ON THE HOMOTOPY GROUPS OF COMPLEX PROJECTIVE ALGEBRAIC MANIFOLDS

MOGENS ESROM LARSEN

1. Introduction.

Let A be a complex algebraic manifold of dimension a everywhere imbedded in some complex projective space P_n of dimension n. In [2] it is proved that in case a and n satisfy the inequality $2a \ge n+1$, then $\pi_1(A) = 0$.

From this one can only conclude the following about the higher order homotopy groups: In case 2a = n + s for some s > 1, the group $\pi_i(P_n, A)$ is finite for $1 \le i \le s + 1$, and equivalently, $\pi_i(A)$ is finite for $3 \le i \le s$.

This note is concerned with the problem whether these finite groups vanish. Unfortunately the methods used require a much bigger s to get results. Actually, for $s \le 4$ nothing new is obtained. So suppose $s \ge 5$. The result is stated in theorems 1 and 2.

Theorem 1. Let $A \subseteq P_n$ be a complex algebraic manifold imbedded in the complex projective space P_n . Assume A has dimension a everywhere and P_n dimension n. Let s = 2a - n and suppose $s \ge 5$. Then

$$H^i(A, \mathbf{Z}) = egin{cases} 0 & \textit{for } i \textit{ odd} \\ \mathbf{Z} & \textit{for } i \textit{ even} \end{cases}$$

provided $i \leq s-2$.

COROLLARY 1. Under the same circumstances

$$H_i(A, \mathsf{Z}) = \begin{cases} 0 & \textit{for } i \textit{ odd} \\ \mathsf{Z} & \textit{for } i \textit{ even} \end{cases}$$

 $provided \ i \leq s-3.$

Theorem 2. Under the same circumstances

$$\pi_i(A) \; = \; \left\{ \begin{array}{ll} 0 & \;\; for \;\; i=1,3,4,\ldots,s-3 \; . \\ \mathsf{Z} & \;\; for \;\; i=2 \; . \end{array} \right. \label{eq:pi_sigma}$$

I wish to thank W. Barth for mentioning to me the possibility of connecting Morse theory and his work on the distance function [1].

2. Preliminaries.

First some preparations for using Morse theory. Let M be a complex n-dimensional manifold and $f \colon M \to \mathbb{R}$ a C^2 -function. Then in any coordinate system $z_j = x_j + ix_{n+j}, \ j = 1, \ldots, n$, we have the quadratic Levi-form

$$\label{eq:Lf} L_{\it f}(p,w) \, = \, \sum_{\it j,\,k} \frac{\partial^2 \! f(p)}{\partial \bar{z}_k \, \partial z_j} \, w_{\it j} \, \overline{w}_k \; ,$$

for $p \in M$ and $w \in \mathbb{C}^n$. This form is known to be independent of coordinates and to be real. We can now define

$$\operatorname{Index}_{\mathsf{C}}(f,p) = \max \left\{ \dim V \mid V \subseteq \mathsf{C}^n \text{ and } L_f(p,w) < 0, \ \forall w \in V \setminus \{0\} \right\}.$$

M can be considered as a 2n-dimensional real manifold too, and in the coordinates x_i , $j = 1, \ldots, 2n$, there is the quadratic Hessian

$$H_f(p,v) = \sum_{k,j} \frac{\partial^2 f(p)}{\partial x_k \partial x_j} v_k v_j$$

for $p \in M$ and $v \in \mathbb{R}^{2n}$. This form is independent of coordinates in case df(p) = 0. We can define

 $\operatorname{Index}_{\mathsf{R}}(f,p,x) \, = \, \max \left\{ \dim V \, \left| \right. \, V \subseteq \mathsf{R}^{2n} \, \text{ and } \, H_f(p,v) < 0, \, \, \forall \, v \in V \smallsetminus \left\{0\right\} \right\}.$

where x means the chosen coordinates. Define a matrix

$$\widehat{E} = \begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix}.$$

A simple computation then shows that for $w_j = v_j + iv_{n+j}$ and $z_j = x_j + ix_{n+j}$

(1)
$$L_f(p,w) = \frac{1}{4} (H_f(p,v) + (\widehat{E}^{-1}H_f\widehat{E})(p,v)).$$

One finds formula (1) in [1, Lemma 12]. Now let $q = \operatorname{Index}_{\mathsf{C}}(f, p)$ and $r = \operatorname{Index}_{\mathsf{R}}(f, p, x)$. By looking at the subspaces on which the forms are positive semi-definite formula (1) gives

$$\begin{array}{rcl} 2n-2q \; \geqq \; 2(2n-r)-2n \; , \\ r \; \geqq \; q \; , \\ \mathrm{Index}_{\mathsf{R}}(f,p,x) \; \geqq \; \mathrm{Index}_{\mathsf{C}}(f,p) \; . \end{array}$$

