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ON THE HOMOTOPY GROUPS OF COMPLEX
PROJECTIVE ALGEBRAIC MANIFOLDS

MOGENS ESROM LARSEN

1. Introduction.

Let A be a complex algebraic manifold of dimension @ everywhere
imbedded in some complex projective space P, of dimension n. In [2]
it is proved that in case a and n satisfy the inequality 2a¢ =%+ 1, then
7,(4)=0.

From this one can only conclude the following about the higher order
homotopy groups: In case 2a=n+s for some s>1, the group m,(P,,4)
is finite for 1 <74=<s+1, and equivalently, z,(4) is finite for 3<¢=<s.

This note is concerned with the problem whether these finite groups
vanish. Unfortunately the methods used require a much bigger s to get
results. Actually, for s<4 nothing new is obtained. So suppose sz 5.
The result is stated in theorems 1 and 2.

THEOREM 1. Let A<P, be a complex algebraic manifold imbedded in
the complex projective space P,. Assume A has dimension a everywhere
and P, dimenston n. Let s=2a—n and suppose s=5. Then

0 foriodd

H(4,2) = {Z for i even

provided 1 <s—2.

CoROLLARY 1. Under the same circumstances

0 for i odd

Hi4,2) = {Z for i even

provided 1 =<s—3.

THEOREM 2. Under the same circumstances

0 for i=1,3,4,...,s—3.
n"(A)——{Z for i=2.
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I wish to thank W. Barth for mentioning to me the possibility of con-
necting Morse theory and his work on the distance function [1].

2. Preliminaries.

First some preparations for using Morse theory. Let M be a complex
n-dimensional manifold and f: M — R a C%function. Then in any co-
ordinate system z;=x;+tx,.;, j=1,...,n, we have the quadratic Levi-
form

*f(p) _
) =ik 55’6’8‘2—’ w; Wy ,

for p e M and w e C* This form is known to be independent of coordi-
nates and to be real. We can now define
Indexc(f,p) = max{dimV | V<C» and Li{p,w)<0, Vwe V\{0}}.

M can be considered as a 2n-dimensional real manifold too, and in the
coordinates z;, j=1,...,2n, there is the quadratic Hessian

f (p)

p:v) zk i A axkax UrVj
v I

for p e M and v € R?. This form is independent of coordinates in case
df (p)=0. We can define

Indexg(f,p,2) = max{dim ¥V | V<R and Hip,v)<0, Voe V\{0}}.

where x means the chosen coordinates. Define a matrix

0 —F
B= (3 )
A simpel computation then shows that for w;=v; +1v,; and z; =x; 4 12,,;
(1) Lyp,w) = YHp,v)+(EHE)(p,v)) .

One finds formula (1) in [1, Lemma 12]. Now let ¢=Indexc(f,p) and
r=Indexp(f,p,x). By looking at the subspaces on which the forms are
positive semi-definite formula (1) gives

2n—2¢ = 2(2n—1)—2n,
rzq,
Indexg (f,p,2) = Indexc(f,p) .

Let G=8SU(n+1) acting on P,. Consider the map ¢: Gx4 - P,
defined by ¢(o,z)=o0x. As in [2,1(a)] there is a neighborhood B of 1 € G,



188 MOGENS ESROM LARSEN

the neutral element of the group, such that B is open and connected,
6Bo1=B for all 0 €@, and there is a b e R, such that for all z€P,,

Bx = {yeP, | dist(zx,y)<b}.

Here dist is the usual Fubini-Study-metrik on P, [1]. Hence Bod =
oBA is a tubular neighborhood of ¢4 for all o €@.

Let us study AncAcAnBoA. Let g€ (AnBod)\cd. Let f, denote
the squared distance from A. According to [1, Lemma 11] there is a
T € G, such that for g=f, ,| Unz4, where U is a neighborhood of ¢ € 74,
the differential dg(g) equals 0 and H(q,v)<0 for all v+0. Hence
L)(q,w)<0 for all w=0. And since dimAnz4 s, there is a tangent
space V at g of dimension at least s, such that

L, (qw) = Lqw) < 0 forall weV.
Hence

IndexR(faA,qyx) g IndeXC(faA:q) 2 S.

