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DIFFERENTTABLE MOTIONS OF
UNKNOTTED, UNLINKED CIRCLES IN 3-SPACE!

FRANK WATTENBERG

The study of braids was originated by E. Artin [2], [4], [6]. Recently,
R. H. Fox has interpreted braids as motions of n discrete points in
Euclidean 2-space and has generalized this concept to include the study
of motions of submanifolds inside larger manifolds. In [9] one of Fox’s
students, D. M. Dahm, calculated the group of (ambient) topological
motions of unknotted, unlinked circles in Euclidean 3-space. The
purpose of this paper is to carry out the same computation in the dif-
ferentiable category.

1. Preliminaries.

For convenience we briefly sketch the Braid Theory of n points in
Euclidean 2-space. A complete exposition may be found in [2], [4], [5],
[10], [11], and [13].

1.1 DerFintTiON. Let R™ denote Euclidean n-space and let I denote
the closed unit interval [0,1]. Let P denote a set of » distinet points
P1sPgs- - -»P, in R2 Then a braid on n strands is a set of n paths
Wy, Wy, . . ., W,: I - R? such that:

(a) w;(0) = p,; for each 7.
(b) w,(t) =+ wyt) for each ¢+j and 0<t<1.
(¢) wi(l)eP for each 7.

Braids are generally pictured in R® by looking at the paths
Wy, Ws,. . ., Wy,: I — R3 defined by w;(t) = (w;(t),t).

Two braids wy,w,,. . .,w, and v,,9,,...,0, may be combined to obtain
a new braid (wxv),,(wxv),,...,(w*v), given by the following:

(wv),(t) = w,(28) for 0st<},
= v(2t—1) for $=t=1,
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where w(1) = p; = v,(0).

t=1 / Py

Fig. 1.1

Two braids w,,w,,...,w, and v;,v,,...,v, are isotopic provided there
is an isotopy of braids between them. That is, provided there is';?'a, set
of mappings W, W,,...,W,: I xI — R? such that:

(a‘) Wi(t’ 0) = wi(t)’ 0=t=<1.
(b) Wit,1) = vyt), 0<t<1.
(c) Wilt,s) =+ W,,s), 0<t,s<1,i%j.
(d) Wi(0,8) = p; = wy(0) = v,(0), O0=s=1.
(€) Wi(l,8) = wy(l) = v,(1), 0<s<l.

Braid classes are then defined to be isotopy classes of braids. The
operation * is, in fact, a group operation on the set of braids. Hence
the nth Braid Group B,(R?) is defined to be the set of braid classes
on n-strands together with the operation =.

1.2 DErINITION. Suppose that M is a manifold. Then the nth con-
figuration space of M, F, (M), is defined by

F (M) = {(,%5,...,2 ) EMXMx...xM | i%j=>2;%x,}.

The symmetric group on = letters S, acts freely on F,(M) by per-
muting coordinates. That is, if s € S, then
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s(xl,xz,. . ,xn) = (xs(l),xs(z),. .. ,xs(n)) .

If z and y are two elements of F, (M) then we say x~y provided there
is an element s of S, such that x=s(y). This obviously defines an
equivalence relation on ¥, (M) and since S, acts freely on F, (M), we
define the space G, (M) to be F,(M)/~ and obtain a natural covering
map p: F (M)~ G, (M) with fiber S,,.

Now, if w;,w,,...,w, is a braid on n-strands we define a path
w: I - F, (R?) by

’W(t) = (wl(t)’wz(t)7 e 7wn(t)) *

Then the mapping pw: I - G,(R?) is a loop in G,(R%). In fact, the
nth bratd group of a manifold M, B, (M), may now be defined to be
7, (G, (M)). For M=R? this agrees with the classical definition given
above. Using this definition of the group B, (M) as motivation we con-
sider the group of differentiable motions of a submanifold N inside
a larger manifold M as follows.

1.3 DerFiNITION. Suppose that M is a smooth connected manifold
without boundary and that N is a compact smooth submanifold of M.
By ‘“smooth” throughout this paper we mean C*. In general, N will
have a finite number of components N,,N,,...,N,. Let E(N, M)
denote the set of smooth embeddings of N into M with the C* topology.
In particular, if N = {p,, p,,. . .,D,} is a finite set of points then E(N, M)=
F. (M).

Let e denote the inclusion mapping NS M and let P denote the
subset of E(N, M) consisting of those embeddings of N into M which
agree setwise with e. That is, 1€ P if and only if ¢(N)=e(N)=N.

Define B(M,N) to be the set m,(E(N, M), P, ¢). Intuitively, B(M,N)
is the set of differentiable motions of N in M. (See, for example, [22]
for a definition of relative homotopy groups m,(4,B,z).) This set can,
in fact, be given a group structure. The analogous construction in the
topological case admits ‘‘pathological” motions like the ‘“‘snapping”
of a knotted circle in R3 which is pictured in Fig. 1.2.

Hence, we proceed as follows in order to provide a definition which
will be applicable to the topological case. Let D(JM) denote the group
of diffeomorphisms of M with the C* topology. Let I, denote the identity
in D(M). Let D(M,N) denote the subgroup of D(M) consisting of those
diffeomorphisms which leave N setwise fixed. That is,

feD(M,N) < f(N)=N.
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Fig. 1.2~

Define the group of motions of N in M, B(M,N), to be
7y (D(M), D(M,N), I,) .

Notice that B(M,N) inherits a group structure from D(M) since D(M,N)
is a subgroup of D(M). The following lemma shows that this group is
isomorphic to the intuitive set of motions B(M,N).

1.4 LeMMAa. Suppose that the mapping r: D(M) - E(N, M) is defined
by r(f)=fe. Then ry: ny(D(M), D(M,N)) - 7;(E(N, M), P) is an iso-
morphism.

Proor. The conclusion follows immediately from Palais’ result that
the mapping r is a locally trivial fiber map [17, Theorem C].