Let G = SU(n+1) acting on P_n . Consider the map $\varphi: G \times A \to P_n$ defined by $\varphi(\sigma, x) = \sigma x$. As in [2, 1(a)] there is a neighborhood B of $1 \in G$,

the neutral element of the group, such that B is open and connected, $\sigma B \sigma^{-1} = B$ for all $\sigma \in G$, and there is a $b \in R_+$ such that for all $x \in P_n$,

$$Bx = \{ y \in P_n \mid \operatorname{dist}(x, y) < b \}.$$

Here dist is the usual Fubini-Study-metrik on P_n [1]. Hence $B\sigma A = \sigma BA$ is a tubular neighborhood of σA for all $\sigma \in G$.

Let us study $A \cap \sigma A \subseteq A \cap B\sigma A$. Let $q \in (A \cap B\sigma A) \setminus \sigma A$. Let f_A denote the squared distance from A. According to [1, Lemma 11] there is a $\tau \in G$, such that for $g = f_{\sigma A} \mid U \cap \tau A$, where U is a neighborhood of $q \in \tau A$, the differential dg(q) equals 0 and $H_g(q,v) < 0$ for all $v \neq 0$. Hence $L_g(q,w) < 0$ for all $w \neq 0$. And since $\dim A \cap \tau A \geq s$, there is a tangent space V at q of dimension at least s, such that

$$L_{f_{\sigma A}}(q, w) = L_{q}(q, w) < 0 \quad \text{for all } w \in V.$$

Hence

$$\operatorname{Index}_{\mathsf{R}}(f_{\sigma A}, q, x) \geq \operatorname{Index}_{\mathsf{C}}(f_{\sigma A}, q) \geq s$$
.

3. The fundamental lemma.

Let $E = B\sigma A \cap A$ and $D = \sigma A \cap A$ for some fixed $\sigma \in G$. Suppose further, that B is not maximal but somewhat smaller, say such that there exists another neighborhood B' satisfying

$$B\sigma A = \{x \in \mathsf{P}_n \mid f_{\sigma A}(x) < b\} \subseteq B'\sigma A = \{x \in \mathsf{P}_n \mid f_{\sigma A}(x) < b + \eta\}$$

for some $\eta > 0$. Then we will show:

LEMMA 1. In the notation above we have $H^m(E,D) = 0$ for 0 < m < s.

Proof. Let $0 < \varepsilon < \frac{1}{2}\eta$, assuming $\eta < b$. According to [3, Corollary 6.8, p. 37] we can find a smooth function g_{ε} with no degenerate critical points, so that g_{ε} approximates $f_{\sigma A}$ up to second derivative uniformly on

$$K(\varepsilon) = \{x \in A \mid f_{\sigma A} \leq b + \varepsilon\}$$

with a distance from $f_{\sigma A}$ and its derivatives smaller than ε . The set

$$M(\varepsilon) = \{x \in K(\varepsilon) \mid \varepsilon \leq g_{\varepsilon}(x) \leq b + \varepsilon\}$$

has the properties that $K(\varepsilon) \supseteq E$ and $K(\varepsilon) \setminus M(\varepsilon) \supseteq D$, because

$$\begin{array}{l} 0 \, = \, \varepsilon - \varepsilon \, \leq \, g_{\epsilon}(x) - \varepsilon \, < f_{\sigma A}(x) \; , \\ \\ \bigcap_{\epsilon > 0} K(\varepsilon) \, = \, E, \quad \bigcap_{\epsilon > 0} K(\varepsilon) \smallsetminus M(\varepsilon) \, = \, D \; . \end{array}$$

Choosing g_{ε} closer to $f_{\sigma A}$, we may assume that the Hessian $H_{g_{\varepsilon}}$ is so close to $H_{f_{\sigma A}}$, that we have for all $q \in M(\varepsilon)$ and all coordinates x

$$\operatorname{Index}_{\mathsf{R}}(g_{\varepsilon},q,x) = \operatorname{Index}_{\mathsf{R}}(f_{\sigma A},q,x) \geq s$$
.

