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THE ¢-COMPACT-OPEN TOPOLOGY AND
ITS RELATIVES

DENNY GULICK

1. Introduction.

The present paper arose from an attempt to define a natural topology
which would serve as the Mackey topology for the strict topology on
the space Cp(X) of all continuous, bounded (complex- or real-valued)
functions on X. That such a topology might just conceivably exist is-
sues on the one hand from Conway’s delicate argument showing that if
X is simultaneously locally compact and paracompact, then the Mackey
topology is the strict topology, and on the other hand, from his example
which showed that in general the strict topology is different from the
Mackey topology [3].

As a locally convex topology on Cy(X) which we hoped at first might
be so slightly larger than the strict topology as to fill our bill we defined
the “o-compact-open topology,” where convergence is simply uniform
convergence on all o-compact subsets of X. To our surprise, we found
that the g-compact-open topology is in fact the strict topology precisely
when the duals are equal — whether or not it is the Mackey topology!
Nevertheless, the o-compact-open topology and the strict topology have
interesting properties and inter-relationships. Along with the “bounded-
compact convergence’’ structure — a close relative of these two topo-
logies — these concepts are what this paper is about.

Section 2 focuses on the strict topology on Cy(X), for arbitrary com-
pletely regular X. In Buck’s ground-breaking papers [1], [2] he as-
sumed that X was locally compact. Our methods differ drastically
from his, since if X is no longer locally compact, there may well be a
paucity of compactly supported continuous functions on X, a fact which
many of his arguments could not tolerate.

Regardless, we are able to prove analogues to his results. Included
among them are two we mention. First, Cy(X) with the strict topology
is metrizable precisely when X is compact, which is precisely when the
topology is normed. The second result tells us that the dual is always
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M(X), the collection of all countably additive, regular, bounded meas-
ures on X.

In Section 3 we define the bounded-compact convergence, which turns
out to be stronger than convergence in the strict topology. Although
we are able to talk about the linear functionals continuous with respect
to this convergence, we also show that the convergence yields a topo-
logy only when X is compact.

The inauguration of the o-compact-open topology occurs in Section 4,
where we compare it with the strict topology, bounded-compact con-
vergence, and the norm topology on Cy(X). We prove that the ¢-com-
pact-open topology is metrizable only when it is normable, and prove
that the space is always sequentially complete. On the other hand, it
is not always complete, although if X is either locally compact or satis-
fies the first axiom of countability, then the space is in fact complete.

In the final section we characterize the dual of C,(X) clothed in the
g-compact-open topology. It is here that we find that the dual of (X))
with the strict topology coincides with the dual of C,(X) with the ¢g-com-
pact-open topology precisely when the two topologies coincide. We
leave the question of the Mackey topology — that is, conditions under
which the o-compact-open topology is the Mackey topology — to a sub-
sequent paper.

Before proceeding to the heart of the paper, we explain our ground
rules and explain our notations. The one ground rule is: wherever X
appears, it 1s completely regular and Hausdorff (though we may specify
that X have additional properties). As for terminology, $X denotes the
Stone~Cech compactification of X, and is the largest compactification
of X. By C,(X) we mean the continuous, bounded, complex-valued
functions on X, as a vector space. Since all the functions in C,(X) are
bounded, there is a natural norm topology ¢,, where

Ifll = sup{|f(@)| : x € X}.
- Mflly = sup{|f(@)| : x € 4},

and we let y , denote the characteristic function of 4. If E is any locally
convex linear topological space, we let E* be the collection of continuous
linear functionals on E. If we identify fe Cy(X) with the unique con-
tinuous extension f' on X, then the Riesz—Kakutani Theorem says in
essence that (Cy(X),t,)* =M (BX), where M(SX) consists of all countably
additive, regular, bounded measures on fX. We denote the total varia-
tion measure associated with u by |x|, and we let |ju| = |u|(X).

Finally, we let the positive integers be called N, we let A be an arbi-

If AcX, we let
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trary indexing set, we let 4 \ B be the collection of elements in 4 but
not in B, and by “iff”” we mean “if and only if,” just as Halmos did once
upon a time.

2. The strict topology.

Buck defined and studied the strict topology on Cy(X), where X was
assumed to be locally compact [1],[2]. Much more recently, van Rooij
mentioned briefly a natural extension of the notion to arbitrary com-
pletely regular Hausdorff spaces [9]. We derive our definition from this
extension.

2.1. DEFINITION. A net (f;);c4 in Cy(X) converges strictly to fe Cp(X)
iff for each function ¢ on X which is bounded and which vanishes at oo,
fip = fo uniformly on X. The topology which this convergence describes
is called the strict topology, and is abbreviated t,.

Surely the strict topology is locally convex and Hausdorff, and quite
clearly it coincides with Buck’s strict topology whenever X is locally
compact. If {, and ¢, denote the compact-open and the normed topolo-
gies respectively on Cpy(X), then evidently t,c¢,<t, and {, has the same
bounded sets as does t,,. Furthermore, a sequence converges in ¢, iff it
is bounded in ¢, and converges in #,. These facts are observed in Buck
[1], [2]; the proofs remain valid and simple in our more general setting.