1.5 DerinITION. Suppose that M is a topological manifold without
boundary and that N is a compact submanifold of M. Let e denote
the inclusion map NS M. Let H(M) denote the group of homeomor-
phisms of M with the compact open topology, and let I,, denote the
identity in H(M). Let H(M,N) denote the subgroup of H(M) consisting
of those homeomorphisms which leave N setwise fixed. That is,
feHM,N) < f(N)=N. The topological group of motions of N in M.
B,,,(M,N), is defined to be m,(H(M), H(M,N), I).
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2. Motions with compact support.

Throughout the remainder of this paper we will restrict our attention
to the motions of a submanifold N in R, although much of the pre-
liminary work goes through in more general situations. In [9] Dahm
computes the topological group of motions of unknotted, unlinked
circles in R3 based on paths and isotopies of paths in H(R3) with com-
pact support. Let H,,.(R¥) and H,,(R¥,N) denote the subgroups of
H(R®) and H(R¥,N), respectively, consisting of those homeomorphisms
with compact support. A minor technical problem arises if these groups
are given the compact open topology since there then are continuous
paths w: I — H_(RF) for which there is no compact subset K< R*
such that for every ¢ € I, the support of w(f) is contained in K. There
are several ways around this problem.

2.1 DerFiNITION. For each integer n =1 let H,(R¥) denote the subgroup
of H(R¥) consisting of those homeomorphisms of H(R¥) which have
support contained in the closed ball of radius n centered at the origin.
That is,

H,(R¥) = {fe H(R¥) | |lz]|2n = f(x)==x}.

Notice that H,(R¥)=U, H,(R¥). One possible solution to the tech-
nical problem above is to give H,,(R¥) the direct limit topology. Then
the following lemma shows that that situation cannot occur.

2.2 LEmMA. Suppose that K is a compact set and that f: K — H, (RF)
18 a continuous mapping with H (R¥) having the direct limit topology.
Then there is an integer n such that the image of f 18 contained in H, (RF).

Proor. The proof is completely straightforward.

Alternatively, we can use the usual compact open topology on H.(R¥)
and make use of the following lemma.

2.3 LemMA. Every element of m,(H,,(R¥), H, (R*, N)) can be represented
by a path w: I - H,(R¥) such that for some compact set K the support
of w(t) s contained in K for every tel.

Proor. Let m be any integer such that N is contained in the ball of
radius m —1 centered at the origin. Let A: [0,00) - [0,m+1) be any
diffeomorphism such that A(x) =2 for z <m. Let B denote the open ball
of radius m + 1 and define H: R¥ -~ B by
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H(x) = h(|j)/|l]| .

Notice that H(z)==z for x € N and that H is a diffeomorphism.
Now, if v represents an element of s,(H,(R¥), H.,(R¥,N)) define
w: I~ Hpyy(RE) by

w(t)(x) = Ho(t)H(x) for x€ B,
= otherwise .

It is completely straightforward to verify that w is the desired path.

The differentiable case is handled identically. We have now intro-
duced several different groups of motions. In the topological category
we have Dahm’s group 7;(H,,(R3%), H (R N)), where N is a finite set
of unknotted, unlinked circles, as well as our original z,(H(R?), H(R3,N))
based on motions without compact support. It appears to be a very
difficult question whether these two are isomorphic. In the differen-
tiable category we again have, a priori, two possibilities,

73(Dept(R3), Depi(R3,N))  and  ay(D(R3), D(R3,N))

where D, ,,(R3%) and D, (R3,N) are defined in the obvious way. How-

ever, in the differentiable category these two groups are immediately
seen to be isomorphic via the following lemma together with Lemma 1.4.

2.4 LEMMA. Using the notation of Section 1 suppose that the mapping
7. Dopy(RF) - E(N,R¥) is given by n(f)=fe. Then
Mgt Ty(Depi(R¥), Dopi(R*,N)) — 7,(E(N, R¥), P)
18 an isomorphism.

Proor. Immediate from Palais’ results [17, Theorem C], noting that
Palais is working there with diffeomorphisms having compact support.

From now on we will work with the groups.

Bcpt( Rk, N) = 7zl(l)cpt',( Rk)’ -Dcpt( Rk’N))
and
Bctop(Rk’N) = 7zl(lycpt( Rk)’ Hcpt( Rk:N)) .

3. The Dahm homomorphism d.
Let 82 denote the 3-sphere viewed as the one point compactification
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of R3, and let H,(S%) denote the group of homeomorphisms of 82 which
leave o« fixed. Suppose that

w: (I’O;l) g (Hcpt(Ra)’ I:Hcpt(Rs,N))

represents an element of B, (R%,N) or of B,,(R3N). Then define
w: 8% > 83 by

w(x) = w(l)(x) if zeR3

E(oo): oo

Since w(1)(N)=UN, @ restricts to a mapping w: 83\ N — 83\ N, which
in turn induces an automorphism w': 7;(S3\ N, ) - 7;(83\ N, ).

3.1 DEFINITION AND LEMMA. The mapping

d: Bg,p(R3,N) - Auto(7,(S3\ N, 0))
or

B, ,(R3,N) - Auto(7,(S*\ N, o))

defined by d([w])=w" is a well-defined homomorphism called the Dakm
homomorphism.

The proof is straightforward.

In particular, if N is a set of n unknotted, unlinked circles in R3, then
7;(83\ N) is the free group F, on n generators and the Dahm auto-
morphism goes from Bg,,(R3,N) or B,,(R3N) into Auto(F,). The
main result of Dahm’s thesis [9] is that in the topological case the
mapping d: Bg,,(R3,N) - Auto(F,) is an isomorphism into. The present
paper obtains the same result in the differentiable category.

3.2 REmargS. The mapping d can be constructed equally well in
the case of motions which do not have compact support. In his thesis
[9] Dahm actually constructs a map

d: Byop(M,N) - Auto(n, (M \ N))

whenever M is a noncompact manifold. He accomplishes this by choos-
ing a “sliding” basepoint for m,(M \ N) as follows. Let w: [0,00) - M
be a one-to-one mapping such that w([0,)) is not compact. Then the
path w provides natural isomorphisms between (M \N,w(s)) and
7 (M N\ N,w(t)) for 0<¢, s < co. In the present case m;(R¥\ N)asm,(S3\ N)
so this complication is unnecessary.

