INITIAL VALUE PROBLEMS IN L_p FOR SYSTEMS WITH VARIABLE COEFFICIENTS

PHILIP BRENNER

1. Introduction.

In this note, which should be regarded as a sequel to [1], we will consider the Cauchy problem

(1)
$$\begin{aligned} \partial u/\partial t &= P(x,D)u, \\ u(x,0) &= u_0(x), \end{aligned} \quad x \in \mathbb{R}^n, \ 0 \leq t \leq T,$$

where P(x,D) is an $N \times N$ -matrix of pseudo-differential operators, and where u and u_0 are N-vector functions. Here the pseudo-differential operator P(x,D) is defined by

(2)
$$P(x,D)u(x) = \int \exp(-2\pi i \langle x,y \rangle) P(x,y) \hat{u}(y) dy.$$

We assume that for y fixed, $P(x,y) \in \mathscr{C}^{\infty}$ and denote the principal part of P by P_d , where d > 0 is the exact order of P. For details, see section 2 below.

Let S^N denote the set of N-vectors with components in S, the space of rapidly decreasing C^{∞} -functions (again, see section 2). We say that (1) is well posed in L_p if P(x,D) is the generator of a C_0 semi-group of solution operators E(t) in L_n , that is

$$E(t+s) = E(t)E(s), \quad t \ge 0, \ s \ge 0$$
,

and

(3)
$$||E(t)u_0||_p \leq C(T)||u_0||_p, \quad 0 \leq t \leq T, \ u_0 \in S^N,$$

and

$$(3)' \qquad ||h^{-1}\big(E(t+h)-E(t)\big)u_0-P(\,\cdot\,,D)E(t)u_0||_p \to 0 \quad \text{as } h\to 0, \ u_0\in S^N \ .$$

Let $L_p{}^N$ denote the set of N-vectors with components in L_p and let $FL_p{}^N$ denote the corresponding set of Fourier transforms. By $M_p{}^{N,N}$ we denote the set of multipliers on $FL_p{}^N$, and we write $M_p{}^{N,N}(\cdot)$ for the natural norm on $M_p{}^{N,N}$. For details, see section 2.

We can now formulate the main theorem of this note.

Received March 12, 1971.

Theorem 1. If (1) is well posed in L_p , then

$$\sup_{x_0 \in \mathbb{R}^n} M_p^{N,N} \left(\exp(P_d(x_0,\cdot)) \right) < +\infty.$$

For p=2, and for differential operators, this result is due to Strang [5]. The proof which we will give here is different from that of [5] also for p=2.

If we let Theorem 1 take the place of Lemma 5.2 in [1] in the proofs of Theorems 5.1 and 5.2 there, we get the following corollaires:

COROLLARY 1. Let $p \neq 2$. Assume that the eigenvalues of $P_d(x,y)$ are real on $\mathbb{R}^n \times \mathbb{R}^n$, and that P(x,D) is a differential operator. If (1) is well posed in L_p , then

$$P_d(x,D) = \sum_{j=1}^n A_j(x) \, \partial/\partial x_j \,,$$

where A_1, \ldots, A_n are commuting, diagonalizable matrices with real eigenvalues.

COROLLARY 2. Let $p \neq 2$, n > 1. Assume that the eigenvalues of $P_d(x,y)$ are real on $\mathbb{R}^n \times \mathbb{R}^n$, and that for fixed $x \in \mathbb{R}^n$, $P_d(x,y) \in \mathscr{C}^{N+r}(\mathbb{R}^n \setminus \{0\})$, for some $v \geq 1$. If (1) is well posed in L_p , then

$$P_d(x,D) = \sum_{k=1}^n \sum_{j=1}^n a_{jk}(x) E_k(x,D) \partial/\partial x_j$$

where $a_{jk}(x)$ are real functions and where $E_k(x,y)$ are idempotent $N \times N$ matrices with sum E, which are homogeneous of degree 0 in y, and which
belong, for fixed x, to $M_p^{N,N} \cap \mathcal{C}^{r+1}(\mathbb{R}^n \setminus \{0\})$ in y.

We give some of the basic definitions in section 2, mostly referring to [1], [2], [3], and [4]. The proof of Theorem 1 is given in section 3. In section 4 some extensions are considered.