Then we get from [3, Theorem 3.2, p. 14 or Theorem 3.5, p. 20] that, putting

$$M^{\varepsilon} = \{ x \in K(\varepsilon) \mid g_{\varepsilon}(x) < b + \varepsilon \}, \quad M_{0}^{\varepsilon} = \{ x \in M^{\varepsilon} \mid g_{\varepsilon}(x) \le \varepsilon \}$$

the pair $(M^{\epsilon}, M_0^{\epsilon})$ is a relative CW-complex with at most such λ -cells attached for which $\lambda \ge s$. Hence by excision (see f.ex. [3, p. 29]), we get $H_m(M^{\epsilon}, M_0^{\epsilon}) = 0$ for $m = 0, 1, \ldots, s - 1$. Now, by duality we get

$$H^m(M^{\varepsilon}, M_0^{\varepsilon}) = 0$$
 for $m = 0, 1, \dots, s-1$

and torsion-free for m=s. Now, let $\varepsilon \to 0$. Then

$$H^m(A \cap \sigma A) = \lim_{n \to \infty} H^m(M_0^{\epsilon})$$
 and $H^m(A \cap B\sigma A) = \lim_{n \to \infty} H^m(M^{\epsilon})$,

and hence we have $H^m(E,D) = 0$ for m = 0, 1, ..., s-1 and torsion-free for m = s.

4. Some lemmata.

The group G acts on C^{n+1} and hence on S^{2n+1} , such that every $\sigma \in G$ gives a commutative diagram

$$\begin{array}{ccc}
S^{2n+1} & \xrightarrow{\sigma} & S^{2n+1} \\
\downarrow & & \downarrow \\
P_n & \xrightarrow{\sigma} & P_n
\end{array}$$

Lemma 2. If E and D are as in section 3, then $H^m(\widehat{E},\widehat{D}) = 0$ for $1 \le m < s$.

Proof. The general Gysin cohomology sequence

$$\dots \to H^m(E,D) \to H^{m+2}(E,D) \to H^{m+2}(\widehat{E},\widehat{D}) \to H^{m+1}(E,D) \to \dots$$

and lemma 1, saying $H^m(E,D) = 0$ for $m \le s - 1$, give $H^m(\widehat{E},\widehat{D}) = 0$ for $m \le s - 1$.

Let us fix some notation. The map $\hat{\varphi}: G \times \widehat{A} \to S^{2n+1}$ is defined by $\hat{\varphi}(\sigma,x) = \sigma x$. Let $p_G: G \times \widehat{A} \to G$ be the projection on G, and $p'_G: \hat{\varphi}^{-1}(\widehat{A}) \to G$ the restriction $p_G|\hat{\varphi}^{-1}(\widehat{A})$. We will now compare $G \times \widehat{A}$ with $\hat{\varphi}^{-1}(\widehat{A})$.

LEMMA 3. There exists an isomorphism

$$H^p(G) \otimes H^q(\widehat{A}) \to H^p(G, R^q(p'_G)_* Z)$$

for all pairs (p,q) where $q \leq s-2$.

PROOF. At the point $\sigma \in G$, the stalk of the sheaf $R^q(p'_G)_* Z$ is the group $H^q(\widehat{D})$. There is a commutative diagram

$$\hat{D} \stackrel{\hat{\varphi}}{\longleftarrow} (\{\sigma\} \times \hat{A}) \cap \hat{\varphi}^{-1}(\hat{A}) \\
\downarrow \qquad \qquad \downarrow \\
\hat{E} \stackrel{\hat{\varphi}}{\longleftarrow} (B\sigma \times \hat{A}) \cap \hat{\varphi}^{-1}(\hat{A}),$$

which gives a commutative diagram

$$egin{aligned} H^q(\widehat{E}) & \longrightarrow H^qig((B\sigma imes \widehat{A}) \, \cap \, \widehat{arphi}^{-1}(\widehat{A})ig) \ & & & \downarrow \ & & \downarrow \ & & & H^q(\widehat{D}) & \longrightarrow H^qig((\{\sigma\} imes \widehat{A}) \, \cap \, \widehat{arphi}^{-1}(\widehat{A})ig) \; , \end{aligned}$$

where by lemma 2 the left map, and obviously the lower map, are isomorphisms for $q \le s-2$. Hence for these q, the right map is epimorphic and the upper one is monomorphic. This gives a natural extension map

$$H^q\big((\{\sigma\}\times \widehat{A})\cap \widehat{\varphi}^{-1}(\widehat{A})\big)\to H^q\big((B\sigma\times \widehat{A})\cap \widehat{\varphi}^{-1}(\widehat{A})\big)$$

for $q \le s-2$. Hence the sheaf $R^q(p'_G)_* Z$ is locally constant on G for $q \le s-2$, and since $\pi_1(G) = 0$, it is constant. That is

$$H^p(G, R^q(p'_G)_* \mathsf{Z}) \cong H^p(G) \otimes H^q(\widehat{A})$$
.