Math. Scand. 30 — 8
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4. The differentiable motions of a single unknotted circle in R3.

The purpose of this section is to show that the group of differentiable
motions of the circle,

St = {(2,,%,,0) | 2,2+ 2,2 =1},

in R3 is isomorphic to Z,. From now on we will be working strictly in
the differentiable category where it makes no difference whether we
use diffeomorphisms with or without compact support. Hence, we
may use the simpler notation B(R3,N) rather than B, ,(R3,N) although
in our computations we will often use diffeomorphisms with compact
support.

Let SO, denote the group of orientation preserving orthogonal trans-
formations of R® and let =: SO; — 8% be defined by =(f)=f(0,0,1).
Thus =z is a locally trivial fiber map. Notice that SO; n H(R3, 8')~0,,
the group of orthogonal transformations of R%. The map = induces an
isomorphism:

Tyt (805,0,) ~ 7y (82, {eg,€5)) ~ Zy

where ¢;=(0,0,1) and e,=(0,0,—1). We immediately obtain a com-
mutative diagram.

71,(805,05) —2— Auto(my(S3\ 1) r~ Z

l Ia

7i,(D(R?), D(R3, 81)) = B(R?,8,),

where the mapping d is constructed analogously to d and is seen to be
an isomorphism by inspection. The remainder of this section is devoted
to demonstrating that the map 4, induced by the inclusion

i: (804,0,) — (D(R?), D(R3, 81))

is also an isomorphism and hence the Dahm homomorphism d is an
isomorphism.

Suppose that w: (7,0, l) (D(R?), 1, D(R3, 81)) represents an element
of B(R3, 81). Then w(l) is a mapping in D(R3,8') which restricts to
a mapping of S* onto itself which has degree plus or minus one. We
will show in the following pages that if it has degree plus one then the
motion [w] is in the image of ¢,. It follows immediately that i, is an
isomorphism. The proof proceeds in five steps:

a. [w] may be represented by a path v: (I,0,1) - (D(R3), 1, D(R3, 81))
such that »(1) is the identity on S*.
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b. [v] may be represented by a path w: (I,0,1) > (D(R3), 1, D(R3,8%))
such that «(1) is the identity on a tubular neighborhood D of S! in R3,

c. [4] may be represented by a path ¢: (1,0,1) — (D(R3?), 1, D(R3, 8%))
such that #(1) is the identity on the 2-disk

D% = {(2,,2,,0) | 22+ 2,21} .

d. [t] may be represented by a path s: (I,0,1) - (GL(3), 1, GL(2)),
where GL(n) denotes the general linear group on R™.

e. [s] may be represented by a path r: (,0,1) - ((SO(3), 1, 1) which
is actually the trivial path.

4.1 LeMmmaA. Suppose that f: S — St is a diffeomorphism of degree one.
Then there is a path g: I — D(S*) (where D(S') denotes the diffeomorphism
group of S with the C* topology) such that g(0)=f and g(1) is the identity
on SL.

Proor. Let S! be considered as R!/a, where z~y if x — y is an integral
multiple of 2z. We have a differentiable covering map n: R! - 8 and
the mapping f lifts to give us the diagram below:

Rt —f . Rt

n n

1, Q1
SfS.

Define the mapping A: R! x I — R! by the equation
h(z,t) = te+(1—t)f(x) .

Since % respects the relation a, it induces a mapping A: S!x I —» St
such that hx=nh. The desired mapping g is defined by g(t)(x)=h(z,t).

4.2 CoroLLARY. The motion [w] may be represented by a path
v: (I1,0,1) - (D(R3), 1, D(R3,8%)) such that v(1) is the identity on SL.

Proor. Apply the previous lemma to obtain a function g: I — D(S)
such that g(0)=w(1) and g(1)=1 on S!. By Palais’ result [17] g can
be extended to a path G: I - D(R3,S!) such that G(t)=g(t) on S* for
0<t<1, and G(1)=1I on R3. Let H(t)=G(1—t). Then H represents
the trivial motion in B(R3,S') and thus v(f) =w(t)H-(f) represents the
same motion as w. The path v has the desired properties.
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4.3 LemmA. Suppose that f: R® —> R3 is a diffeomorphism such that f
18 the identity on S1. Then there is a tubular neighborhood D of S* in R3
and a diffeotopy g: R3x I — R3 such that:

1) g(x,1) = f(x) for each x in R3,
2) g(x,0) = = for each x in D ,
3) g(x,8) == for each z in S, sin I .

Proor. Let D’ be a solid torus around S'. We identify D’ with S1x E
where E is a two disk of radius 1. By the uniqueness theorem for tubular
neighborhoods and the diffeotopy extension theorem (see, for example,
C.T.C. Wall [21], or S. Lang [14] and R. Palais [17]) we may assume
that f restricted to D' is an SO(2)-bundle equivalence. That is, if A
denotes f restricted to D’ then h(s,e)=(s,k(s)(e)) where k: S* - SO(2)
is a smooth map of 8! into the special orthogonal group SO(2). The
lemma is proven by showing that k is homotopically trivial and thus
can be extended to a smooth mapping K: D? -~ SO(2) where D? is the
2-disk of radius 1, centered at (0,0). We can assume that K((0,0))
is the identity. We will denote points of D? with polar coordinates
(s,t), se 8, t e I. Then the mapping

g: R3xI -~ R?

is defined as follows. Let A: I — I be a smooth monotonic function such
that:

Mzx) =0, O0=szs},

Mzx) =1, $=<z=1.