Let us direct our attention to additional properties, ones which we
analyze in more depth.

2.2. PROPOSITION. ¢, =t, iff each o-compact subset of X is relatively
compact.

Proor. The sufficiency of the condition is obvious. On the other
hand, if there is a o-compact 4 in X which is not relatively compact,
then 4 \ K % for each compact K. For each compact K, let € A\ K,
and for each neN, let fr , e Cy(X), such that fr ,=0 on K and
fen(@g)=n!l. If we let (K,n)<(K',n') mean that K< K’ and n<na’'
as well, then fz , — 0 in ¢,. To show that fx , + 0 in ¢, it suffices to show
that for each (K,n), there is an n' = n such that ||fx ,.¢||21, for an ap-
propriate ¢. To that end, note that 4 is by hypothesis o-compact, so
A=U?_ K,, with the K, compact and increasing. Now let =
2n-1¥x,/n!. Then for any (K,n), the chosen & x is an element of A\ K,
whence xy € K, for some n'2n. Then (fx , ¢)(xg)2n!/n!=1, so that
Wi, ull 2 1.
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Even though as a rule ¢, differs from ¢,, they both agree on uniformly
bounded subsets of C,(X), as we now prove.

2.3. PROPOSITION. On uniformly bounded subsets of Cy(X), the topolo-
gies t, and t, are identical.

Proor. We need only prove that if (f;);., is uniformly bounded and
if f, > 0in ¢,, then f, - 0 in {,. We may assume that ||f;|| £ M, for all 2,
and let ¢ be bounded in norm by 1 and vanish at co. Our goal is to
show that for any given ¢>0 there is a 4, such that if A1=24,, then
If:@llx <&. To that end, let ¢ and ¢ be as just mentioned and let 1/n <e.
Since ¢ vanishes at o there is a compact K,< X such that if x ¢ K,
then |p(z)| <1/(nM). But K, is compact and f, - 0 uniformly on com-
pact sets, so there is a 1, such that if 1= 1,, then ||f)l|lx, <e. This means
that if A= 4,,, then

e-1, xeK,

&
so that ||f,¢llx <e. Consequently f; -0 in ¢,

Later on, after Theorem 2.6, we will produce a criterion necessary
and sufficient for ¢, and ¢, to agree.

Let C(X) be the collection of functions on X which are continuous
and have compact support. The upcoming proof follows naturally.

2.4. ProposITION. C,(X) 18 dense in (Cy(X),t,) iff X is locally compact.

Proor. If X is locally compact, then C(X) is dense in (Cy(X),?,) by
Theorem 1 (vi) of [2]. On the other hand, if ;€ X has no compact
neighborhood, then f(x))=0 for any fe C,(X), which means that the
constant function 1 is isolated from C (X) in ¢,, and hence is isolated
from C,(X) in ¢,.

When X is locally compact, one of the beautiful and profitable proper-
ties of (Cy(X),t,) is that the dual (Cy(X),t,)*=M(X). Providentially
this property remains true for non-locally compact X. The proof is
very different from that in [2], since Buck’s proof relies on the density
of C(X) in (Cy(X),t,), and Proposition 2.4 precludes it.

2.5. LEMMA. If F € (Cy(X),t,)*, then for each e>0, there is a compact
set K< X such that if fe Cy(X) with |f||£1 and f=0 on K, then we have

|F(f)l <e.
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Proor. Otherwise, for each compact K there exists an fx € Cp(X)
such that fr=0 on K, ||fxll<1, and |F(fg)|=¢. But then fr - 01in ¢,
and thus in ¢,, whereas F(fx) + 0. This is tantamount to F not being
continuous in ¢,.

2.6. THEOREM. For any X, (Cy(X),t,)* = M(X).

Proor. Let F € (Cy(X),t,)*. Since t,ct, and (Cy(X),t,)*=M(BX), we
know that F corresponds to a measure u € M(5X). Let ¢>0. If KX
is compact and |u|(8X \ K) > ¢, then without loss of generality we may
assume that there is a compact Dc(fX N\ K) such that (Reu)D >e.
Let E be the Hahn Decomposition Set for D, let C be compact such that
C<(EnD) and (Reu)C>¢, and finally let U be open, with CcUgc
BX N\ K, such that |u|(UNC) = (Reu)C —e. Since X is normal, we may
find an f e Cy(X) such that 0=f<1, f=1o0onC, and f=0 on BX\ U (so
in particular, f=0 on K). Then

F( = lsx faul = lfodp+Tonofdnl 2 (Reu)C —|ul(UNC) > &.