Finally we use this opportunity to refer the reader to the following paper [6] in which corrections to two earlier papers of ours on related subjects are given. The article [6] is placed immediately after the present paper.

2. Some definitions.

In this section we will review some basic definitions and notations concerning multipliers and pseudo-differential operators. For details and detailed references, see [1], [2].

For complex N-vectors, $\langle u,v \rangle$ shall denote the scalar product and |v| the Euclidean norm. The norm of an $N \times N$ matrix A will be the operator norm $|A| = \sup\{|Av|; |v| \le 1\}$.

By $\mathscr{C}^{r}(B)$ we will denote the set of N-vectors, and occasionally $N \times N$ -matrices, with elements in $\mathscr{C}^{r}(B)$. If $g \in C^{\infty}(\mathbb{R}^{n}) = C^{\infty}$, and if

$$\sup \left\{ |x|^m |D^k g(x)| \; ; \; x \in \mathbb{R}^n \right\} \; < \; + \infty$$

for m = 0, 1, ... and for any multiindex $k = (k_1, ..., k_n)$, $|k| = k_1 + ... + k_n$, we say that $g \in S$. Here

$$D^{k} = (-2\pi i)^{-|k|} (\partial/\partial x_1)^{k_1} \dots (\partial/\partial x_n)^{k_n}.$$

We give the linear space S the topology defined by the above family of semi-norms. The set of N-vector functions with components in S is denoted S^N . The dual space S' of S is the space of tempered distributions. The convolution $\mu * g$ between an $N \times N$ -matrix μ with elements in S' and a $g \in S^N$ is defined in the obvious way. The Fourier transform $\hat{\mu}$ of a tempered distribution μ is defined by $\hat{\mu}(f) = \mu(\hat{f}), f \in S$, where

$$\hat{f}(y) = \int_{\mathbb{R}^n} \exp(2\pi i \langle x, y \rangle) f(x) dx.$$

The Fourier transform is defined for matrices and vector valued tempered distributions by applying the transform elementwise. If $K \subseteq S'$, FK denotes the corresponding set of Fourier transforms.

By $L_p{}^N$ we mean the set of functions $v=(v_1,\ldots,v_N)$ with $v_j\in L_p$, $j=1,\ldots,N$. For $p<+\infty$ we let

$$||v||_p = \left(\int\limits_{\mathbb{R}^n} |v(x)|^p dx\right)^{1/p},$$

and for $p = \infty$,

$$||v||_{\infty} = \operatorname{ess sup}\{|v(x)|; x \in \mathbb{R}^n\}$$
.

We shall assume that $1 \le p \le \infty$.

We say that an $N \times N$ -matrix μ with elements in S' is a multiplier on $FL_p{}^N, \ \mu \in M_p{}^{N,N},$ if

$$M_{p}{}^{N,\,N}\!(\mu) \,=\, \sup\big\{\|\hat{\mu}\!*\!f\|_{p}\,;\, f\!\in\!S^{N}, \|f\|_{p}\,{\leq}\,1\big\} \,<\, +\,\infty \,\,.$$

We use the convention that $M_p^{N,N}(\mu) = \infty$ if $\mu \notin M_p^{N,N}$. One can prove that (cf. [1], [2]) $M_p^{N,N} = M_p^{N,N}$ for 1/p + 1/p' = 1; that $M_1^{N,N} \subseteq M_p^{N,N} \subseteq M_p^{N,N}$ is the set of $N \times N$ -matrices with elements that are L_∞ -functions. Further, $M_1^{1,1}$ can be identified with the set of Fourier-Stieltjes transforms of bounded measures on \mathbb{R}^n . In general $M_p^{N,N}$ is a Banach algebra of matrix-valued functions with norm $M_p^{N,N}(\cdot)$. We notice that $FL_1 \subseteq M_1^{1,1}$ and that the w^* -closure of the unit ball in L_p is the unit ball in L_p for 1 , and is the unit ball

in $FM_1^{1,1}$ for p=1. Let us denote the union of w^* -closures of the compact balls in L_p by W_p and the set of corresponding N-vectors by W_p^N . For later reference we state the following well-known result.