3. The fundamental lemma.

Let E=BoAnA and D=4 nA for some fixed o € G. Suppose further,
that B is not maximal but somewhat smaller, say such that there exists
another neighborhood B’ satisfying

BoA = {xeP, | f,4(x)<b} = B'dd = {xeP, | f,i(x)<b+n}

for some %> 0. Then we will show:
LeMMma 1. In the notation above we have H™(H,D)=0 for 0<m <s.

Proor. Let 0<e< 3, assuming 9 <b. According to [3, Corollary 6.8,
p. 37] we can find a smooth function g, with no degenerate critical
points, so that g, approximates f,, up to second derivative uniformly
on

K(e) = wed | foaSb+e)

with a distance from f,, and its derivatives smaller than . The set
M) = {xeK(e)| esg,(x)Sb+e}

has the properties that K(¢)2 E and K(e)\ M(e)=2 D, because

0=¢e—e=g@)—c<fq),

ne>0K(€) = E? n,>0K(8)\M(8) =D.
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Choosing g, closer to f,,, we may assume that the Hessian H,_is so close
to H,_,, that we have for all ¢ € M(e) and all coordinates x

Indexg(g,,¢9,%) = Indexp(f,4,9,%) = s.

Then we get from [3, Theorem 3.2, p. 14 or Theorem 3.5, p. 20] that,
putting

M= {xecK()| g.(x)<b+e}, MS = {reM| g(x)<¢e}

the pair (M*, M) is a relative CW-complex with at most such A-cells at-
tached for which A>s. Hence by excision (see f.ex. [3, p. 29]), we get
H, (M*,My)=0 for m=0,1,...,s—1. Now, by duality we get

H™YM*,My) =0 for m=0,1,...,s—1
and torsion-free for m =s. Now, let ¢ — 0. Then
H™AnoA) = lim H™(M,’) and H™AnBoA) = lim H™(M*) ,

and hence we have H™(E,D)=0 for m=0,1,...,s—1 and torsion-free
for m=s.

4. Some lemmata.

The group @ acts on C*+! and hence on §2*+!, such that every ¢ € G
gives a commutative diagram

Sen+l %, §2n4l
L
P, — P,

where the vertical arrows are the Hopf fibrations with fiber St. Let *
denote the inverse image under this fibration. The idea is to go up in
the diagram above, prove the theorems there, and then go down. First
lemma 1 with hats on:

Lemma 2. If E and D are as in section 3, then H™B,D)=0 for 1 =m<s.

Proor. The general Gysin cohomology sequence
.. = H™(E,D) - H™%(E,D) - Hm+* £, D) -~ H™\(E,D) - . ..

and lemma 1, saying H™(E,D)=0 for m<s—1, give H'”(E,ﬁ):O for
m=ss—1.
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Let us fix some notation. The map ¢: G x A — §2n+1 is defined by
#(0,2) =ox. Let pg: G x A — G be the projection on G, and p'y <p—1(A)
— @ the restriction pg|p~1(4). We will now compare G x 4 with $-1(4).

LemMmMmA 3. There exists an isomorphism
HP(()@HYA) - H?(G, R(p'5)4 Z)
Jor all pairs (p,q) where g<s—2.

Proor. At the point ¢ € @, the stalk of the sheaf RY(p'y),Z is the
group H¥(D). There is a commutative diagram

D ({o}x4)np-3(d)

B <% (BoxA)npy4),
which gives a commutative diagram
HYE) —— H9((Bo x 4) n $-1(4))
| .
HYD) —— HY(({o} x ) n p~}4)) ,

where by lemma 2 the left map, and obviously the lower map, are iso-
morphisms for ¢ <s—2. Hence for these ¢, the right map is epimorphic
and the upper one is monomorphic. This gives a natural extension map

HY(({c} x A) n $~Y4)) > HY((Bo x 4) n $~1(4))

for g=s—2. Hence the sheaf RI(p'y)yZ is locally constant on @ for
g<s—2, and since 7,(@)=0, it is constant. That is

H?(G,B(p' )5 Z) =~ HP(G)QHYA) .