By Lemma 2.5 this cannot hold for each compact K < X. Thus for each
n, there is a compact set K, <X such that |u|(BX\K,)<1/n. Con-
sequently |u|(BX\U;_,K,)=0, so that ue M(U;_, K,)c M(X), thereby
completing the proof of half the theorem. For the converse, let
ue M(X). Then u has o-compact support, so that there is an increasing
sequence of compact subsets (K,),y of X such that |ju||=|p|(Us.,K,)

n=1
and [g|/(X\NK,)<1" Let

px) =3, zeK,,\NK,, n=1,23,...,
0, z¢U;_ K, and ze K, .

Then ¢ is bounded and vanishes at oo, and whenever ||fp|| <1, we have

lu(f)l £ Zae,274m =1,

so that u defines a continuous linear functional on (C,(X),t,).
2.7. COROLLARY. t,=t, iff X is compact.

Proor. If X is compact, then obviously ¢,=t,. Conversely, if {,=t¢,,
then Theorem 2.6 and the Riesz—Kakutani Theorem together yield

M(X) = (Cp(X),t)* = (Cy(X),t,)* = (Cy(BX),t,)* = M(BX) .
But M(X)=M(BX) iff X compact.
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Now we turn to metrizability. The whole matter of the metrizability
of (Cy(X),t,) would be easily disposed of via the open mapping theorem
if we knew for certain that (C,(X),t,) were complete. On the one hand,
if X is locally compact, then (C,(X),t,) is complete, as Buck proved, and
consequently (Cy(X),t,) is usually not metrizable, as he also proved.
On the other hand, if X is not locally compact, then (Cy(X),t,) need not
be complete, as the following example illustrates. Let X consist of the
first uncountable ordinal £, plus all the discrete ordinals less than Q,,
clothed in the (relative) ordinal topology. We claim that (Cy(X),?,) is
not complete. For any A€ X, A9, let f,=vyp 5, so that f, e Cy)(X).
Then (f,),cx is t;-Cauchy, while the only possible limit would be
Yi1,0,)> Which is not continuous at Q.

Nevertheless, we can show that (Cy(X),t,) is metrizable iff X is com-
pact, irrespective of the completeness of (Cy(X),t,). If we utilize the
uniqueness of the so-called ‘“bornological topology’’ associated with any
given locally compact topology, then it follows, as Professor Michael
Powell pointed out to us, that the metrizability of (C,(X),¢,) is tant-
amount to the compactness of X. However, we have a more direct
proof which depends on the specific characteristics of ¢,, and further-
more, the proof will guide us in proving Theorem 3.6.

2.8. THEOREM. (Cy(X),t,) is metrizable iff X is compact.

Proor. If X is compact, then f,=t,, so (C,(X),t,) is metrizable, taking
care of half the proof. If X is locally compact, then (Cy(X),t,) is com-
plete. If in addition (Cy(X),?,) is metrizable, then the identity map
from the Banach space (C,(X),t,) onto (Cy(X),t,) is an open map by
the open mapping theorem (p. 294 of [7]), so that ¢,=¢,, which means X
is compact by Corollary 2.7. The final case — that X is not locally com-
pact but yet (Cy(X),t,) is metrizable — is the hardest, and we tackle it
now. If z,e X has no compact neighborhood, let us first show that z,
has a countable basis of neighborhoods. To that end, let % be the
neighborhood system' of z,, and let & be the collection of compact
subsets of X. For each De 9 and U € %, there is an xp;, ; € (UN\ D).
Using the complete regularity of X, we find a function f; ;; € Oy(X)
such that f, ;=0 on D, f,y(xpy)=1, and 0=f,y=1. If we order
the (D,U) by saying that (D,U)<(D',U’) iff DD’ and U’'c U, then
the net {fy, y: De 9, U € %} converges uniformly on compact subsets
of X to 0. Since the net is uniformly bounded and since ¢,=¢, on uni-
formly bounded sets by Proposition 2.3, this means that f5, ;; — 0 in ¢.
Because of the assumption that (Cy(X),t,) is metrizable, there is a sub-
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net of the form (fp, 7, )neny converging to 0 in ¢;. This means that if U
is any neighborhood of z,, and if D is any compact subset of X, then
there is an n such that (D,,U,)>=(D,U), which means in particular
that U,<U. The upshot of this is that x, has a countable basis of
neighborhoods. Let us continue the proof. If, in addition to x, not
having any compact neighborhood and (Cy(X),¢,) being metrizable, we
also knew that (Cy(X),t;) were sequentially complete, then using the
open mapping theorem we would find that X must be compact, which it
is not. Thus we may as well assume that (Cy(X),?,) is not sequentially
complete, which means that there is a sequence (f,),.y Which is ¢,
Cauchy but which has no limit in C,(X). However, since ¢,-Cauchy
sequences are bounded and thus uniformly bounded, (f,),.y converges
pointwise to a bounded function f, which necessarily must be discon-
tinuous at some point of X. Because the #, convergence is stronger than
compact convergence, that point cannot have a compact neighborhood.
Call this point at which f is discontinuous by z,. By the first part of
the proof, and the fact that x, has no compact neighborhood, we know
that z, has a countable basis of neighborhoods. Using the discontinuity
of f at x,, we can avail ourselves of an ¢>0 and a sequence xz; — %,
such that A= {x,},.n U {2,} indeed is compact and such that for each £k,
[f(x) —f(xg)| >¢e. Since 4 is compact, (f,)ney is uniformly Cauchy
on A4, so that for some n,, if n,m =n,, then we have ||f, —f,| 4 < ie. Joi-
ning together this information, we have