If xe D' x1, then x=(s,e,t) € S x E x I. Define

g(s,e,8) = (8,K(s,2(llell) + (1 —A(llell))£)(e)) -
If (x,t) € (R®\D') x I, define

g(x’t) = f(x) .
Notice: g
(i) If z=(s,e,t) € D’ such that ||| = %, then

g(x) = (s,K(s,l)(e)) = (8,’0(8)(6)) = f(x) )

80 ¢ is smooth.
(ii) If x=(s,e,t) € D' such that t=1,

g9(x) = (s,K(s,1)(e)) = (s,k(s)(e)) = f(x)
so that if x=(y,1) € R3x I, then g(y,1)=f(y).
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(iii) Let D={(s,e) e D' | |le] £4}. Then if (s,e) e D,
9(8,670) = (S:K('S:O)(e)) = (s:e) .

Hence if the mapping K can be found, the lemma is proved.

In order to show that k: 8 - SO(2) is homotopically trivial consider
the circle C={(%;,%,,0) | 2,2+ x,2=1—¢}. By choosing ¢ small enough
C is contained in D’, and so f(C) is contained in D', also. The circle C
is identified with S!x {z,} for some x, € E.

Next consider the commutative diagram

S0(2)

e = evaluation
map at x,

¢ LoD gt Lo Six s T S

r 1

where 7 is the restriction of the projection S!x E — E, k(s,z,)=k(s),
and p is the obvious homotopy equivalence. Since e induces an iso-
morphism 7,(8O(2)) - =,(S?), k is homotopically trivial if and only if
r i8. Since C is homotopically trivial in R®\ 8%, f(C) must be homotopi-
cally trivial in R3\ §'. But the diagram

[
C—L D\ — 3
\ j
f\
R3\ St
commutes up to homotopy and j, : 7,(S') - 7;(R¥\ 8?) is an isomorph-

ism. Therefore, r and hence & must be homotopically trivial which
completes the proof.

In what follows we will want to be able to say that D2uu(1)(D?) is an
embedded two sphere. In order to do this we must twist the tubular

neighborhood D around 8! in order to smooth out the intersection (S?)
of D? and w(1)(D?).
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4.4 CoroLrARY. The motion [v] may be represented by a path
w: (1,0,1) > (D(R3), 1, D(R3, 81))

such that, on a tubular neighborhood D of S in R3, u(l) is given by the
Jormula

u(1)(s,e) = (s,4(e)) ,
where (s,e) e D=8'x E and A is the 180 degree twist of E.

Proor. Use the same proof as Lemma 4.3 only assume that K(0,0)
is A. Then apply the technique of Corollary 4.2.

The next step is to further modify the motion so that at 1 it is the
identity on the 2-disk D? spanned by S§* in R®. Working with «(1)(D?2)
and D? we first deform w(1)(D?) so that it intersects D? transversally
in a finite number of circles. These intersections are then removed
one by one, making use of the Schoenflies Theorem to enclose each
intersection in turn in a 3-ball. When there are no intersections left,
the Schoenflies theorem is again used to make D2uu(1)(D?) the boundary
of a 3-ball. Then u(1)(D?) is finally deformed so that it matches D2,

4.5 LEMMA. The mapping u(1) can be deformed keeping S* fixed to obtain
a new mapping f: (R3,81) — (R3,8) which has all the following properties:

1) f(D?) intersects D? transversally,

2) f agrees with u(1) on a tubular neighborhood of S*,

3) f(D?)n.D?4s a finite number of circles Cy,C,, . . .,Cy, plus the original S'.

Proor. This all follows immediately from general transversality theory
and Palais’ result [17], [20], [21].

4.6 DeFINITION. We define an ordering on the circles of intersection
0,,0,,...,C, as follows:
C;<(; if and only if C; and 8! are in different components of D%\ C;.

4.7 LEMMA. The ordering < defined above is a partial ordering.

Proor. We must show two things, antisymmetry and transitivity.

(i) Antisymmetry. Suppose that C;<C;. Then let w be a path con-
necting C; and §! such that w(t) € C; if and only if £=0. Since C;<C;
the path » must intersect C; at some time s, but then the portion of w
between s and 1 is a path in D2\ C; from C; to S so that C; cannot
be <C;. This shows that < is antisymmetric.
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(ii) Transitivity. Suppose that C;<C; and C;<C} but that C,«C,.
We shall show that this leads to a contradiction. Since C;« C), there is
a path w in D2\ O}, from C; to §1. But since C;<C; the path w must
intersect C; at some time s. But then the portion of w between s and 1
is a path in D2\ C, which connects C; and §'. This contradicts the
fact that C; < 0} and completes the proof.

4.8 DEFINITION. A circle C; is called minimal if there is no circle Cj
such that C; <C;.

4.9 LEMMA. Each circle C; is either itself minimal or there 18 a circle
0; < C; such that C; ts minimal.

Proor. Clear.

4.10 LEMMA. Suppose that C=C; is a minimal circle of intersection of
f(D*nD2

Then there is a diffeotopy from f to a map g which removes the intersection
C without introducing any new intersections, and which keeps S' fixed
throughout the diffeotopy.

Proor. Let E, be the component of D?\ C which does not contain S1.
Similarly, let £, be the component of f(D?\ C) which does not contain 8.
Although D? may intersect E,, B, does not intersect E, since C was
chosen to be minimal.

For convenience we assume that K, ‘“starts’” below D2? as shown
in Fig. 4.1. By transversality theory we can choose an ¢ small enough
so that the disk D?%+¢ intersects f(D?) transversally in circles C;’ just
above C; as shown. Let C’ be the circle on D?+¢ just above C. Let
E,' be the component of (D?+¢)\ C’ not containing S* and let E," be
the component of f(D?)\C’ which does not contain S!. Smooth out
E,/UE, by a small diffeotopy of f with support close to C’ so that
together they give a smooth imbedding of §% in R3 as shown in Fig.4.1.