Lemma 1. The unit ball in W_p^N is w^* -compact.

By the above it will cause no confusion if we use the same notation for the norms in L_n^N and in W_n^N .

Finally we will give a short discussion of pseudo-differential operators, mainly following [3], [4]. The pseudo-differential operator P(x,D) is defined by

$$P(x,D)u(x) = \int \exp\left(-2\pi i \langle x,y \rangle\right) P(x,y) \, \hat{u}(y) \, dy, \quad u \in S^N,$$

where P(x,y) is an $N \times N$ -matrix, the symbol of P = P(x,D). We assume that for some d > 0 and some sequence $\{P_{d-j}\}_{j=0}^{\infty}$ of $N \times N$ -matrix functions which are homogeneous of degree d-j, respectively, in y, the following relations hold for any integer K:

(5)
$$D_{x}^{\alpha}D_{y}^{\beta}(P(x,y)-\sum_{j=0}^{K}P_{d-j}(x,y))=O(|y|^{d-|\beta|-K})$$

for $|\alpha| \leq \lambda$, $|\beta| \leq \nu$, uniformly for x in compact subsets of \mathbb{R}^n as $|y| \to \infty$. Here we have assumed that $P(x,y) \in \mathscr{C}^{\lambda}$ in x (y fixed), and belongs to \mathscr{C}^{\bullet} for x fixed, and correspondingly for P_{d-j} . We will below assume $\lambda = \infty$, but will specify ν if we assume more than $\nu \geq 0$. From (5) it follows that $P_d(x,y)$, the principal part of P(x,y), is given by

$$P_d(x,y) = \lim_{\lambda \to \infty} \lambda^{-d} P(x,\lambda y)$$

uniformly for (x,y) in compact subsets of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$. We say that P has exact order d if $P_d(x,y)$ does not vanish identically. We will below assume that P(x,D) has exact order d>0.

3. Proof of Theorem 1.

Let s > 0, $x_0 \in \mathbb{R}^n$. For $u \in L_p^N$ we define $U_s u$ by

(6)
$$U_s u(x) = s^{-(n/p)} u(s^{-1}(x-x_0)).$$

Then

(7)
$$||U_s u||_p = ||u||_p,$$

and U_s has an inverse U_s^{-1} such that

(8)
$$U_s^{-1}u(x) = s^{n/p}u(sx+x_0)$$

(9)
$$||U_s^{-1}u||_p = ||u||_p.$$

Let s>0 and $t=\tau s^d$, where d is the order of P. We assume that (3) holds. By (7), (9) and (3) we have

(10)
$$||U_s^{-1}E(\tau s^d) U_s u||_p \le C(T) ||u||_p.$$

By Lemma 1 there exists a $\varphi_{\tau}(u) \in W_p^N$ and a sequence $s_j \to 0$, such that with $t_j = \tau s_j^d$,

(11)
$$U_{s_j}^{-1} E(t_j) U_{s_j} u \xrightarrow{w^*} \varphi_{\tau}(u), \quad s_j \to 0.$$

By (10) this implies, again by Lemma 1, that

$$||\varphi_{\tau}(u)||_{p} \leq C(T)||u||_{p}.$$

Let $\tilde{P}_d(y) = P_d(x_0, y)$. We want to prove that $(\varphi_{\tau}(u))^{\hat{}} = \exp(\tau \tilde{P}_d)\hat{u}$. From (12) it follows, approximating \hat{u} by functions with compact support, that $\varphi_{\tau}(u) \in L_p^N$ also for p = 1.

We first make a simple computation

LEMMA 2. Let $P_d(s; D) = s^d U_s^{-1} P U_s$. Then for $u \in S^N$,

(13)
$$P_d(s; D)u(x) = \int \exp(-2\pi i \langle x, y \rangle) s^d P(sx + x_0, s^{-1}y) \hat{u}(y) dy$$
.