fno(@se) = Fuo(@)l 2 1f (@) —F (@) — () —f (1) | = |f (o) = Frg(o)l > 3e

for all k, with the result that f, is not continuous at ,, contradicting
the fact that (f,),ey<SCp(X). This latter contradiction completes the
proof of the theorem.

By studying the proof of Theorem 2.8, we can produce a space X
which is not locally compact but for which (Cy(X),?,) is complete. In
fact, if X satisfies the first axiom of countability and is at the same time
not locally compact, then (Cy(X),t,) ¢s complete. (Any infinite-dimen-
sional Banach space furnishes such an example!) What this shows us
is that the defining characteristic of completeness for (Cy(X),t,) is not
the local compactness of X.

3. Bounded-compact convergence.

It sometimes happens that you can get much more powerful results
from a certain type of convergence in a locally convex space if you add
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the restriction that the elements involved be uniformly bounded. This
has been especially true of sequential convergences. For example, a
sequence of measures which converges weak* and is uniformly bounded
is called a “‘tight” convergence sequence, and appears in works on prob-
ability (e.g., [8]). Likewise, sequences of continuous functions which
converge uniformly on compacta and are uniformly bounded play a part
in Herz’s attack on the spectral synthesis problem [6]. We shall define
a convergence criterion based on this latter example, and compare the
resulting convergence with convergence in the strict topology.

3.1. DeFINITION. A net (f});c4 in Cy(X) converges bounded-compactly
to a function f e Cy(X) iff it converges to f uniformly on compact sub-
sets of X and if the f, are uniformly bounded. Bounded-compact con-
vergence is denoted by y,,. If F is a linear functional on Cy(X), then
we say F is continuous with respect to y,, iff f,—f in y,, implies

F(f3) > F(f).

To avoid any confusion, we hastily mention that “F is continuous
with respect to y,,” is what van Rooij means when he says “F is tightly
continuous” in [9]. We note that f, —f in y,, iff (f,—f) =0 in y,,.
Consequently a linear functional on Cy(X) is continuous with respect to
ype iff it is continuous with respect to y,, at 0. Now we compare y,,-
convergence with f,-convergence.

3.2. ProposITION. Strict convergence is weaker than bounded-compact
convergence.

Proor. We must prove that if f, — 0 in y,,, then f; > 0in ¢,. But since
(f1)1e4 must be uniformly bounded, our result is just a restatement of
Proposition 2.3, couched in the language of this section.

Because a net can be convergent in y,, only when the net is uniformly
bounded, it would be unreasonable to expect that y,,-convergence might
coincide with ts-convérgence —unless X be compact, in which case
t,-convergence reduces to uniform convergence. In fact if X =0, the
ordinals less than the first uncountable, we can easily exhibit an ex-
ample of a strictly convergent net which fails to converge bounded-
compactly. Let £, be the collection of nonlimit ordinals. Let f;=mnyp 3,
where 1 is n; (0 <n,; < o) greater than a limit ordinal. Then f; — 0 in ¢,
but (f3)seon g, 18 nOt bounded, 50 f; + 0 in y,,.

Nevertheless, if we restrict our attention to sequences, then the two
types of convergence are identical.
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3.3. ProPOSITION. A sequence converges strictly iff it converges bounded-
compactly.

Proor. By Proposition 3.2 we need only show that if f, + 0 in y,,,
then f, + 0 in ¢,. But if f, + 0 in y,, then either f, + 0 in ¢, or (f,)nen
is unbounded. In the former case, f, + 0 in f, since {,<t,. In the latter
case, we assume without loss of generality that ||f,| = 2», and pick =, € X
such that |f,(x,)|=2" If we let ¢(x,)=1/n, for all », and ¢(z)=0 for
all other « € X, then ¢ is bounded and vanishes at c. Also |f,¢(x,)| =
2"[n — oo, so f, + 0 in t,.

Now comes a more surprising result, originally proved by van Rooij
in [9]. We omit the proof.

3.4. ProPOSITION. A4 linear functional on Cy(X) ts continuous for t, iff
it s continuous for yy..

Let us see what the state of affairs is. On the one hand, y,, is stronger
than t,, yet they are endowed with the same continuous linear functio-
nals. On the other hand, Conway proved in [3] that the strict topology
is a Mackey topology (the largest locally-convex topology with the same
continuous linear functionals), at least when X is locally compact and
paracompact. So for such X —like the reals — there are only two
possibilities, only two possible avenues out of a logical jam: either y,,=t,
or v, does not determine a locally convex topology. We have thus set
the stage for the following proposition, with whose proof we acknowledge
gratefully the help of Professor C. H. Cook.