By the Schoenflies Theorem [16] this imbedding of S% can be extended
to the 3-ball D%. In D3 there is a diffeotopy taking the bottom half
sphere E," as close as we want to the top half sphere E,’ keeping E,’
fixed in a neighborhood of its boundary C’. In particular there is a
diffeotopy as described above which pulls E,’ free of the disk D2 This
diffeotopy extends to a diffeotopy of f(D?) which is fixed outside of the
3-ball D3. This diffeotopy in turn by the diffeotopy extension theorem
extends to a diffeotopy of R® with compact support which leaves the
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Fig. 4.1

portion of f;(D?) outside of the 3-ball D3 and thus 8! pointwise fixed
and which pulls E," off of D? eliminating the intersection C. No new
intersections are introduced and, in fact, any other intersections of E,
with D? are eliminated. This completes the proof.

By repeated applications of Lemma 4.10 we remove all the inter-
sections other than 8! of D? and f(D?). This enables us to bring f(D?)
down to match D? by the following lemma.

4.11 LeMMA. Suppose we have the situation given by the conclusion of
Lemma 4.5 and that, in addition, f(D*)nD2=81. Then there is a diffe-
otopy of R3 fixzing S* which takes f onto a mapping which is the identity
on D2,

Proor. The embeddings D? and f(D?) of D? in R? give a differentiable
embedding of the 2-sphere 82 in R3:

Sz = .D21 U]. .Dzz Tuf—) Rso

By the Schoenflies Extension Theorem this embedding can be extended
to an embedding of the 3-ball D3 into R3. In the 3-ball D?, is diffeotopic
to D%, keeping S! fixed. This diffeotopy can be extended by Palais’
result (or the diffeotopy extension theorem) to all of R3. This extension
is the desired diffeotopy.
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4.12 CororLrARY. The motion [u] may be represented by a path
¢: (1,0,1) - (D(R3), 1, D(R3,8Y)) such that t(1) is the identity on D2

Proor. The conclusion follows immediately from Lemmas 4.5-4.11
noting that each of them keeps §! fixed.
4.13 Lemma. The motion [t] may be represented by a path
s: (1,0,1) > (GL(3), 1, GL(2)) .

Proor. Define the mapping H: I x I — D(R?) by

H(y,z)(x) = Hy)((1—2)x)/(1-2) if z+1,
H(y,1)(=) = A(y)(x) ,

where A(y) is the element of GL(3) corresponding to the derivative of
t(y) at the origin. Define s: I -~ GL(3) by

s(y) = H(y,1) = A(y) € GL(3) .
¢t and s represent the same motions since s(y)=H(y,0) and
H(0,z)(x) = t(0)((1—2)2)/(1—2) = z,
and for each x in 81,
H(1,2)(x) = t(1)((1 —2)x)/(1—2) = z
since £(1) is the identity on D2
4.14 LEMmMA. The motion [s] may be represented by a path
r: (1,0,1) - (80O(3), 1, 8O(2))

which is homotopically trivial.

Proor. The first part of the conclusion follows from the standard
deformation of GL(k) into O(k). The triviality of r follows from the
isomorphisms
N (S, {ene) N Z,

d

m(0(2)) ~ Z,.

E

This completes the program outlined at the beginning of this section
giving us the following theorem.
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4.15 THEOREM. The mapping iy : 7,(SO(3),0(2)) — 7,(D(R?), D(R3, §1))
induced by the inclusion mapping 1 is an isomorphism. Hence, the Dahm
homomorphism d: B(R3,8') — Auto(n,(S3\ 8'))~Z, is an isomorphism.

5. Motions of n unknotted, unlinked circles in R3,
In this section we turn our attention to the group
B(R3,81,u8%u...u8).

The circles S; are embedded in the xy-plane as circles of unit radius
centered at the points (572 —4,0,0).

Let x; denote (5 —5,0,0) which we will use as a ‘“basepoint’ on the
circle §*;. Then we define an injection

v: B(R3, {z;,2,,...,2,}) > B(R3, 8%, uSL,u...u8%,)
as follows.
5.1 DEFINITION. Suppose that w: I — F, (R3) is a path in F,(R3) given
by w(t)=(w,(t),wy(t),. . . ,w,(t)) representing an element of
B(R3, {z;,,,...,2,}) .

Hence, w;(0)=x; and w;(1) € {x,,2,,...,x,} for each 7. Define ,,: I - R
by
hu(t) = $Min {Jlw,(¢) —w; )| | 45} -

Then %,,(0)=h,(1)=1. Define v,: I - E(S};,uS%,uU...uS,,R3) by
v,(t)(s) = wi(t)—{;(s—xi)hw(t) if seS.
Then v,(0) is the inclusion map, and v,(1) is a permutation of
SLulS,u...u8,.

By Palais’ result [17], v,, can be lifted to a mapping V(w): I - D(R3)
such that V(w)(0) is the identity and V(w)(t) =v,,(¢) on S, u8%,u...uS8t,
for each ¢. This construction defines a homomorphism

v: B(RS, {x},2,,...,2,}) > B(R}, 8, uS,u...u8,).

5.2 LEMMA. B(R3, {z,,,,...,%,}) is isomorphic to the symmetric group
on n letters S,,.

Proor. This follows from the fact that m,(F,(R3)) is trivial and hence
7;(G,(R3)) is isomorphic to the group of covering transformations of
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the covering space S, - F,(R%®) — G,(R?). The reader is referred to
Fadell and Neuwirth [11] for a complete exposition.
We also obtain a mapping
wu: B(R3, 8%, UuSLU...U8Y) > B(R3 {z,2,,...,7,})

as follows:

5.3 DEFINITION. Suppose
w: (I,0,1) - (D(R3), 1, D(R3, 8%, u8%,u...u8Y))
represents a motion in B(R3, 8, u8%,u...u8)). Let ¢, €S, be the per-
mutation defined by w(1)(8%,)=8", ;. We may assume that w(1)(z;)=
%o for each 4, since if w(l)(z;)+x,,, there is an isotopy of S
taking w(1)(x;) onto z,, and hence w can be modified keeping
SLuSLu...ul8t,
setwise fixed so that w(l)(x;)=%.,. The mapping m(w): I -~ F,(R3)
is defined by
m(w)(t) = (w(t)(@), w(t)(@s), . . ., w(t)(@,)) -
Clearly, m(w) defines a motion in B(R3, {z,,x,,...,%,}) and this con-
struction gives us a mapping
/I,Z B(R3,SIIU812U. . .USl,n) —> B(R3, {xl,xz,. . ,xn})

such that uv is the identity on B(R3, {z,,,,...,2,}). Hence, » is in-
jective.