Proof. We have

$$(U_s u)^{\hat{}}(y) = s^{n(1-1/p)} \exp(2\pi i \langle x_0, y \rangle) \hat{u}(s, y) ,$$

and so

$$\begin{split} P \, U_s u(x) \, &= \, s^{n(1 \, - \, 1/p)} \int \exp \left(\, - \, 2 \pi i \langle x - x_0, y \rangle \right) \, P(x,y) \, \, \hat{u}(sy) \, \, dy \\ &= \, s^{-n/p} \, \int \exp \left(\, - \, 2 \pi i \langle s^{-1}(x - x_0), y \rangle \right) \, P(x,s^{-1}y) \, \, \hat{u}(y) \, \, dy \, \, . \end{split}$$

This proves (13).

For a shorter notation, let $E_s(\tau) = U_s^{-1}E(t)\,U_s$. Then notice that $P_d(s;D)$ and $E_s(\tau)$ commute since P and E(t) do. Hence

$$P_d(s; D) E_s(\tau) u = E_s(\tau) P_d(s; D) u$$

is well defined, and is in L_p^N for $u \in S^N$ by (3) and (3)'.

We want to prove that for any $g \in C_0^{\infty}$,

$$(14) \ \int g(x) P_d(s\,;\,D) E_s(\tau) u(x) \ dx \to \int \hat{g}(y) \tilde{P}_d(y) \big(\varphi_\tau(u)\big)^{\smallfrown}(y) \ dy, \quad s = s_j \to 0 \ .$$

We will need the following lemma (cf. the proof of Theorem 3.6 in Hörmander [3]).

LEMMA 3. Let $g \in C_0^{\infty}$, and let

$$g*P_d(s;D)(y) = \int \exp\left(2\pi i \langle x,y\rangle\right) g(x) s^d P(x_0 + sx, s^{-1}y) \ dx \ .$$

Assume that for fixed $y, P(x,y) \in \mathscr{C}^{\infty}$. Then for any integer R,

(15)
$$|g_*P_d(s; D)(y)| \leq C(1+|y|)^{-R}$$
,

uniformly in $s \to 0$. Further, $g_*P_d(s; D)(y) \to \hat{g}(y)\tilde{P}_d(y)$ in L_p .

PROOF. Since $g_*P_d(s; D) \to \hat{g}\tilde{P}_d$ uniformly on compact sets as $s \to 0$, it is sufficient to prove (15), and then use dominated convergence to complete the proof of the lemma. Let $|\alpha| = R + d$, α a multi-index. Then

$$\begin{split} y^{\alpha} & \int \exp\left(2\pi i \langle x,y \rangle\right) \, g(x) s^d P(x_0 + sx, s^{-1}y) \; dx \\ & = \int \exp\left(2\pi i \langle x,y \rangle\right) \, D_x{}^{\alpha} \! \left(g(x) s^d P(x_0 + sx, s^{-1}y)\right) \, dy \; . \end{split}$$

By Leibnitz' formula the right hand side is $O(|y|^d)$, uniformly for $s \to 0$, since $g \in C_0^{\infty}$ by assumption. This proves (15).

We assume for the moment that $1 \le p \le 2$. Let us then complete the proof of (14). The case $p \ge 2$ will be proved afterwards by duality.

Writing out the definition of $P_d(s; D)$ and changing the order of integration we get

$$(16) \quad \int g(x) P_d(s;D) E_s(\tau) u(x) \; dx = \int g_* P_d(s;D) (y) \big(E_s(\tau) u \big)^{\smallfrown} (y) \; dy \; .$$

By Lemma 3, $g_*P_d(s;D) \to \hat{g}\tilde{P}_d$ in L_p , and by the Hausdorff-Young inequality $(E_s(\tau)u)^{\hat{}} \to (\varphi_{\tau}(u))^{\hat{}}$ weakly in L_q^N since $1 \leq p \leq 2$. Hence the right hand side of (16) converges to

$$\int g(y) P_d(y) (\varphi_{\bullet}(u))^{\hat{}}(y) dy ,$$

which is the right hand side of (14). This completes the proof of (14). Since (1) holds we also have

$$\begin{split} \frac{\partial}{\partial \tau} \big(U_s^{-1} E(\tau s^d) \, U_s u \big) &= s^d \, U_s^{-1} \left(\frac{\partial}{\partial t} E(t) \right)_{t=\tau s}{}_d U_s u \\ &= \big(s^d \, U_s^{-1} P(x,D) \, U_s \big) \big(U_s^{-1} E(\tau s^d) \, U_s u \big) = P_d(s\,;\,D) \, E_s(\tau) u \;. \end{split}$$