3.5. PROPOSITION. y,, determines a topology on C,(X) iff X is compact.

Proor. If X is compact, then y,, determines £, , the norm topology,
80 yp.=t,. Conversely, assume X is not compact. Let & be a filter in
Cy(X), and let the notation % — 0 mean that & converges to 0. Then
Vpe determines a topology on C,(X) iff for each compact K in X,
(Ng_,F)K contains the neighborhood filter of 0 (in the complexes),
and if there exists a base (F,);., for (Ng_ %) such that ||f|| <M, for
all fe F,, and all 1€ A (see [4]). We will show that the latter stipula-
tion cannot be met. Let (K,),., be the collection of compact subsets of
X, directed by inclusion. Since X is not compact, for each A € A there
is an ;€ X\ K,. For each ue 4, let n, be a positive integer, and let
every tail of the net (n,),., be unbounded. Since X is completely
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regular, there is an f;, € C4(X) such that f;,=0 on K;, and f,,(z))=n,.
For any fixed u € 4, (f;,) - 0 uniformly on compact sets, and ||f, /[ =7,
for all AeA. Let #, be the filter generated by [(f;.)is.)yes. Then
F,—~0in y,,. But for each peA, and each set F,e %,, we know
that F,2(f1,):>, for some » € 4, so that there is an fe F, with |f||zn,.
Since the n, are not bounded, there is no uniformly bounded base for
Ngoyo.

Let us say that y,, is boundedly sequentially complete iff every uni-
formly bounded sequence (f,),.n in Cp(X) which is Cauchy for y,, con-
verges to some f in Cy(X). Then by using the fact that y,,-convergence
is stronger than £,-convergence, and by altering the proof of Theorem 2.8,
we can substantiate the following proposition.

3.6. ProPOSITION. Let X be not locally compact. If sequences define
Voes then vy, must be boundedly sequentially complete.

Proor. If x, € X has no compact neighborhood, then as in the proof
of Theorem 2.8 we can show that z, has a countable basis of neighbor-
hoods. After doing that, we note that if y,, were not boundedly sequen-
tially complete, then there would exist a uniformly bounded sequence
(fadney in Cp(X) which is y,,-Cauchy but which has no limit in Cy(X)
with respect to y,,. Since (f,),.y i8 uniformly bounded and since y,,-
Cauchy is stronger than pointwise Cauchy, (f,),.y converges pointwise
to a bounded function f, and by hypothesis f ¢ C;(X). Thus f must be
discontinuous at some point of X. The remainder of the present proof
follows precisely the same as the end of the proof to Theorem 2.8.

4. The o-compact-open topology.
It is now time to define and discuss the o-compact-open topology.

4.1. DeFiNITION. For any X, a net (f));,c, in Cy(X) converges in the
a-compact-open topology to fe Cy(X) iff f; — f uniformly on each ¢-com-
pact subset of X. This topology is denoted by ¢,.

That this convergence yields a locally convex Hausdorff topology
follows from an argument analogous to that used to show that the com-
pact-open convergence yields a locally convex Hausdorff topology. It
is clear that we have the following inclusions:

t,st,ct,ct,.
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With a little more effort we can determine precisely when ¢,=t, and
when ¢,=t,.

4.2. PROPOSITION. t,=t, iff X=A for some o-compact A< X.

Proor. If X =4 for some o-compact A< X, then f; - 0 in {, means
that ||f;ll4 — 0, so that ||f)lx = 0. Thus f, >0 in ¢,. Consequently
t,=t,. Conversely, if X + A4, for all g-compact subsets 4, then for each
A there is an x, € X\ 4. Using the complete regularity of X, we find
an f, € Cp(X) such that f,=0 on A, while f, (x,)=1. If % is the collec-
tion of g-compact sets in X, ordered by inclusion, then f, — 0 in ¢,. But
If4l=1 for all 4, so that f, + 0 in ¢,.

4.3. PrOPOSITION. f,=t, iff each o-compact set in X is relatively com-
pact.

Proor. The sufficiency is obvious. For the converse, assume that
there is a ¢-compact subset 4 of X which is not relatively compact.
Then there is an x € APX\ X. Look at the linear functional F, deter-
mined by F(f)=f'(x), where f’ is the unique continuous extension of f
to fX. On the one hand, since x ¢ X, F, cannot be continuous with
respect to f;, by Theorem 2.6. On the other hand, if ||f]| =<1, then
[F ()] £1, so that F, is continuous with respect to the semi-norm in ¢,
determined by A. Thus ¢,+¢,.

