutative, where g is the
quotient map:

K(n) 2", Alnd
m | q
K(nm) 2" AlnmA .

As the following theorem shows, knowledge of the homomorphisms
1e(+,p*) for all primes p and all integers k> 0 is sufficient to determine e
as an element of Ext(C,4) if C is finitely generated.

TeEOREM 5.1. Let A and C be Abelian groups, where C is finitely
generated. Let K(n) € C be the kernel of multiplication by n, for each integer
n. If a homomorphism u(-,p*): K(p*) — A|p¥A is given for each prime p
and each positive integer k, and if the following diagram is always commu-
tative:

K(pk) 22, Ajpkd

K(p+1) _BCopEY Alp14

then there exists a unique e € Ext(C,4) such that p,(-,p*)=pu(:,p*) for all
p and all k.

We leave the proof to the reader (cf. [6, p. 76], [3, p. 63]).

REFERENCES

1. J. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133
(1968), 447-475.

2. E. Brown, Cohomology theories, Ann. of Math. 75 (1962), 467-484.

. P. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York : London *
Paris, 1965.

4. L. Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand.
16 (1965), 97-115.

. L. L. Larmore, Computation of [X;Y] and application to K-theory, 1969, mimeo-
graphed preprint, California State College at Dominguez Hills.

. 8. MacLane, Homology, Springer-Verlag, Berlin + Géttingen - Heidelberg, 1963,

- M. Mahowald, On obstruction theory in orientable fibre bundles, Trans. Amer. Math.
Soc. 110 (1964), 315-349.

W

[

3 &



248 L.L. LARMORE AND E. THOMAS

8. W. Massey, Normal vector fields on manifolds, Proc. Amer. Math. Soc. 12 (1961),
33-40.

9. F. P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957),
197-211.

10. F. P. Peterson, Functional higher order cohomology operations, Symposium International
de Topologia Algebraica, La Universidad National Auténoma de México y la
UNESCO, 1958, 159-164.

11. E. Spanier, Algebraic Topology, McGraw-Hill, New York - Toronto - London, 1966.

12. E. Spanier, Secondary operations on mappings and cohomology, Ann. of Math. 75
(1962), 260-282.

13. N. Steenrod, Cohomology tnvariants of mappings, Ann. of Math. 50 (1949), 954-988.

14. E. Thomas, A spectral sequence for K-theory, Appendix in lecture notes of R. Bott,
Harvard Univ., 1962.

15. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of
Math. 85 (1967), 184-217.

16. G. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962),
227-283.

17. G. Whitehead, Fiber spaces and the Eilenberg homology groups, Proc. Nat. Acad. Sci
U.8.A., 38 (1952), 426-430.

CALIFORNIA STATE COLLEGE AT DOMINGUEZ HILLS, DOMINGUEZ HILLS, CALIF., U.S.A.
AND
UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF., U.S.A.



