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INITIAL VALUE PROBLEMS IN L, FOR SYSTEMS
WITH VARIABLE COEFFICIENTS

PHILIP BRENNER

1. Introduction.

In this note, which should be regarded as a sequel to [1], we will
consider the Cauchy problem

oulot = P(x,D)u,
u(x,0) = uy(x) ,

(1) zeRr, 05T,
where P(z,D) is an N x N-matrix of pseudo-differential operators, and
where w and w, are N-vector functions. Here the pseudo-differential

operator P(x,D) is defined by

) P(,D)u() = [ exp(—2nie,)) Ple,y) a(y) dy .

We assume that for y fixed, P(z,y) € € and denote the principal part
of P by P;, where d > 0 is the exact order of P. For details, see section
2 below.

Let S¥ denote the set of N-vectors with components in S, the space
of rapidly decreasing C*-functions (again, see section 2). We say that
(1) is well posed in L, if P(x,D) is the generator of a C, semi-group of
solution operators E(t) in L,, that is

E(t+s) = E(t)E(s), t=0,s20,
and
(3) E@uoll, = O(T)llwolly, O0sSt=T, upe sV,
and
() B YE(@+h)—E({t))ug—P(-,D)E(t)uy|l, >0 as kb0, uyeS¥.

Let L," denote the set of N-vectors with components in L, and let FL,¥
denote the corresponding set of Fourier transforms. By M~ we denote
the set of multipliers on FL,¥, and we write M, ¥(-) for the natural
norm on M, M¥N, For details, see section 2.

We can now formulate the main theorem of this note.
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TuroreM 1. If (1) is well posed in L, , then
(4’) SupxoeR" MpN’N(eXp(Pd(xo,'))) < +o0.

For p=2, and for differential operators, this result is due to Strang
[6]. The proof which we will give here is different from that of [5] also
for p=2.

If we let Theorem 1 take the place of Lemma 5.2 in [1] in the proofs
of Theorems 5.1 and 5.2 there, we get the following corollaires:

COROLLARY 1. Let p+2. Assume that the eigenvalues of Py(x,y) are
real on R® x R™, and that P(x,D) is a differential operator. If (1) is well
posed in L,,, then

Po,D) = 3 Aye) fez;,
P2

where A,,..., 4, are commuting, diagonalizable matrices with real eigen-
values.

CoROLLARY 2. Let p+2, n>1. Assume that the eigenvalues of Py(x,y)
are real on R™"x R™, and that for fized x € R*, Py(z,y) e €Vt (R*\{0}),
for some vz 1. If (1) is well posed in L, , then

n n
Py(z,D) =kz Zlajk(x)Ek(x,D)a/axj
=1 j=
where a;,(x) are real functions and where Ey(x,y) are idempotent N x N-
matrices with sum E, which are homogeneous of degree 0 in y, and which
belong, for fixzed x, to M, MNn@*+(R*\ {0}) in y.

We give some of the basic definitions in section 2, mostly referring to
[1], [2], [3], and [4]. The proof of Theorem 1 is given in section 3. In
section 4 some extensions are considered.

Finally we use this opportunity to refer the reader to the following
paper [6] in which corrections to two earlier papers of ours on related
subjects are given. The article [6] is placed immediately after the pres-
ent paper.

2. Some definitions.

In this section we will review some basic definitions and notations con-
cerning multipliers and pseudo-differential operators. For details and
detailed references, see [1], [2].

For complex N-vectors, (u,v) shall denote the scalar product and |v|
the Euclidean norm. The norm of an N x N matrix 4 will be the oper-
ator norm |4|=sup{|4v|; |[v|=1}.
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By ©*(B) we will denote the set of N-vectors, and occasionally N x N-
matrices, with elements in €*(B). If g e C*°(R*")=C, and if

sup {|z|™ | D*g(x)|; zeR"} < + o0

for m=0,1,... and for any multiindex k= (k,,...,k,), |[k|=k+...+k,,
we say that g € 8. Here

DE = (—2mu)*(8]dm Yot . . . (8]0, )k .