Spaces with the property that all o-compact subsets are relatively
compact have appeared before (e.g., Theorem 12 of [10]). Trivially,
every such space is countably compact, since sequences necessarily are
relatively compact, so have cluster points. The converse — that if a
space is countably compact, then each o-compact subset is relatively
compact — fails, and we have an example to show it fails. In order to
discuss our example, we need the definition of a p-point. An element
y € X is a p-point iff every G, containing y is a neighborhood of p. There
exist p-points in SN\ N (see p. 100 of [5]). Let X =8N\ {x,}, where z,
is one of these p-points. Since X is open in BN and z, is not isolated,
N is a o-compact subset of X such that N =X is not compact. To com-
plete our argument we need only show that X is countably compact.
However, the only way that X could fail to be countably compact is
for there to exist a sequence (z,),.y <X Wwith only the one cluster point
Z,. So we assume that lim,z,=x,. There are two cases to consider. In
the first, (x,),.y contains a subsequence in N; so we call this subse-
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quence (¥,)pn- But then (¥,),y is homeomorphic to N, so has an
infinite number of cluster points in fN. Thus (z,),.y must have more
than one cluster point in X. In the other case we assume that (x,),cn
has no subsequence in N. Then without loss of generality we may
assume that (x,),.xy € PN \N. For each k, let U, be a neighborhood of
z, in BN such that =z, é U,, n=1,2,...,k. This is possible since 8N is
Hausdorff. Because z, is a p-point, N3, U, = U is a neighborhood of z,
(see p. 63 of [6]). However this means that (x,),.yNU =9, so that z,
cannot be the limit point of (%,),.y, a8 we advertised. This contradic-
tion proves the assertion that X is countably compact.

We now compare o-compact-open convergence with bounded-compact
convergence.

4.4. PROPOSITION. t,-convergence is weaker than y,, convergence ¢ff t,=t.

Proor. The sufficiency follows from Proposition 3.2. For the reverse
implication, we note that if ¢,=¢,, then by the proof of Proposition 4.3
there is an F, continuous for f, but not continuous for {,. However,
by Proposition 3.4 this means that F, is not continuous for y,,, so that
there exists a net (f;);c4 < Cy(X) such that f, - 0 in y,, but F(f;) + 0.
Since F, is continuous for f,, we must have f, + 0 in ¢,. Thus ¢ -con-
vergence is not weaker than v,,-convergence.

The t,-bounded sets are just the uniformly bounded sets in Cp(X),
because t,ct,<t, and because {, and ¢, have the same bounded sets.
The next proposition is the analogue of Proposition 2.4.

4.5. ProposITION. O, (X) is dense in (Cy(X),t,) iff X is locally compact
and t,=t,.

Proor. If O (X) is dense in (Cy(X),t,), then it is dense in (Cy(X),t,),
so that X is locally compact by Proposition 2.4. Furthermore, t,=t,
since otherwise the constant function 1 cannot be approximated by
C,X) functions. The opposite implication also follows from Proposi-
tion 2.4.

If you remember our proof of Theorem 2.8 on metrizability of
(Cp(X),¢,), it was quite lengthy, with the open-mapping theorem barred
from action. If we replace ¢, by t,, then the open-mapping theorem is
still disallowed (and you will see why a bit later), but a direct proof is
straightforward and short.
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4.6. ProPOSITION. (Cy(X),t,) s metrizable iff t,=t, (that is, iff X =A
Jor some o-compact A< X).

Proor. Assume that 4+ X for all og-compact subsets 4 in X. For each
such A4, let x4 ¢ A and let f, € C,(X) such that f,=0on 4 and f,(x ) =1.
If A denotes the collection of o-compact sets in X, then (f,) .y con-
verges in ¢, to 0. If perchance (C,(X),f,) were metrizable, then there
would be a subnet (f,, ),y converging to 0 in ¢,. Let B=(x4 )uen, &
veritable g-compact set. We then note that ||f, |[p=1, for all n, so that
(f4,)nen does not converge in £, to 0. The conclusion is that ¢,+t, im-
plies (C4(X),t,) is not metrizable. The converse is immediate.

The last collection of properties we discuss in this sectivn concerns
various types of completeness. Remember that a space is sequentially
complete iff Cauchy sequences converge, and a topological vector space
is quasi-complete iff bounded Cauchy nets always converge.

4.7. LEMMA. Let (f,);c4 S (Co(X),t,) be Cauchy with respect to t,. Then

there is a unique function f on X such that f, — f uniformly on o-compact
sets. This f is a bounded function.

Proor. Since (f;);c, is t,-Cauchy, it is Cauchy for the topology of
pointwise uniform convergence, so that the net converges pointwise to
a function f on X. Indeed, f; — f uniformly on all g-compact sets and
such an f is assuredly unique. Now assume that f is unbounded. Then
there is a sequence (z,),.y such that for each n, |f(z,)|=n. Put 4=
(®,)pen > @ bona fide g-compact set. Then f, — f uniformly on 4 because
4 is g-compact. But the boundedness of each f, assures the bounded-
ness of f at least on 4. This contradiction yields the assertion.