This, together with (14), proves that with convergence in D' (i.e. in the distribution sense),

(17)
$$\frac{\partial}{\partial \tau} (\varphi_{\tau}(u))^{\hat{}}(y) = \tilde{P}_{d}(y) (\varphi_{\tau}(u))^{\hat{}}(y) .$$

But from (17) we get that $(\varphi_{\tau}(u))^{\hat{}} = \exp(\tau \tilde{P}_d)\hat{u}$, since $\varphi_0(u) = E(0)u = u$. By (12) we finally have

(18)
$$M_{p}^{N,N}(\exp(\tilde{P}_{d})) \leq C_{0} = \inf\{C(T); T > 0\},$$

and so Theorem 1 is proved for $1 \le p \le 2$.

For $p \ge 2$ we notice that if we could define P^* so that

$$\int \langle P^*u, w \rangle \, dx \, = \, \int \langle u, Pw \rangle \, dx, \quad u, w \in \mathscr{C}_0^{\, \infty} \, ,$$

then the dual problem corresponding to (1) for P^* and $E(t)^*$, the adjoint of E(t), would by (3) and (3)' be well posed in L_q , 1/p+1/q=1. If further P^* has a symbol with principal part $P_d(x,y)^*$, the proof above implies that

$$M_p^{N,N}(\exp(\tilde{P}_d^*)) \leq C_0$$
.

This is equivalent to (18), and so Theorem 1 would follow also for $2 \le p \le \infty$.

It remains to verify the above assertions about P^* . Using Parseval's formula it is easy to see that P^* exists and is uniquely determined by the symbol.

$$Q_v(x,y) = \mathscr{F}_{\eta} (\int P(\xi,\eta+y)^* v(\xi) e^{-2\pi i \langle \xi,\eta \rangle} d\xi)(x)$$

where \mathscr{F}_{η} denotes the Fourier transform with respect to η and where $C_0^{\infty} \ni v = 1$ in a neighborhood of x (for the computations, see [3], [4]). Rewriting this as

$$Q_v(x,y) = P(x,y)^* + R_v(x,y)$$

the Fourier inversion formula gives

$$R_v(x,y) = \mathscr{F}_{\eta} \left(\int \left(P(\xi, \eta + y)^* - P(\xi, y)^* \right) v(\xi) e^{-2\pi i \langle \xi, \eta \rangle} d\xi \right) (x) .$$

We can then, as above, use Lemma 2 to prove that $s^d U_s^{-1} R_v U_s(x,y) = o(1)$ as $s \to 0$. Thus R_v contains only lower order terms, and the proof of Theorem 1 is complete.

REMARK. If P(x,D) were a differential operator, then $g_*P_d(s;D) \rightarrow \hat{g}\tilde{P}_d$ in S. Since $(E_s(\tau)u)^{\hat{}} \rightarrow (\varphi_{\tau}(u))^{\hat{}}$ in S' we have (14) at once, and so (17) in the distribution sense. The non-regularity of P and P_d force us to use the slightly more complicated argument above.

4. A generalization.

Let $\alpha \ge 0$ and $\omega_{\alpha}^*(y) = |y|^{\alpha}$, and define for $u \in S^N$ the semi-norm

$$||u||_{p,\alpha}^* = ||F^{-1}(\omega_{\alpha}^*\hat{u})||_p$$
,

where F^{-1} denotes the inverse Fourier transform. We say that (1) is

strictly well posed in $L_{p,\alpha}$ if instead of (3) the following inequality holds: (Notice that the degree of P(x,D) is d>0.),

$$(19) \qquad \|E(t)u_0\|_p \leq C(T)(\|u_0\|_p + t^{\alpha/d}\|u_0\|_{p,\alpha}^*), \quad 0 \leq t \leq T, \ u_0 \in S^N.$$

One can show that if P(x,D) is a homogeneous partial differential operator with constant coefficients then (1) is strictly well posed in $L_{p,\alpha}$ if and only if

$$||E(t)u_0||_p \leq C(T)(||u_0||_p + ||u_0||_{p,\alpha}^*), \quad 0 \leq t \leq T, \ u_0 \in S^N,$$

that is, if and only if (1) is well posed in $L_{p,\alpha}$ (cf. [1]).