We give the linear space S the topology defined by the above family
of semi-norms. The set of N-vector functions with components in S is
denoted SV. The dual space S’ of S is the space of tempered distribu-
tions. The convolution u*g between an N x N-matrix u with elements
in 8" and a g € SV is defined in the obvious way. The Fourier transform
/i of a tempered distribution u is defined by 4(f)=u( 1), fe 8, where

7@) = [ exp(2nic@,9)) f(z) da
R7
The Fourier transform is defined for matrices and vector valued tempered
distributions by applying the transform elementwise. If K<8', FK
denotes the corresponding set of Fourier transforms.
By L,N we mean the set of functions v=(vy,...,vy) with v;e L,,
j=1,...,N. For p< + oo we let

1/p
ol = ( [ @ dx) :
R®

¥l = ess sup {jo(x)|; zeR"}.

and for p= oo,

We shall assume that 1 <p < .

We say that an N x N-matrix x4 with elements in §’ is a multiplier on
FL,N, ye MMV, if

MNN(pu) = sup{llixflly; feSY,Ifllp =1} < +oo.

We use the convention that M, M N(u)=oco if u ¢ M, M¥, One can prove
that (cf. [1], [2]) M, ¥ =M, N for 1/p+1/p'=1; that M,N"Nc M N~
SM/NN and that M,V is the set of N x N-matrices with elements
that are L_-functions. Further, M,1! can be identified with the set of
Fourjer-Stieltjes transforms of bounded measures on R». In general
M, NN is a Banach algebra of matrix-valued functions with norm
M, N.N(.), We notice that FL,< M,! and that the w*-closure of the
unit ball in L, is the unit ball in L, for 1<p= oo, and is the unit ball
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in FM,b1 for p=1. Let us denote the union of w*-closures of the com-
pact balls in L, by W, and the set of corresponding N-vectors by W .
For later reference we state the following well-known result.

Lemma 1. The unit ball in W,V is w*-compact.

By the above it will cause no confusion if we use the same notation
for the norms in L,~ and in W7,

Finally we will give a short discussion of pseudo-differential operators,
mainly following [3], [4]. The pseudo-differential operator P(x,D) is
defined by

P(x,D)u(x) = fexp(—2m'(x,y>) P(x,y) 4(y) dy, wuelS¥,

where P(xz,y) is an N x N-matrix, the symbol of P=P(x,D). We assume
that for some >0 and some sequence {P;_;}32, of N x N-matrix func-
tions which are homogeneous of degree d —j, respectively, in y, the fol-
lowing relations hold for any integer K:

K
(5) DD AP(@,y) = 3 Pa-@,y)) = Olyl*-%)
J:

for |«| =4, |f| =», uniformly for x in compact subsets of R” as |y| - .
Here we have assumed that P(x,y) € €* in « (y fixed), and belongs to
%” for x fixed, and correspondingly for P; ;. We will below assume
A=o0, but will specify » if we assume more than »=0. From (5) it fol-
lows that P,(z,y), the principal part of P(xz,y), is given by

Py(w,y) = lim,_, 277 P(x,1y)

uniformly for (z,y) in compact subsets of R® x (R®\ {0}). We say that P
has exact order d if P(z,y) does not vanish identically. We will below
assume that P(z,D) has exact order d > 0.

3. Proof of Theorem 1.
Let s> 0, , € R™. For u € L,N we define U,u by

(6) U u(z) = s~ ®Py(s Yz —x,)) .
Then
(7) 1Usull, = llull, ,

and U, has an inverse U, such that
(8) U, tu(z) = sMPu(sx+ x,)

(9 ”Us_lu’”p = ”u”p .
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Let s>0 and t=1s?, where d is the order of P. We assume that (3)

holds. By (7), (9) and (3) we have
(10) U E(vs?) Ugull, = C(T)|ully -

By Lemma 1 there exists a ¢ (u) € W,V and a sequence s; - 0, such
that with ;= 7s;%,

(11) UE()U g > p,(u), 5->0.
By (10) this implies, again by Lemma 1, that
(12) lp(w)ll, = C(T)|lully -

Let Pi(y)=P4(z,y). We want to prove that (g, (u))"=exp(zP,).
From (12) it follows, approximating # by functions with compact sup-
port, that ¢ (u)e L,V also for p=1.