PROPOSITION 1. The restriction map $H^i(G \times \widehat{A}, \mathbb{Z}) \to H^i(\widehat{\varphi}^{-1}(\widehat{A}), \mathbb{Z})$ is an isomorphism for $i \leq s-2$.

PROOF. The spectral sequences for p_G and ${p'}_G$ are for $q \le s-2$

where the last isomorphism follows from lemma 3. Hence the restriction is an isomorphism for $i \le s-2$.

Proposition 2. $\pi_i(\widehat{A}) = 0$ and $H_i(\widehat{A}) = 0$ for $i = 1, 2, \dots, s-3$ and $H^i(\widehat{A}) = 0$ for $i = 1, 2, \dots, s-2$.

PROOF. The spectral sequences for the maps $\hat{\varphi}: G \times \hat{A} \to S^{2n+1}$ and the restriction of this map to $\hat{\varphi}^{-1}(\hat{A})$ are

since both maps are fiber bundles with the same fiber F. The isomorphism to the left comes from proposition 1. For p=0 we have $H^q(F)$ everywhere. Suppose $H^p(\widehat{A})=0$ for $1 \leq p < i < s-1$. Then there are exact sequences

with commutative squares. So from the five-lemma the second vertical arrow must be an isomorphism. Since $H^i(S^{2n+1})=0$, we get $H^i(\widehat{A})=0$. This induction continues until s-2. From the Hopf fibration $\widehat{A} \to A$ the sequence

$$\pi_{\mathbf{1}}(S^{\mathbf{1}}) \to \pi_{\mathbf{1}}(\widehat{A}) \to \pi_{\mathbf{1}}(A)$$

is exact. Therefore $\pi_1(\hat{A})$ is cyclic, because $\pi_1(S^1) = \mathbb{Z}$ and (from [2]) $\pi_1(A) = 0$. Hence $\pi_1(\hat{A}) \cong H_1(\hat{A})$, and by duality $H_1(\hat{A}) = 0$. But then it follows from $H^i(\hat{A}) = 0$ that $H_i(\hat{A}) = 0$ for $i \leq s - 3$, and, by the Hurewicz isomorphism theorem, that $\pi_i(\hat{A}) = 0$ for $i \leq s - 3$.

5. Proof of Theorems 1 and 2.

The Gysin cohomology sequence for the Hopf fibration gives

$$\dots \to H^i(A) \to H^i(\widehat{A}) \to H^{i-1}(A) \to H^{i+1}(A) \to \dots$$

Proposition 2 gives $H^i(\widehat{A}) = 0$ for $i \le s - 2$, which implies that the maps $H^i(A) \to H^{i+2}(A)$ are isomorphisms for $0 \le i \le s - 4$. Using $H^0(A) = \mathbb{Z}$ and $H^1(A) = 0$, it follows from [2] that these groups are computable:

$$H^{i}(A) = \begin{cases} \mathsf{Z} & \text{for } i \text{ even} \\ 0 & \text{for } i \text{ odd} \end{cases}$$

provided $i \leq s-2$.

The proof of the corollary goes by duality.

PROOF OF THEOREM 2. The Hopf fibration gives the exact sequence

$$\ldots \to \pi_i(\widehat{A}) \to \pi_i(A) \to \pi_{i-1}(S^1) \to \pi_{i-1}(\widehat{A}) \to \ldots$$

Since $\pi_i(\widehat{A}) = 0$ for $i \leq s-3$, we have isomorphisms $\pi_i(A) \to \pi_{i-1}(S^1)$ for $i \leq s-3$. But $\pi_1(S^1) = \mathbb{Z}$ and $\pi_i(S^1) = 0$ for $i \geq 2$, so $\pi_2(A) = \mathbb{Z}$ and $\pi_i(A) = 0$ for $3 \leq i \leq s-3$.

ADDED IN PROOF. Meanwhile the author has been able to prove that $\pi_i(\mathsf{P}_n,A)=0$ for $1\leq i\leq s+1$. See M. E. Larsen, On the topology of complex projective manifolds, Københavns Universitet, Matematisk Institut, Preprint Series 1972 No. 12.

BIBLIOGRAPHY

- W. Barth, Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven Raum, Math. Ann. 187 (1970), 150-162.
- W. Barth and M. E. Larsen, On the homotopy groups of complex projective algebraic manifolds, Math. Scand. 30 (1972), 88-94.
- J. Milnor, Morse Theory, Ann. of Math. Studies 51, Princeton University Press, Princeton 1963. Third printing 1969.

UNIVERSITY OF COPENHAGEN, DENMARK