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RINGS IN WHICH PURE
IDEALS ARE GENERATED BY IDEMPOTENTS

S. JONDRUP

1. Introduction.

In this note all rings considered are associative with an identity
element 1, ring homomorphisms preserve 1 and subrings have the same 1.

A left ideal I is called pure if the ring modulo the ideal is a flat left
module. Rings in which pure ideals are generated by a single idem-
potent are the class of rings for which cyclic flat left modules are pro-
jective.

Commutative rings with cyclic flat modules projective have been
studied by several authors, for instance S. Endo [5], K. H. Mount [12],
D. Lazard [11] and W. V. Vasconcelos [16] and [17]. Not necessarily
commutative rings with cyclic flat left modules projective are treated
in the following papers: L. I. Sahaev [14] and [15] and the author [7],
(81, [9]-

The aim of this paper is to study rings in which any pure left ideal
is generated, not necessarily by a single idempotent, but by a whole
family of idempotents. This class of rings will be denoted by ¥.

In the first part of this paper we prove that if any projective ideal
is a direct sum of finitely generated ideals, then the ring is in €. As
a corollary we get that any left or right semihereditary ring is in 4.
In the rest of the paper we only consider commutative rings in €.

For a commutative ring in ¥ we can prove that any projective ideal
is a direct sum of finitely generated ideals.

In the second part of the paper we prove that if R (commutative) is
in €, then the polynomial ring, R[X], and the ring of power series, R[[X]],
are again in . Furthermore we can characterize the rings in € by
topological properties of the prime spectrum of the rings.

We conclude the paper by results concerning products of rings in €,
in particular we are interested in conditions on the rings, R;, which
ensures that the complete direct product is in €.
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2. Generel results.

This section includes all the results we are able to prove for not
necessarily commutative rings in €.

Levma 2.1. Let A be any rings. The following conditions are equivalent:

(1) A€¥.

(2) Al countably generated pure left ideals are generated by idempotents.

(3) AU countably generated projective pure left ideals are generated by
idempotents.

(4) Given anmy sequence (@;);.n Of elements in A satisfying a;=a,0,,,
for all 4, then the left ideal generated by the a;’s is generated by idem-
potents.

Proor. Obviously (1) implies (2) and (2) implies (3).

To prove that (3) implies (4) we note that the ideal generated by
the a,’s is pure [4, proposition 2.2]. Any countably generated pure
ideal is projective by Jensen’s theorem [6, lemma 2], and the proof
of the implication is completed.

It remains to prove that (4) implies (1). Assume that I is a pure
ideal which can’t be generated by idempotents and let a, €I be an
element not contained in any left ideal generated by idempotents from I.

We want to construct a sequence of elements a,,a,,..., where all
the a;’s are in I and a;a;,,=a; for all <. If we can construct such a
sequence, then we are done since the ideal I, generated by the a,’s
can’t be generated by idempotents from / and then, of course, I, is not
generated by idempotents.

Since I is pure there exists a homomorphism e Hom ,(/,4) with
u(a;)=a,. Put a,=u(l), then we have a,=a,a,. If we repeat the
argument with a, replaced by a,, then we get an element a, satisfying
a,a;=a,. Continuing the process we get the required sequence.

Let us state some corollaries of the lemma.

COROLLARY 2.2. A ring in which any projective ideal is a direct sum
of finitely generated tdeals is in €.

Proor. It suffices to prove that any projective pure ideal I can be
generated by idempotents. By assumption, [ is a direct sum of finitely
generated ideals I;,j € J. Each I; is clearly pure and hence I; is gener-
ated by a single idempotent. (Since 4/I; is a flat and finitely related
left A-module, A/I; is projective.) It is now obvious that I can be
generated by idempotents.



RINGS IN WHICH PURE IDEALS ARE GENERATED BY IDEMPOTENTS 179

CoRroLLARY 2.3. Any left or right semihereditary ring is in €.

Proor. If 4 isleft semihereditary, then 4 € € by F. Albrecht [1], and
if A is right semihereditary, then a theorem by H. Bass [2, theorem 3]
implies that 4 € €.