4.8. ProposITION. (C,(X),t,) ts sequentially complete.

Proor. Let (f,),y be Cauchy in ¢,. By the previous lemma, f, - f
uniformly on o-compact sets, and f is bounded. We need only show
that f is continuous. Were it not the case, then there must be an z, € X
and ¢>0 and (x,),., converging to z, such that |f(x,)—f(x,)| >¢ for all
‘e A. Choose n, such that if n=n,, then |f,(x,)—f(,)|<3}e. Since
x; - xy and each f, is continuous, for all n=n, there is a 4, such that
whenever 12 1,, we have |f,(x;) —f.(%,)] < 3e. Then

]fn(xl,,) “‘f(xa,,)l 2 |f(x;.,,) —f (@)l — |fn(xz,,) = Fu(@o)| — | fn(%o) — f ()]

> e—3de—%e = de.
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Let A=(x; )ncy- Then [|f,—fll > }e for all nzn,, so that (f,),.y does
not converge on all o-compact sets to f, as asserted. The proof is (se-
quentially) complete!

4.9. ProrosriTiON. (Cy(X),t,) is complete iff it s quasi-complete.

Proor. Of course completeness implies quasi-completeness. Now as-
sume quasi-completeness, and let (f;),., be ¢,-Cauchy. Then there is a
function f on X such that f; > f uniformly on ¢-compact sets, and in
addition f is bounded by some M =3. We will be done if we show that
f is continuous. To that end, let

[i' (@) = fi(x), if |fi@) =M,
= M i@/ i), i [fi)|>M.

Let us prove that (f,'),., is t,-Cauchy. To do that, we note that (f;);.,
is ¢t,-Cauchy and that

Ify' (@) =1/ @) = |fi(@) —f.(2)]

for all x in X by the contractive property of metric projection in the
complex plane. Since (f;');., is uniformly bounded, the quasi-complete-
ness ensures the existence of a g € Cy(X) for which f;’ - g in ¢,. This
means that f;’ > g pointwise. However, f,’ — f pointwise. Consequently
f=g so that fe C(X).

4.10. TaEorEM. If X s locally compact or satisfies the first countability
axiom, then (Cy(X),t,) is complete.

Proor. Assume that (Cy(X),t,) is not complete. Then there is a -
Cauchy net (f});c4 in Cp(X) and a function f defined on X with the
property that f, —f uniformly on o-compact sets in X, but f is not
continuous. Let f be discontinuous at x, € X, and let ¢>0 and x; -
be such that |f(x;) —f(x,)| >¢. If 4 is o-compact, then AU {x,} is g-com-
pact, so that there must be a 4, for which 12 4, implies ||f; —f|| 4y(zq < 3¢
Now if y € An(x;);c4, then

1f20(¥) —Fio(@o)| Z 1f (%) —f (o)l — ifzo(y) —F @) = 1F (@) = f1(o)|

e—%te—ie = je.

1%

In particular, if 2y € AN(x;);c4, and @+ 2;, all 4, then f, could not be
continuous at x,— which is silly. The implication of the foregoing
argument is that if (C,(X),t,) is not complete, then there is an xye X
and a net z, > x, with x,+x,, all 1, such that for each ¢-compact 4 £ X
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we have x, ¢ AN (x;);c4. Evidently this cannot happen if either X is
locally compact or if each point in X has a countable basis for neighbor-
hoods.

There are X’s which satisfy the first countability axiom but which
are not locally compact. For instance, any infinite-dimensional Banach
space suffices. Consequently (C,(X),?,) is complete for a class of X’s
strictly including locally compact spaces. The example preceding Theo-
rem 2.8 serves to show us that there exist X’s for which (Cy(X),?,) is
not complete.

Incidentally, one can with some effort adapt the proof by Buck in [2]
that (Cy(X),t,) is complete whenever X is locally compact, in order to
show that if X is locally compact, then (Cy(X),t,) is complete. But let
that pass.

5. The dual.

Our final section concerns the dual of (C,(X),t,). As a consequence of
the fact that t,c¢,<t,, and as a result of the Riesz—Kakutani Theorem
which identifies continuous linear functionals with measures, we know
that M(X) < (Cy(X),t,)* = M(BX). However, we can be more precise.

5.1. THEOREM. For all X, (Cy(X),t,)*=U M(APX), where the union is
taken over all a-compact A (in X).

Proor. First we show that (C,(X),t,)* < UM(4#X). Let Fe(Cy(X),t,)*,
and let F correspond to u € M(5X) via the Riesz—Kakutani Theorem for
(Cy(X),t,). Since F is t,-continuous, there is a o-compact 4 <X such
that whenever f=0 on 4, F(f)=[,xfdu=0. The normality of X ensures
that if B is compact and if B<pfX \ 4PX, then u(B)=0. Applying the
Hahn Decomposition Theorem as in Theorem 2.6, we find that |u|=0
on BX \ APX, which means that u € M(A#X). Half the theorem is proved.