Let F, denote m,(S3\ (8,uS%u...uS",)) the free group on n gener-

ators. Let {a,,a,,...,a,} be a free basis for F, given by the loops shown
in Fig. 5.1.
N
A \ A\
a3 [
f Sy US 1y

Fig. 5.1
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There are three kinds of motions which are immediately evident.
First the ‘“flipping” motion «; which flips the circle S'; around the
z-axis through an angle of 180 degrees in a manner similar to the non-
trivial motion in B(R3, §1). The correspondmg automorphisms 4,=d(x,)

£F, b
o are given by Aya) = aj for j=t=t )

Ay(a;) = a;7t
The second kind of motion is the permutation of circles which comes
from a motion in B(R3, {z,,x,,...,2,}).. If ¢ is a permutation in

S, ~ B(R3, {x,,x,,...,7,})

712(1)(a,)

81 at time {=1}

7 \\ Path of Sll
-7 N7 AN
s < N
s N
z s N N
‘ 7 N XY Sy at time t=4
SR /’U
S at time \\\ P il
¢=0 apd =1 \‘(’ il
7\ 7

\\ Z N \/
81, at time t=$

Fig. 5.2
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and B, denotes the motion »(c) in B(R3, 8, uS%,uU...uS?,) then the
corresponding automorphism B,=d(8,) of F, is given by

Bc(ai) = Q) -

The third type of motion y;; is the motion which loops the circle §%;
around the circle S'; as illustrated in Fig. 5.2. The corresponding auto-
morphism C;;=d(y;;) is given by

Cila,) = ay for k+j,

J
Ciila;) = a;taja,.

5.4 DerFINITION. Let F, be as above and let 7'(F,,) denote the subgroup
of Auto(F,) consisting of those automorphisms r: F, - F, of the form

r(a;) = qaqy™@q; 71,

where e(¢) is plus or minus one and ce S,. The following lemma due
to Dahm [9] is identical in both the topological and differentiable case.

5.5 LEmMA. The Dahm homomorphism

d: B(R3,8,,u8%u...u8,) - Auto(F,)
s onto T'(F,).

Proor. It is clear from Fig. 5.2 that d goes into T'(¥F,). To show
that d goes onto T'(F,) it suffices to show that T(F,) is generated by
the automorphisms 4,, B, and Cy;. In fact, it suffices to show that if
reT(F,) is of the form

- r(a) = qag;7t,
then r is a product of the Cj;’s. We may assume that the g;a,9,~* are
reduced words in the a,’s. We prove that r is a product of the C;’s
by induction on the total length of the ¢,’s. Since r is an automorphism

there are elements b; of F, such that r(b,)=a;. We can write the b,’s
as reduced words:

b, = H;-"_ffl’an(,'ﬁ*"f) where e(3,j) = +1 or —1.
Then

(: . -
a; = TI79 Gti s Onts, 9™ i, 72 -

Cancellations may occur only at the junctions @nti,»  qne,5+1) Since the
9;2;9;,7! are already in reduced form. Consider such a junction:

.. -QBaseqs~IQ¢utth—l° tee
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One of the following cases must occur:

(1) 4,7 = ha gt
(2) g, = hayg™
(3) @ = q.9:h
(4) @ = qsasblh s

where % is a reduced word. Equations (3) and (4) are the same as (1)
and (2) with a change of indices and taking inverses. In both cases
(1) and (2), since we started with reduced words, the length of ¢, must
be less than the length of A plus the length of g;.

For case (1) consider the automorphism rC,,,

r0(ar) = qra,q™ for k+s,
rCps(as) = r(ara,a) = ¢0,71¢714,0,9, g™ = qhta kg .

Since the total length of the “g,’s” for rC,, is less than for 7, the induc-
tion works for case (1). The same method works for case (2) completing
the proof.

The rest of this section is devoted to showing that d is monic and hence
B(R3,81,u8%u...u8t,) is isomorphic to T'(F,).

5.6 LemMMA. Suppose w: (I1,0,1) — (D(R3), 1, D(R3, 81, u8%,u...USL,))
represents a motion in B(R3, 8L, uS%,u...USY,) such that d([w]) is the
trivial automorphism. Then w may be represented by a path

w: (I,0,1) - (D(R3), 1, D(R3, 84, US%U. ..USY))

such that u(t)(x;) =z, for all t and each basepoint ;.

Proor. As in 5.3 we may assume that w(1)(z;) ==, for each 7. Con-
sider the path v= V(m(w)) constructed in 5.1 and 5.3. Since d([w])=1,
m(w) = 1 so that v represents the trivial motion in B(R3,8%,uS8%,u...us8%,),
but

v(t)(x;) = w(t)(x;) foreacht?ands.

Let u(t)=v"(t)w(t). Then [u]=[v][w]=[w] and u(t)(x;)==; for each

t and <.

5.7 LEMMA. Suppose that
w: (I,0,1) > (D(R®), 1, D(R3, 8, u8%,u...u8Y,))
18 as obtained above. Then [u] may be represented by a path
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p: (1,0,1) - (D(R3), 1, D(R3, 8, uS%,u...u8,))
satisfying the following properties:

1) p(t)(x;) ==, for each t and <.

2) p(1) restricted to tubular neighborhoods D, of the S; looks like wu(1)
in Corollary 4.4.

3) Let D?; denote the disk spanned by S';. Then for each j, p(1)(D?%)
intersects the original disks D2, transversally in a finite number of
circles C; 1,C; o, - -, C; 13y lus the circle 81;.

Proor. The proof is identical to that of Lemmas 4.3—-4.5 with the
following additional observation. At first glance it appears that the disk
p(1)(D%) might intersect D% on the boundary of D?% for some i+j.
However, this is impossible since p(1) is a diffeomorphism and con-
dition (2) specifies what it looks like near the boundary of D?.