We first make a simple computation

LemMA 2. Let Py(s; D)=s%U,PU,. Then for ue SV,
(13)  Pols; D)ul@) = [ oxp(—2nie,y)) s Plsw-+0,87y) (y) dy -
Proor. We have

(Ugw)™(y) = st —1/P) exp (2i{%o, ¥) A(s, ) ,
and so

PUu(z) = =10 [ exp(—2niCo—a,)) Pl,y) 2sy) dy
= 572 [ exp(— 2mics (e —2p),)) Plas™y) 2ly) dy
This proves (13).

For a shorter notation, let E (7)=U,1E()U, Then notice that
Py(s; D) and F (r) commute since P and E(t) do. Hence

Pd(S;D)Es(T)u::Es(T)Pd(s;D)u
is well defined, and is in L,V for w € 8¥ by (3) and (3)’.
We want to prove that for any ge C;>,
(14) [g@) Pyls; D)By(1)u(w) dz ~ [90) Paly)(pw))" @) dy, s=3,~0.

We will need the following lemma (cf. the proof of Theorem 3.6 in Hor-
mander [3]).

LemmMA 3. Let g € Cy™°, and let

7*Pa(s; D)y) = [ exp(2ica,)) 9(2)s? P(wo+52,571y) da .

Math. Scand. 30 — 10
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Assume that for fixed y, P(x,y) € €. Then for any integer R,
(15) lg+Pa(s; D)y)| = C(1+y))-%,
uniformly in s —~ 0. Further, g, Py(s; D)(y) - §(y)Paly) in L, .

Proor. Since g,P,(s; D) -~ §P, uniformly on compact sets as s - 0,
it is sufficient to prove (15), and then use dominated convergence to
complete the proof of the lemma. Let |x|=R+d, « a multi-index. Then

y* f exp (2nidx, y)) g(x)s¢ P(xy+ sx,s 1y) dx
= f exp (2nidx,y)) D, *g(x) st P(xy+ sz, s 1y)) dy .

By Leibnitz’ formula the right hand side is O(]y|¢), uniformly for s - 0,
since g € Cy® by assumption. This proves (15).
We assume for the moment that 1 <p<2. Let us then complete the
proof of (14). The case p=2 will be proved afterwards by duality.
Writing out the definition of Py(s; D) and changing the order of inte-
gration we get

(16) [ g(a) Pals: D) E(2)ul@) dw = [ g4 Puls; D)) (E,(x)u) () dy -

By Lemma 3, g4 Py(s; D) - 9P, in L,, and by the Hausdorff-Young
inequality (E (7)u)” - (p/(u))” weakly in L,V since 1<p<2. Hence
the right hand side of (16) converges to

[ 9 Pa@) () @) dy
which is the right hand side of (14). This completes the proof of (14).
Since (1) holds we also have
2 (U B U,u) = U, (-a-E(t)) U,u
ot 8 8 8 ot t=md s
= (s2U,1P(x,D)U,) (U, E(vs*) Ugu) = Py(s; D)E(z)u .

This, together with (14), proves that with convergence in D’ (i.e. in the
distribution sense),

9 8
(17) P ()" (%) = Pa(y)(@-(w))"(¥) -

But from (17) we get that (p,(w))" =exp(tP;)4, since py(u)=E(0)u=u.
By (12) we finally have
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(18) M NNexp(Py) < Cy = inf{O(T); T >0},

and so Theorem 1 is proved for 1<p=2.
For p= 2 we notice that if we could define P* so that

J(P*u,w) dx = f(u,Pw) de, w,web,,

then the dual problem corresponding to (1) for P* and E(¢)*, the ad-
joint of E(¢), would by (3) and (3)" be well posed in L,, 1/p+1/g=1.
If further P* has a symbol with principal part P4(x,y)*, the proof above
implies that

M N-Nexp(Pg*)) = C, .