Proposition 2.4. Any left p.p. ring is in €.

Proor. R is a left p.p. ring means that all principal left ideals of R
are projective or equivalently any left annihilator of a principal left ideal
is generated by a single idempotent.

Given an ideal I=3;Aa;, where a;=a;a;,;, we have to prove that
I is generated by idempotents.

It is easily seen that the left annihilator of (1—a;) is contained in
the left annihilator of (1—a;,;). By assumption there exists an idem-
potent e; such that Ae; is equal to the left annihilator of (1—a;) for
any j, so e; is in the left annihilator of (1—a;,,;) for all k, hence

(1) e; = ;a;,, foralljandk.

It follows from (1) that e; is in I for all j. The element a; is clearly
contained in the left annihilator of (1 —a;,,) and consequently a;=x;e;,;
for some x;. We have now proved that the left ideal generated by the
e;’8 is equal to I.

I don’t know whether any projective left ideal over a left p.p. ring
is a direct sum of finitely generated ideals. But one can prove the fol-
lowing result:

THEOREM 2.5. Let R be a commulative ring in €. Any projective ideal
18 a direct sum of finitely generated ideals.

Proor. It suffices to pegve that any countably generated projective
ideal is a direct sum of finitely generated ideals (I.Kaplansky [10]).

By t(I) we denote the trace ideal of I. Since I is projective and
countably generated it follows that #(I) is countably generated.

For all prime ideals P, I is free, hence {(I)p=¢(Ip) is (0)p or Rp,
this gives us that R/¢(I) is flat and by hypothesis () is generated by
idempotents, f;, j € N, say. The idempotents

fi=fu fa=H+le—fifo fs=Fotfs—Fofs
do also generate ¢(I) and f,f;,,=f;. Put
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e=f, e=fi-fu ea=fi-fo ..
then #(I) is generated by the e;’s, and it is easily seen that each e, is idem-
potent and e;e;=0, ¢ +j. We claim that

(2) I=73%®el.

It is obvious that the sum of the ideals e,/ is direct and contained in I.
To prove equality in (2) it suffices to prove that for any prime ideal P,

Ip = (Zi@eiI)P'

If I,=0p, then there is nothing to prove. So let us assume that I, ~ Rp.
In this case ¢(I)p=1%( p) = Rp, thus there exists one and only one element
es such that e; ¢ P. By the complete additivity of the functor — Q@ pRp,
we get

(2i@eiI)P = 2:®(e;I)p = (e,1)p = Ip,
since e; is a unit in Rp.

The proof of theorem 2.5 is completed if we can prove that eI is
finitely generated. Let us remark that {(e;l)=e,R. Since ¢;I is e;R
projective, it suffices to prove that a projective ideal J in a ring S with
t(J) =28 is finitely generated. We can write

1= prp(a’p) s

where f,, € Homg(J,8) and a, € J for all p. For any a € J we have

a = Zpafp(a’p) = Zpa’pfp(a’) s
hence the a,’s generate J.

The last part of the proof can be replaced by a reference to [17, lemma
1.2].

Theorem 2.5 is due to Vasconcelos (unpublished), but with a different
proof.

3. Stability.
In this section all rings considered are commutative rings.

ProrositionN 3.1. If R e ¥, then the polynomial ring R[x] € ¥, too.

Proor. Using the notation from [13, section 4] we have that for any
pure ideal I in R[z], ¢(I) is pure in R and hence generated by idem-
potents. Further I=g¢(I)R[z] by [13, lemma 4.2], so I is generated
by idempotents.
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ProrosriTioN 3.2. If Re ¥, then R[[x]]€¥. Here R[[x]] denotes the
ring of power series over R.

Proor. For a € R[[x]] we denote by ¢(a) the constant term of the
power series a. Let I be any pure ideal in R[[x]]. Clearly I,=¢(a), a € I,
is a pure ideal in R. Hence there exist elements (a,),. s, Where a,€ I
for all s, such that ¢(a,)=e, is an idempotent in R for all s € § and the
e,’s generate I,.