Using (19) instead of (3), it is not hard to prove the following result, modifying the proof above slightly.

Theorem 2. Let $\omega_{\alpha}(y) = (1+|y|)^{\alpha}$. If (1) is strictly well posed in $L_{p,\alpha}$ (i.e. if (19) holds), then

$$(20) \qquad \sup_{x_0 \in \mathbb{R}^n} M_p^{N,N} \left(\omega_\alpha^{-1} \exp \left(P_d(x_0,\cdot) \right) \right) < +\infty.$$

Define the rank r(x) of $P_d(x,y)$ as the largest integer r(x) such that there exist some imaginary eigenvalue $\alpha(x,y)$ of $P_d(x,y)$ and some ball $B \subseteq \mathbb{R}^n$ on which $\alpha(x \cdot) \in C^2(B)$, and such that the rank of the hessian

$$\left(\frac{\partial^2 \alpha(x,y)}{\partial y_k \partial y_l}\right)_{k,l}$$

is at least r(x) for $y \in B$. From Theorem 2 above and Theorem 5.4 in [1], we then get the following result.

Theorem 3. Assume that $P(x,y) \in \mathscr{C}^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. Let r(x) be the rank of $P_d(x,y)$ and let $r = \sup r(x)$. Then the Cauchy problem (1) is not strictly well posed in $L_{p,\alpha}$ for $0 \le \alpha < rd(\frac{1}{2} - p^{-1})$.

We end this note by giving an example of an application of Theorem 3. Let $(a_{kl}(x))$ be a real symmetric \mathscr{C}^{∞} -matrix, and let $b_j(x)$ and c(x) be C^{∞} -functions. Assume also that

$$\sum_{k,\,l=1}^n a_{kl}(x)\; y_k y_l \; \geqq \; 0, \quad \ y_k, y_l \in \mathbb{R}, \; x \in \mathbb{R}^n \; .$$

Then consider the Cauchy problem for the hyperbolic system

(21)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \sum a_{kl}(x) \frac{\partial^2 u}{\partial x_k \partial x_l} + \sum_{j=1}^n b_j(x) \frac{\partial u}{\partial x_j} + c(x)u \\ u(x,0) = u_{01}(x) \\ \frac{\partial}{\partial t} u(x,0) = u_{02}(x) . \end{cases}$$

Let $|y|_{\alpha} = (\sum_{k,l=1}^{n} a_{kl}(x) y_k y_l)^{\frac{1}{2}}$. As in section 5 in [1], it is easy to see that we can transform (21) to a Cauchy problem for a system of pseudo-differential operators, where the eigenvalues of the principal part P_1 are $\pm 2\pi i |y|_{\alpha}$. A simple computation shows then that the rank of P_1 is r(x) - 1, where $r(x) = \operatorname{rank}(a_{kl}(x))$. Hence we have the following corollary of Theorem 3.

COROLLARY 3. With the above notations and assumptions, let $r = \sup_x (r(x))$. Then the Cauchy problem (21) is not strictly well posed in $L_{p,\alpha}$ for $0 \le \alpha < (r-1)|\frac{1}{2} - p^{-1}|$.

REFERENCES

- 1. Ph. Brenner, The Cauchy problem for systems in L_p and $L_{p,\alpha}$, to appear in Ark. Mat.
- L. Hörmander, Estimates for translation invariant operators in L_p-spaces, Acta Math. 104 (1960), 93-140.
- L. Hörmander, Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 501-517.
- L. Hörmander, Pseudo-differential operators and hypo-elliptic equations, Amer. Math. Soc. Proc. Symp. Pure Math. 10 (1968), 138-183.
- G. Strang, Necessary and insufficient conditions for well posed Cauchy problems, J. Differential Equations, 2 (1966), 107-114.
- Ph. Brenner, Corrections to the papers "Powerbounded matrices of Fourier-Stieltjes transforms I, II", Math. Scand. 30 (1972), 150-151.

DEPARTMENT OF MATHEMATICS, CHALMERS INSTITUTE OF TECHNOLOGY AND THE UNIVERSITY OF GÖTEBORG, SWEDEN