In the direction of the converse inclusion, we let A be a g-compact
subset of X and assume that u € M(A4#X). For fe Cy(X), let f’ be the
unique continuous extension to fX. Then |f| =<1 iff |f'|x<1. We
define F by the equation

F(f) = [pxf'du, forall fe CyX).

Note that F is linear by virtue of the additivity of [. Also, F is con-
tinuous, since ||f|,<1 implies that |F(f)|<|jull. Thus F € (Cy(X),t,)*.
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5.2. COROLLARY. (Cy(X),t,)* =M (X) off t,=t,.

Proor. Theorem 2.6 provides one of the two implications. To prove
the other, assume that (C,(X),¢,)*=M(X) and let A be g-compact in X.
Then

6 zedtXy e U MAPX) = (Cy(X),t,)* = M(X),

4 o-compact

which means that AX < X. Thus ¢-compact subsets of X are relatively
compact in X. Proposition 4.3 finishes the proof.

With such a reasonable result as Corollary 5.2 we might quite un-
wittingly conjecture that (Cy(X),t,)*=M(pX) iff ¢{,=t,. We cannot
prove it. Nevertheless, let us see what progress we can make on the
conjecture. First we need a lemma.

5.3. LEMMA. If Y is an open and closed subset of X, then BY can be
homeomorphically embedded in pX — and we write Y = fX.

Proor. Let h: YS X be the injection of Y into fX. By Stone’s
Theorem & has an extension A’': §Y — X (Theorem 6.5 of [5]). If we
can show that A’ is one-to-one, then 2’ embeds (or rather, injects!) fY
into fX. Therefore let y,zefY, with y+2. Then there are disjoint
open neighborhoods U and V of y and z respectively in Y. Find a
continuous, bounded function f on Y such that f=0 on U and f=1
on V. Let y, >y and 2, - z, and assume that y,€ (UnY), z,e(VnY),
for all 2 and u. Then f(y;)=0 and f(z,)=1, for all 2 and u. Now extend
fly to f" on BX by first defining

fx) = flx), xe€Y
=0, zeX\7Y,

and then taking the unique continuous extension to all of $X. The
result is that f’eC’b(X) and in addition f'(#'(y,))=f"(y;)=0 and
f'(#(z))=f"(z,)=1, for all 4,u. Since f’ is continuous, (A'(y;));c4 and
(P'(2,))uenr cannot have a common cluster point in fX. This means
that A’ is one-to-one.

5.4. COROLLARY. If X 4s discrete and of Y <X, then BY < pX.

5.5. THEOREM. Let X be locally compact and paracompact. Then
(Co(X),to)* = M(BX) iff t,=t,.
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Proor. By hypothesis X is locally compact and paracompact, so a
well-known theorem from topology tells us that X is the disjoint union
of (X,);c4, Where each X, is open and closed and ¢-compact. Then
t,=t, iff A is countable, so that if ¢,=¢f,, then (Cy(X),t,)*=M(pX).
Thus we need only prove that if A is uncountable then (Cy(X),t,)=+
M(pX). Let us identify some subset 4, in a one-to-one way with
the ordinals £ less than the first uncountable 2,, and let ¥=U,_, X,.
Define F': Y — 2 by F(y)=2 iff y € X,. Note that F is continuous, so
that Stone’s Theorem says that the extension F': §Y — 82 is continu-
ous. But F” is onto, so that there is a y' € 8Y such that F'(y')=2,.
Let A be an arbitrary o-compact subset of Y. We will show that
y' & APY. In fact, AnX,+0 only for a countable number of 1, so F’(4)
is countable and in addition

F'(4F7) < F'(4) c 2,

which means that Q,¢ F'(4A8¥). Thus y’ ¢ APY. Since this is true for
each A, Theorem 5.1 implies that &, ¢ (C,(Y),t,)*. However, y' €Y,
and by Lemma 5.3, §Y <X since Y is open and closed in X, so 4,
can be considered as a linear functional on C,(X). Moreover, the fact
that Y is open and closed in X implies that if d,, ¢ (Cy(Y),t,)*, then
0y € (Cp(X),t,)*. On the other hand, é,, € M(BX) since y' € Y cpX.
Thus (Cy(X),t,)* + M(BX).

In spite of Theorem 5.5, we know of spaces X such that f,+¢, and yet
(Cy(X),t,)* =M (BX), although all our examples involve non-locally com-
pact spaces. One such is our old friend: X =the ordinals less than or
equal to the first uncountable, less the non-discrete countable ordinals.
However, if we restrict our attention to locally compact X’s, then we
suspect that the statement

(Co(X)to)* = M(BX) iff ¢, =t,

is true. But we cannot prove it.

AppED 1N PROOF. The author has recently learned of results which
overlap portions of Section 3 of this paper by R. Giles, R. Wheeler and
D. Sentilles.
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