We claim that e,el for all s. Since ¢(ace,)=e,, we have e,a,=
e(l+ba)el. The element = is in the Jacobson-radical of R, hence
e, el

To prove proposition 3.2 it suffices to prove that the ideal in R[[x]]
generated by the e/’s is equal to I.

If we can prove that for any maximal ideal P, where e, P for all
seS, Ip=(0)p, then we are done.

Since (R[[«]]/I)p is a cyclic flat module over a local ring, it is free of
rank zero or one. Thus if (/)p is nonzero, then I,=R,. Now assume
Ip=Rp,. We can find an ael,a¢ P, say a=a,+a,x+ ... . Since
x € P, we get a, & P. Hence there exists an idempotent e € I such that
ase=a,. This implies that e ¢ P, and the proof of proposition 3.2 is
completed.

ReMARK 1. The ring R of continuous real-valued functions on [0,1]
shows that a subring of a ring in % is not necessarily again in %.
(The classical ring of quotients of R is von Neumann regular and the
ideal consisting of all functions vanishing on some neighbourhood of
zero is projective, indecomposable and not finitely generated.)

REeMARK 2. If R is a subring of S, § faithfully flat and S € €, then
it is readily checked that R e ¥.

Let us recall that a subset E of Spec(R) is called D-closed, if E is
closed and for each x € Spec(R) with {}nE +0, x € E (cf. D. Lazard
[11]).

THEOREM 3.3. The following conditions are equivalent for the ring R,
with Spec(R) = X.

(1) Re€¥.

(2) Any D-closed subset of X is an intersection of open-closed subsets
of X.

Proor. (1) implies (2). By [11, proposition 5.4] any D-closed set
E is of the form Supp(R/I), where R/I is R-flat. Since I is pure, it is
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readily checked that Supp(R/I)=V(I). By hypothesis I =3, Re;, where
e; is idempotent for all j. Further, V(I)=V(Z;Re;)=N;V(Re;) and
we are done by [3, chap. I, § 4, n° 3, proposition 15].

(2) implies (1). Let I be any pure ideal in R. Then V(I)=Supp(R/I)
is D-closed and consequently V(I)=0); V(Re;) for a suitable set of idem-
potents in R. From V(I)=V(Z;Re,), it follows that

rad (I) = rad(3;Re;) .
Obviously 123, Re;. To prove equality it suffices to prove that

If 1, is non-zero, then we can find an element a, a € I and a ¢ P. Thus
we can find an m such that a™ is in the ideal generated by the e;’s.
Hence there exists an 4 such that e; does not belong to P, that is,

(Z;Re;)p=Rp.

CoroLLARY 3.4. Let I be a nil ideal. Then R € € if and only if R[] € €.

4. The pure length cf a ring.

R denotes still a commutative ring. In [14] I. I. Sahaev has proved
that any cyclic flat left module over a ring R is projective if and only
if any ascending chain of principal left ideals

(1) (@) s ... € (@, € ..., where a,=0a,0a,,,,

terminates. We define the pure length of a ring R to be the supremum of
all » for which there exists a strictly ascending chain

2) (@) € ... € (a,), where a;=a;a;,,, je{l,...,n—1}.

The pure length may be infinite even if all finitely generated flat
modules are projective, as the following example shows:

ExamprLe 1. Let F be a commutative field. We take R to be the
F-algebra on the generators x;;, +<j, j € N and defining relations
(3) xijxiojo = 0 fOI‘ ’l:=":0 .
(4) X%y = %;_y; for all 4+ and j.

The relations in (4) show that the pure length of R is infinite. By means
of the theorem of I. I. Sahaev, mentioned above, it is not hard to verify
that any cyeclic flat B-module is projective and hence by Mount’s theorem
[12] any finitely generated flat R-module is projective.
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Prorosition 4.1. Let (R;,y;:);c; be a direct system of rings. If there
exists an n such that R, has pure length less than or equal to n for all 1, then
li_lgllRi has finite pure length.

