ELEMENTS OF INFINITE FILTRATION IN COMPLEX COBORDISM

PETER S. LANDWEBER¹

We study complex cobordism $MU^*(X)$ for CW-complexes with finite skeletons, with particular interest in $MU^*(BG)$ where G is a compact Lie group. In case G is abelian (the product of a torus and a finite abelian group) we computed $MU^*(BG)$ in [5] and found the result to be similar to the K-theory $K^*(BG)$. However in general (even for finite groups) one has little understanding of $MU^*(BG)$, even though one has a lot of information about $K^*(BG)$ and one knows that K-theory and complex cobordism are closely related. We show here that concerning elements of infinite filtration this relation works quite well.

THEOREM 1. If G is a compact Lie group and $\alpha \in MU^*(BG)$ has infinite filtration (that is, α restricts to zero on each skeleton of BG), then $\alpha = 0$.

The corresponding result for $K^*(BG)$ was proved by V. M. Buhstaber and A. S. Miscenko [2, Theorem 3], and is required for the proof of Theorem 1 (see also [1]). In fact we prove

Theorem 2. If X is a CW-complex with finite skeletons then the following conditions are equivalent:

- (a) $MU^*(X)$ has no non-zero elements of infinite filtration;
- (b) $K^*(X)$ has no non-zero elements of infinite filtration;
- (c) for each $x \in H^*(X;Q)$ there is a torsion-free skeleton-finite CW-complex Y, a map $f: X \to Y$ and $y \in H^*(Y;Q)$ such that $f^*(y) = x$;
- (d) there is a torsion-free skeleton-finite CW-complex Y and a map $f\colon X\to Y$ such that $f^*\colon H^*(Y;Q)\to H^*(X;Q)$ is onto.

We collect some preliminary results in section 1 and then prove the theorems in the following sections. We give a direct proof of Theorem 1 in section 2 in order to comment on a possible approach for further study of $MU^*(BG)$. In the final section we suggest a route that might lead to information about the complex bordism modules $MU_*(BG)$.

Received June 4, 1971.

¹ Research supported by NSF Grant GP-21064.

1. Preliminaries.

Throughout we restrict attention to skeleton-finite CW-complexes. We recall the main theorem of [2] and its companion for complex cobordism [4]:

PROPOSITION 1. $K^*(X)$ has no non-zero elements of infinite filtration if and only if for each $x \in H^*(X;Q)$ there exists $\alpha \in K^*(X)$ such that $\operatorname{ch}(\alpha)$ leads off with nx for some $n \neq 0$.

PROPOSITION 2. $MU^*(X)$ has no non-zero elements of infinite filtration if and only if for each $x \in H^*(X; Z)$ there exists $\alpha \in MU^*(X)$ such that $\mu(\alpha) = nx$ for some $n \neq 0$, where μ is the Thom homomorphism.

COROLLARY 1. If $H^*(X; Z)$ has no torsion then $K^*(X)$ and $MU^*(X)$ have no non-zero elements of infinite filtration.

For when $H^*(X;Z)$ has no torsion it is a well-known consequence of the collapsing of the Atiyah-Hirzebruch spectral sequences that μ maps $MU^*(X)$ onto $H^*(X;Z)$ and that each element of $H^*(X;Z)$ is the lead term of a Chern character.

COROLLARY 2. Let E denote either K or MU. If $f: X \to Y$ induces an epimorphism $H^*(Y;Q) \to H^*(X;Q)$ and if $E^*(Y)$ has no non-zero elements of infinite filtration, then this is also true for $E^*(X)$.

2. Proof of Theorem 1.

Let R(G) denote the representation ring of G. By [9, Corollary (3.3)] R(G) is a finitely generated ring, hence is generated as a ring by the classes of a finite set of unitary representations $\varrho_i \colon G \to U_i$. The product of the ϱ_i gives a homomorphism $\varrho \colon G \to H$ into a product of unitary groups for which $\varrho^* \colon R(H) \to R(G)$ is onto. Then clearly the image of the augmentation ideal I(H) under ϱ^* is I(G), and so the I(G)-adic and I(H)-adic topologies on R(G) coincide. From [7, p. 397] it follows that ϱ^* induces an epimorphism $(R(H))^{\wedge} \to (R(G))^{\wedge}$ of completions (in fact R(G) is finitely generated over the Noetherian ring R(H) [8, Proposition (3.2)], and for finitely generated modules over a Noetherian ring I-adic completion is exact [7, p. 419]). In view of the natural isomorphism $\alpha \colon (R(G))^{\wedge} \to K^*(BG)$ of [1] we have shown that $K^*(BH) \to K^*(BG)$ is onto.

We next observe that also $H^*(BH;Q) \to H^*(BG;Q)$ is onto; this

follows from Proposition 1 and the fact [2] (see also [1]) that $K^*(BG)$ has no non-zero elements of infinite filtration. Since BH has no torsion we conclude from Corollaries 1 and 2 that $MU^*(BG)$ has no non-zero elements of infinite filtration.