[=e]

Fig. 5.3
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Next we would like to use the techniques of Lemmas 4.10 and 4.11
to modify p(1) by a diffeotopy keeping the S§,’s fixed so that p(1) is
the identity on all the disks D?;,. Fig. 5.3 shows that these techniques
will not work directly since the disks might interfere with each other.
Notice that if we attempted to use Lemma 4.10 to remove the minimal
circle C, we would run into difficulty since the circle 8%, is trapped
inside the 2-sphere that would be constructed for the circle C.

Let L; denote the line running down from oo to z; so that a; is repre-
sented by a loop coming down L, to a point almost to z; within D,
running around §'; inside D; and then running back out L,. We avoid
the impasse pictured in Fig. 5.3 by first modifying p(1) by a diffeotopy
which keeps the circles §'; fixed and moves the lines p(1)(L;) so that
they do not intersect any of the disks D?. Notice that since p(1) is a
diffeomorphism the lines p(1)(L;) do not intersect any of the disks
p(1)(D?%) either.

Fig. 5.4 shows the result of pulling p(1)(L,) off D? in the situation
in Fig. 5.3 near the circles C and C’.

p(1)(D%)
p(1)(Lg)

Before After
Fig. 5.4

Notice that the two intersections C' and C’ have been merged into a
single intersection which can be removed by the technique of Lemma
4.10. In order to pull the lines p(1)(L;) off the disks D?; we follow Dahm
[9] and choose a projection of R® onto R? in the spirit of knot theory
as shown in Fig. 5.5. In particular, we can assume that all the inter-
sections of the projections of the circles and lines are transversal and
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P(1)(Ly)

Fig. 5.5

that there are no double intersections, that is, no places where three
or more of the lines and circles intersect.

For each of the lines p(1)(L,) we construct a sequence of the form
bybobs. . .b;, where each of the b;’s is either o; or u;. This sequence is
constructed corresponding to the overpasses and underpasses of the line
P(1)(L,) with the circles S%;, starting at the top of p(1)(L;) at c and
terminating on the circle §!; at ;. In Fig. 5.5 we obtain the sequences
U050, UsUsUU,0; aNd 0,0,0,0, corresponding to the lines p(1)(L,) and
P(1)(L,) respectively. The empty sequence corresponds to the line
P(1)(Ls).

Observe first of all that since each of the circles S!; disconnects the
Projection onto R2, each of sequences corresponding to p(1)(L;) must
consist of subsequences of the form b,b5b,,...,b, where each b, is an
overpass or underpass for the same circle 81; and k is even. For example,

Math. Scand. 30 — 9
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the sequence u,0,0,u,0,0,u3;03 might occur, but the sequence u,0,u,u u,
cannot occur because the line would get stuck inside §7;.

We must show first that if something of the form wu; or o0,0; occurs
in one of the sequences then it can be eliminated by a diffeotopy which
does not disturb anything which is important. Notice that if we apply
this kind of reduction to the line p(1)(L,) in the picture on the preceding
page, we effectively pull p(1)(L,) free of all the disks D2;.

5.8 LEMMA. Suppose that the combination wu,u; or o,0; occurs in the
sequence corresponding to the line p(1)(L;) where j may or may not equal 3.
Then there is a diffeotopy of R® which fixes all of the circles S*; as well as
all the lines p(1)(Ly) for k=+j, and which eliminates the combination w;u;
or 0,0; without introducing any new overpasses or underpasses.

Proovr. The proof is given for the case 0,0,. The other case is identical.
The combination o;0; represents two overpasses of the line p(1)(Z;)
over the circle 81, with no other overpasses or underpasses with any other
circle in between. However, there may be some overpasses or under-
passes of that portion of the line p(1)(L;) between the two overpasses
represented by o,0; with some of the other lines p(1)(L,) or even with
another part of the line p(1)(L;) as in Fig. 5.6.

P(1)(Ly)

Fig. 5.6

Let 1 denote the portion of the line p(1)(L;) in between the two over-
passes corresponding to o,0;,. If 2 does not pass under any of the lines
p(1)(L,) for k+j, or p(1)(Ls) \ 4, then there is no difficulty at all. We
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simply lift A up and pull it free of S';. However, if there are any such
underpasses, this operation might create some new underpasses or over-
passes. Thus we must first eliminate any underpasses of 1 under any
of the p(1)(L;) for k=j or p(1)(L;)\A.

Suppose that A passes under p(1)(L;). Then from the side we have
Fig. 5.7a. First, we pull a small portion of 1 up right next to p(1)(Ly)
so that we obtain Fig. 5.7b. Then we pull 4 along p(1)(Z,) until we reach
81, keeping very close to p(1)(L;) so as not to interfere with anything
else. This gives us Fig. 5.7c. Finally, 4 is pulled around 8%, following
p(1)(D?%,) very closely and then pulled back above its original position
to obtain Fig. 5.7d. This replaces the original underpass by an over-
pass without creating any new under or overpasses.

P(I)(Ly) P(1)(Ly)
N N/&
(b)

(a)

P(1)(Ly) p(1)(Ly)

"L q

(o) (d)

Fig. 6.7

P(1)(L;)\ A consists of two parts: L containing o and L’ containing
8;. If 2 passes under L’ the preceding technique goes through without
any changes. However, if 1 passes under L the above technique won’t
work directly since 4 would run into itself and get stuck. In this case
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we use the same method but instead of pulling 2 up to L and following
p(1)(L;) around, we pull L down to 4 and follow p(1)(L,) around. Using
this technique each of the underpasses of 1 is eliminated. Then the
two overpasses corresponding to 0,0, are removed by pulling 4 up and
free of §',. These motions of A are extended to R3 keeping everything
important fixed. This completes the proof of lemma 5.8.§

Lemma 5.8 also enables us to eliminate any overpasses or underpasses
of p(1)(L;) with the circle §!; which might appear at the very end of
p(1)(L;) by the following corollary.