Proor. We have the following diagram
R, -, R.

v J

A
lim; R,
—

If (¢;)s ... €(a,4,) is an ascending chain of elements from l_i_l)nIR,i and
a,a;,,=a;, then there exists an ¢, and elements b,,...,b0,,, € Rio
satisfying y, (b;) =a; for all j. Since y; (b;—b;b;,,)=0, there ex1sts an s,
such that ,=<¢,; and Vio11(05) = Vi 1,(0:)V4,4,(0541). Hence by assumption

Ry viyi,(0;) = By ¥404,(b54,) for some je{l,...,n} and consequently
(IB)nIR )(a;) = (IlI;IIRi)(a’j+l)'

The proof of the following lemma is straightforward.

Lemma 4.2. A finite direct sum of rings R;, 1S4 = n, has finite pure
length, if and only if each ring R, has finite pure length.

Lemma 4.3. (Cf. Sahaev [15] or Jondrup [8]). If the ring R is a subring
of 8 and S has finite pure length, then R has finite pure length.

Proor. R has no infinite set of orthogonal idempotents by S. Endo
[5] and since R is commutative we can assume that R is indecomposable.

If (a,) < . . . =(a,) is a finite sequence of the form (2) and if » is strictly
greater than the pure length of S, then there exist an s€ S and an
1€ (2,...,n} such that sa;_;=a;. If we multiply this equation by a,,
we get that a; is idempotent, and since a, is nonzero, we conclude that
a;=1.

REMAREK. In general the pure length of R may be arbitrarily larger
than the pure length of 8. If R=Z®...®Z (m copies of the ring of
integers) and S=Q®...DQ (m copies of the ring of rational numbers),
then it is easily seen that R has pure length equal to 2m+1 and S has
pure length equal to m +1.

Lemma 4.4. Let I be a nil ideal. If the pure length of R[I is finite,
then R has finite pure length.
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Proor. Since [ is nil, there is a 1-1 correspondence between idem-
potents in R and R/I, so we can assume that both R and R/I are in-
decomposable rings.

For a € R, @ denotes the homomorphic image of a under the canonical
map from R to R/I.

Let (a,) < . .. & (a,) be a chain in R of the form (2). Then (a,)< ... = (@,)
is a chain of the form (2) in R/I, hence if n is greater than the pure
length of R/I plus one, there exists an element 7€ R/I and an index
J>2 such that ra;_,=a;. If we multiply this equation by @;, we get
a;=a2. Since R/I is indecomposable, we conclude that a;e I or that
a; is a unit modulo I. If a; €I, then the equation a;_,a;=a;_, shows
that a;_,=0, a contradiction. If a; is a unit modulo 7, then it is well-
known that a; is a unit itself.

ProrosiTioN 4.5. Let R be a noetherian ring. Then R has finite pure
length.

Proor. The proof of theorem 4.6 in [8] can be repeated verbatim
having lemma 4.2, lemma 4.3 and lemma 4.4 in mind.

ProposiTioN 4.6. Let (R;);.; be a family of rings and suppose there
exists an tnteger n such that all rings R; have pure length less than n. Then
II;R; e ¥.

Proor. Let (a,) be a sequence in JT,R; with a,=a.a,,. For each
7 let a, be equal to (a,;);.;- If v>n, then for all ¢ there exists a 1,57
such that a, ;=e¢, is idempotent. It is readily checked that (e;)(a,.,;) = (e;)
and (¢;)a;=a,. The first equation shows that (e;),.; is in the ideal
generated by the a,’s. The second equation shows that a; is contained
in the ideal generated by the elements (e;);cz-

Remark. The assumption that the pure lengths of the R,’s are limited
is essential.

Let K be a commutative field. We take R;, ¢ € N, to be the commu-
tative K-algebra on the generators z;;, j <7, and defining relations

(5) Xj_13%; = ¥;_y; forallsandy.

It is easily seen that R; is a noetherian ring. Let a,; be equal to 1 if
t>1 and z; if v<¢ and put (a,)=((@,)in). Then it is readily checked
that the ideal generated by the a.’s can’t be generated by idempotents.

CoROLLARY 4.7. The direct product of any family of coptes of a noetherian
ring B is in €.
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