PropostTION 1. The restriction map Hi{(G x 4,Z) — H{($~YA),Z) is an
tsomorphism for ¢ <s—2.

Proor. The spectral sequences for py and p’y are for g<s—2

HYGx A,Z) < Epe = HP(G,R(pg)s Z) ~ H?(G)QHYA)

| :

Hi(pY(A),Z) < B = Ho(G,RYp' ), Z) = HP(G)QHYA) ,
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where the last isomorphism follows from lemma 3. Hence the restriction
is an isomorphism for ¢ <s—2.

PROPOSITION 2. ni(A) 0 and HyA)=0 for i=1,2,...,s—3 and
HiA)=0 for i=1,2,...,8—2.

Proor. The spectral sequences for the maps ¢: G x A — §2n+1 and the
restriction of this map to ¢-1(4) are

H{(G x A,Z) <= Ep7 = HP(S2+1, RY($), Z) ~ HP(S+)QHYF)

[ |
Hi(p4(4),Z) <= Bt = HY(A,R($), Z) = HY(A)QHUF),

since both maps are fiber bundles with the same fiber ¥. The isomorphism
to the left comes from proposition 1. For p=0 we have H%F) every-
where. Suppose HP(A)=0 for 1<p<i<s—1. Then there are exact
sequences

0 — Hi-\(F) -~ Hi(S2r+)QHO(F) -~ Hi(G x A) ~ Hi(F) -

] |

0 - Hi-\(F) - H{(A)@HYF) —~ Hi($~YA)) -~ H(F) —~

with commutative squares. So from the five-lemma the second vertical
arrow must be an isomorphism. Since Hi(S2r+1)=0, we get Hi(A)=0.
This induction continues until s —2. From the Hopf fibration 4 — 4 the
sequence

703(8) — 71y (A) - 7y(A)

is exact. Therefore nl(jl\) is cychc because nl(Sl)—Z and (from [2])
7,(A4)=0. Hence nl(A) H,(4), and by duality HI(A) 0. But then it
follows from Hi(A)=0 that H,(4 1)=0 for i<s—3, and, by the Hure-
wicz isomorphism theorem, that 7,(4)=0 for ¢ <s—3.

5. Proof of Theorems 1 and 2.
The Gysin cohomology sequence for the Hopf fibration gives
. - H{A) - H(A) -~ Hi-{4) - H+Y(4) -

Proposition 2 gives Hi(A)=0 for i <s—2, which implies that the maps
Hi(4) - Hi+2(A) are isomorphisms for 0 <4 <s—4. Using H%A)=Z and
HY(4)=0, it follows from [2] that these groups are computable:
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i _|Z forieven
H(A)_{O for ¢ odd

provided i =s—2.
The proof of the corollary goes by duality.

Proor or THEOREM 2. The Hopf fibration gives the exact sequence
cee > n¢(Zf) -7 (A) > m;_1(S) - ni_l(ﬁ) - ...

Since ni(‘zf )=0 for ¢+ <s—3, we have isomorphisms s,(4) — 7,_,(S*) for
t <s—3. But #,(8')=Z and #,(8*) =0 for ¢ = 2, so @y,(4A)=Z and n;(4)=0
for 3=<i<s-3.

ADDED IN PROOF. Meanwhile the author has been able to prove that
7Py, A)=0 for 1=i<s+1. See M. E. Larsen, On the topology of com-
plex projective manifolds, Kgbenhavns Universitet, Matematisk Institut,
Preprint Series 1972 No. 12.
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