5.9 CoroLLARY. Suppose the sequence for the line p(1)(L;) terminates in
o;u; (or u;0;). Then there is a diffeotopy of R3 which fixes all of the circles
S, and all of the lines p(1)(L;) except for p(1)(L;), which eliminates the
combination o;u; (or w;0;) and does not create any new under or overpasses.

Proor. The proof is identical in either case. Hence, we just look
at the case o,u;. By twisting the torus D; surrounding S%; around S%
as in Fig. 5.8 we add the combination u;0; so that the sequence now ends
in o;u;u;0; which is eliminated by two applications of lemma 5.8.

P(1)(Ly) PA)Ly)

Before After
Fig. 5.8

Now for each of the lines p(1)(L;) we may assume that we have a
sequence of the form d,b,d,b,...db, where if d;=0, then b;=wu, and
if d;=w,, then b;=o0;, and b,+0; or w,. For each line p(1)(L;) we define
a word W, in the generators a, of F, as follows:
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5.10 DeFINITION. We define W,=a,;®a,x*®. . .a,,%? where n(j)=k
if d;=o0; or d;=w; and e(j)=+1 if d;=0; and e(j)= —1 if d;=u,.

The following lemma is immediate from the preceding lemma and
definitions.

5.11 LemMaA. W, is a reduced word in the a;’s and d([p])(a;) = W, W,

Proor. W, is a reduced word since a subsequence of W, of the form
a;a;~* would correspond to o;u;u;0; which was eliminated by Lemma 5.8.
The second part of the conclusion follows from the fact that the loop that
was chosen to represent a; ran in along L; almost to z;, then around xz;
inside the tubular neighborhood D, around §8*;, and finally back out L;.

5.12 COROLLARY. Suppose that p is as above. Then there are no under-
passes or overpasses of the lines p(1)(L;) with any of the circles S*;. Thus,
none of the lines p(1)(L;) intersects any of the disks D?.

Proor. Since d([p]) is the trivial automorphism, W, W, must
equal a; for each s. However, since W, is a reduced word this can only
oceur if W; is a power of a; or is 1. But by Corollary 5.9 W, does not
end in a; or a;~. Hence W;=1 so that there are no over or underpasses
of p(1)(L;) with any of the circles S*;. This completes the proof.

We are now in a position to apply the technique of Section 4 to show
that [p] can be represented by a path ¢ such that g¢(1) is the identity
on the disks D2;.

5.13 THEOREM. Suppose that [p] is a motion in B(R3, §1,u SL,u...u8%)
such that d([p]) is the identity. Then [p] may be represented by a path

q: (1,0,1) - (D(R3), 1, D(R3, 8%, uS%,u...uSY))
such that q(1)(x) =z for each x € D?* uD?uU...uD?

-

Proor. By the preceding corollary we may assume that none of
the lines p(1)(L;) intersect any of the disks D?;. It is possible that the
preceding lemmas destroyed the transversality condition for the disks
p(1)(D%) and D?. However, this can be rectified without introducing
any new intersections of the lines p(1)(L;) with the disks D? by the usual
transversality arguments. From here on the proof is identical to that
of Theorem 4.12 with the following two observations. First, the disk
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p(1)(D?%) may very well intersect D? with j=+1, but this causes no dif-
ficulty at all. Second, in both Lemmas 4.10 and 4.11 we must make
sure that when we extend the mapping of the 2-sphere which is obtained
to a mapping of the 3-ball, that the 3-ball does not hit any of the circles
8%, or any of the disks p(1)(D?%;) except for that part of p(1)(D?%;) which
forms part of the boundary of the 3-ball. This follows from the fact
that p(1)(L;)up(1)(D?%) is a connected set part of which (c0) is outside
of the 3-ball, and none of which (except the boundary of theportion
of p(1)(D%) which forms part of the boundary of the 3-ball) intersects
the boundary of the 3-ball.

These remarks conclude the proof of Theorem 5.13. We can now
complete the proof that d is an isomorphism onto 7T'(F,).

5.14 TeEOREM. Suppose that [q] is a motion tn B(R3, S, uS,uU...uS8L,)
such that d([q]) is the identity. Then [q] is the trivial motion. Hence, d is
an isomorphism.

Proor. By Theorem 5.12 we may assume that ¢(1)(z)=z for each
xze D> uD%u...uD?, . Now consider the mapping

q': (D4uD%u...uD?)x I - R
defined by
q'(x,8) = q(t)(x) .

Since (D?,uD%u...uD?%)xI is a compact set there is a positive ¢
such that if ||x—y| < e, then ||¢'(x,t) —q'(y,t)|| £ 1. Recall that by Lemma
5.6 we can assume that ¢'(x;,t)=x; for all ¢ and 7. By changing the
parametrization of ¢ we may also assume that ¢ has the following two
properties:

1) q)(z) = = forallze R®and allt<},
2) q(t)(x) = q(1)(x) forallzeR%®andallt=$§.

Let & denote a path in D(R®) which shrinks each of the circles 8, down
to radius ¢ keeping the basepoints ; all fixed in time ¢ running from
0 to }; then stays constant until time {=$; then expands the circles
back to their original size between time ¢t=% and ¢{=1. So that, in
particular, A(t)=h(1—¢). Then % clearly defines a trivial motion. Now
look at the motion [¢]*[#] which is the same motion as [¢]. For each
value of ¢ the image of each of the circles S'; is contained in the ball of
radius 2 around the point ;. Consider the path g(¢)h(t)|S*,uS%,U...USY,
as a path in E(S:,u8%u...u8%,,R%). By Palais’ work this path can
be lifted to a path @: I -~ D(R?) with the following properties:
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(i) @) (=)
(i) @()(x)

q(t)h(t)(x) for each ¢ and each X e SY,uS%,u...u8%,,
T for each ¢ and each x such that z is not
within 2% of one of the z;’s.

By the first property @ represents the same motion as g. By the second
property we can look at @ as n disjoint motions of (R3, S1) isolated from
each other, each of which is trivial by Theorem 4.15 and Remark 2.6.
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