This is equivalent to (18), and so Theorem 1 would follow also for
2=p=soo.

It remains to verify the above assertions about P*. Using Parseval’s
formula it is easy to see that P* exists and is uniquely determined by
the symbol.

Qu(@,y) = Z,(J P(&,n+y)*v(§)e2mEn dE)(x)

where &, denotes the Fourier transform with respect to # and where
Cy”3v=1 in a neighborhood of = (for the computations, see [3], [4]).
Rewriting this as

Qulz,y) = P(z,y)*+ B (2,)

the Fourier inversion formula gives

Ry(2,y) = F(J (P(E,n+y)* — P(£,y)*) v(&) 2% d¢) (z) .

We can then, as above, use Lemma 2 to prove that s¢ U, R, U (z,y)=
o(1) as s > 0. Thus R, contains only lower order terms, and the proof
of Theorem 1 is complete.

Remark. If P(z,D) were a differential operator, then g, Pg4(s; D) -
gP;in 8. Since (E,(t)u)” — (¢,(%))" in 8’ we have (14) at once, and so
(17) in the distribution sense. The non-regularity of P and P, force us
to use the slightly more complicated argument above.

4. A generalization.
Let 20 and o, *(y)=|y|* and define for u € SV the semi-norm

lellg, o = 17, * R »

where F-1 denotes the inverse Fourier transform. We say that (1) is
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strictly well posed in L, , if instead of (3) the following inequality holds:
(Notice that the degree of P(x,D) is d>0.),
(19)  IE@uell, = CT)llwollp +%uollp, o), OSEST, upe SV

One can show that if P(x, D) is a homogeneous partial differential oper-
ator with constant coefficients then (1) is strictly well posed in L, , if
and only if

IEE)ugll, = CT)luolly + lIollp, o), OSEST, uge SV,
that is, if and only if (1) is well posed in L, , (cf. [1]).
Using (19) instead of (3), it is not hard to prove the following result,
modifying the proof above slightly.

THEOREM 2. Let w,(y)=(1+yl)* If (1) is strictly well posed in L, ,
(3.e. if (19) holds), then
(20) SUPcrn M. N (w;l exp (P (o, ))) < 400,

Define the rank r(z) of P4(x,y) as the largest integer r(x) such that
there exist some imaginary eigenvalue «(z,y) of P4(x,y) and some ball
B<R” on which «(x-) e C¥B), and such that the rank of the hessian

( 0%« (x, y))

Yo 1

is at least r(x) for y € B. From Theorem 2 above and Theorem 5.4 in
[1], we then get the following result.

THEOREM 3. Assume that P(x,y) € €°(R™ x R"). Let r(x) be the rank of
Py(z,y) and let r=supr(z). Then the Cauchy problem (1) is mot strictly
well posed in L, , for 0 <rd|§—p~1.

We end this note by giving an example of an application of Theorem 3.
Let (aj(x)) be a real symmetric #°-matrix, and let b;(x) and c(x) be
C*-functions. Assume also that

n

Sau@ i 20, yuyieR, xeRr,

y b=

Then consider the Cauchy problem for the hyperbolic system

ot? lca 1 j=1

o2 0%
l = D)+ s ,(x) +c<x)u
(21) u(x,0) = ug ()
E

(2, 0) = ugy(x) .
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Let |y|,= (2% 1=19a(®)¥iy)}. As in section 5 in [1], it is easy to see that
we can transform (21) to a Cauchy problem for a system of pseudo-
differential operators, where the eigenvalues of the principal part P, are
+2ntly|,. A simple computation shows then that the rank of P, is
r(xz) — 1, where r(x) =rank(a,(z)). Hence we have the following corollary
of Theorem 3.

CoroLLARY 3. With the above notations and assumptions, let r=
sup,(r(x)). Then the Cauchy problem (21) is not strictly well posed in
L, ,for 0sx<(r—1)|3—p1.
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