REMARKS. We conjecture that in fact $(B\varrho)^*$: $MU^*(BH) \to MU^*(BG)$ is onto, but are able to prove this only if G is abelian so that we may choose H to be a torus [5]. We further conjecture that $MU^*(BG)$ is a flat $\pi_*(MU)$ -module, so that in particular it has no torsion as an $\pi_*(MU)$ -module and as an abelian group; again this is true in the abelian case.

3. Proof of Theorem 2.

It is evident that (d) \Rightarrow (c), and the implications (c) \Rightarrow (a), (c) \Rightarrow (b) follow from Propositions 1 and 2 and Corollary 1.

We show that (a) \Rightarrow (b). If $MU^*(X)$ has no non-zero elements of infinite filtration and $x \in H^n(X; \mathbb{Z})$, then we choose α in $MU^n(X)$ such that $\mu(\alpha) = nx$ with $n \neq 0$. Now recall the transformation $\mu_c \colon MU^*(X) \to K^*(X)$ [3]; we obtain $\mu_c(\alpha)$ in $K^*(X)$ for which $\operatorname{ch} \mu_c(\alpha)$ leads off with the image in $H^n(X; \mathbb{Q})$ of $\mu(\alpha) = nx$. From Proposition 1 it follows that $K^*(X)$ has no non-zero elements of infinite filtration.

Finally, if $K^*(X)$ has no non-zero elements of infinite filtration then by Proposition 1, for each $x \in H^*(X;Q)$ there exists $\alpha \in K^*(X)$ such that $ch(\alpha)$ leads off with nx for some $n \neq 0$. For such a complex, the first step of the proof of Theorem 1 of [2] provides a map $f: X \to Y$ into a torsion-free skeleton-finite CW-complex Y such that

$$f^*: H^*(Y;Q) \rightarrow H^*(X;Q)$$

is onto. Thus (b) \Rightarrow (d) and the proof is complete.

4. Further comments.

Let X be a CW-complex with finite skeletons X^n , and suppose that $MU^*(X)$ has no non-zero elements of infinite filtration. By Theorem 2 of [4], for each t the inverse system $\{MU^t(X^n)\}$ satisfies a strong version of the Mitlag-Leffler condition: for each n there exists $m \ge n$ such that

$$\operatorname{Im} \left\{ MU^t(X) \to MU^t(X^n) \right\} = \operatorname{Im} \left\{ MU^t(X^m) \to MU^t(X^n) \right\}.$$

In fact, this holds uniformly in t in view of D. Quillen's theorem [8] which asserts that, for a finite complex K, $MU^*(K)$ is generated by

elements of non-negative degree. We conclude that for each n there exists $m \ge n$ such that

$$\operatorname{Im} \left\{ MU^*(X) \to MU^*(X^n) \right\} = \operatorname{Im} \left\{ MU^*(X^m) \to MU^*(X^n) \right\}.$$

It would be very interesting to have the dual statement hold for complex bordism $MU_*(X)$ of classifying spaces and Eilenberg-MacLane spaces, as was indicated in Problem 4 of [6]. The dual statement we have in mind asserts that for each n there exists $m \ge n$ such that

$$\operatorname{Ker} \{ MU_*(X^n) \to MU_*(X) \} = \operatorname{Ker} \{ MU_*(X^n) \to MU_*(X^m) \}.$$

One shows easily that this is equivalent to the complex bordism module $MU_*(X)$ being a pseudo-coherent $\pi_*(MU)$ -module (each finitely generated submodule is finitely presented), and has the pleasant consequence that all annihilator ideals of elements of $MU_*(X)$ are finitely generated. There might be a sufficient duality between $MU_*(BG)$ and $MU^*(BG)$, at least for finite groups or even finite abelian groups, to yield this sort of information about $MU_*(BG)$ from what is presently known about $MU^*(BG)$.

REFERENCES

- M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geometry 3 (1969), 1-18.
- V. M. Buhstaber and A. S. Miscenko, Elements of infinite filtration in K-theory, Dokl. Akad. Nauk SSSR 178 (1968), 1234-1237=Soviet Math. Dokl. 9 (1968), 256-259.
- P. E. Conner and E. E. Floyd, The relation of cobordism to K-theories (Lecture Notes in Math. 28) Springer-Verlag, Berlin · New York, 1966.
- P. S. Landweber, On the complex bordism and cobordism of infinite complexes, Bull. Amer. Math. Soc. 76 (1970), 650-654.
- P. S. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study Institute on Algebraic Topology II, Aarhus (1970), 256-269.
- P. S. Landweber, Cobordism and classifying spaces, Proceedings of Symposia in Pure Mathematics 22, Algebraic Topology, Amer. Math. Soc. (1971), 125–129.
- D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, 1968.
- 8. D. G. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29-56.
- G. Segal, The representation ring of a compact Lie group, Inst. Hautes Etudes Sci. Publ. Math. No. 34 (1968), 113-128.